Pediatric Drugs

, Volume 16, Issue 3, pp 189–198

Pediatric Ulcerative Colitis: A Practical Guide to Management

Therapy in Practice

Abstract

Ulcerative colitis (UC) is a chronic inflammatory disorder of the gastrointestinal tract of unknown etiology that frequently presents in the pediatric population. The evaluation of pediatric UC involves excluding infection, and a colonoscopy that documents the clinical and histologic features of chronic colitis. Initial management of mild UC is typically with mesalamine therapy for induction and maintenance. Moderate UC is often initially treated with oral prednisone. Depending on disease severity and response to prednisone, maintenance options include mesalamine, mercaptopurine, azathioprine, infliximab, or adalimumab. Severe UC is typically treated with intravenous corticosteroids. Corticosteroid nonresponders should either undergo a colectomy or be treated with second-line medical rescue therapy (infliximab or calcineurin inhibitors). The severe UC patients who respond to medical rescue therapy can be maintained on infliximab or thiopurine, but 1-year remission rates for such patients are under 50 %. These medications are discussed in detail along with the initial work-up and a treatment algorithm.

References

  1. 1.
    Turner D, Griffiths AM. Acute severe ulcerative colitis in children: a systematic review. Inflamm Bowel Dis. 2011;17(1):440–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Kornbluth A, Sachar DB. Ulcerative colitis practice guidelines in adults: American College Of Gastroenterology, Practice Parameters Committee. Am J Gastroenterol. 2010;105(3):501–23 (quiz 24).Google Scholar
  3. 3.
    Bousvaros A, Antonioli DA, Colletti RB, et al. Differentiating ulcerative colitis from Crohn disease in children and young adults: report of a working group of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the Crohn’s and Colitis Foundation of America. J Pediatr Gastroenterol Nutr. 2007;44(5):653–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Loftus CG, Loftus EV Jr, Harmsen WS, et al. Update on the incidence and prevalence of Crohn’s disease and ulcerative colitis in Olmsted County, Minnesota, 1940–2000. Inflamm Bowel Dis. 2007;13(3):254–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Haskell H, Andrews CW Jr, Reddy SI, et al. Pathologic features and clinical significance of “backwash” ileitis in ulcerative colitis. Am J Surgical Pathol. 2005;29(11):1472–81.CrossRefGoogle Scholar
  6. 6.
    Matsui T, Yao T, Sakurai T, et al. Clinical features and pattern of indeterminate colitis: Crohn’s disease with ulcerative colitis-like clinical presentation. J Gastroenterol. 2003;38(7):647–55.PubMedCrossRefGoogle Scholar
  7. 7.
    Levine A, Koletzko S, Turner D, et al. The ESPGHAN revised Porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J Pediatr Gastroenterol Nutr. 2013. doi:10.1097/MPG.0000000000000239.
  8. 8.
    Jess T, Loftus EV Jr, Velayos FS, et al. Risk of intestinal cancer in inflammatory bowel disease: a population-based study from Olmsted county, Minnesota. Gastroenterol. 2006;130(4):1039–46.CrossRefGoogle Scholar
  9. 9.
    Turner D, Otley AR, Mack D, et al. Development, validation, and evaluation of a pediatric ulcerative colitis activity index: a prospective multicenter study. Gastroenterol. 2007;133(2):423–32.CrossRefGoogle Scholar
  10. 10.
    Cuffari C, Dubinsky M, Seidman EG. Clinical roundtable monograph: the evolving role of serologic markers in the management of pediatric IBD. Gastroenterol Hepatol. 2009;5(2 Suppl 6):1–14.Google Scholar
  11. 11.
    Inoue T, Murano M, Narabayashi K, et al. The efficacy of oral tacrolimus in patients with moderate/severe ulcerative colitis not receiving concomitant corticosteroid therapy. Intern Med. 2013;52(1):15–20.PubMedGoogle Scholar
  12. 12.
    Autenrieth DM, Baumgart DC. Toxic megacolon. Inflamm Bowel Dis. 2012;18(3):584–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Turner D, Travis SP, Griffiths AM, et al. Consensus for managing acute severe ulcerative colitis in children: a systematic review and joint statement from ECCO, ESPGHAN, and the Porto IBD Working Group of ESPGHAN. Am J Gastroenterol. 2011;106(4):574–88.PubMedCrossRefGoogle Scholar
  14. 14.
    Zeisler B, Lerer T, Markowitz J, et al. Outcome following aminosalicylate therapy in children newly diagnosed as having ulcerative colitis. J Pediatric Gastroenterol Nutr. 2013;56(1):12–8.CrossRefGoogle Scholar
  15. 15.
    Burger D, Travis S. Conventional medical management of inflammatory bowel disease. Gastroenterol. 2011;140(6):1827–37 e2.Google Scholar
  16. 16.
    Sonu I, Lin MV, Blonski W, et al. Clinical pharmacology of 5-ASA compounds in inflammatory bowel disease. Gastroenterol Clin North Am. 2010;39(3):559–99.PubMedCrossRefGoogle Scholar
  17. 17.
    Peppercorn MA. Sulfasalazine: pharmacology, clinical use, toxicity, and related new drug development. Ann Intern Med. 1984;101(3):377–86.PubMedCrossRefGoogle Scholar
  18. 18.
    Fujiwara M, Mitsui K, Ishida J, et al. The effect of salazosulfapyridine on the in vitro antibody production in murine spleen cells. Immunopharmacology. 1990;19(1):15–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Doering J, Begue B, Lentze MJ, et al. Induction of T lymphocyte apoptosis by sulphasalazine in patients with Crohn’s disease. Gut. 2004;53(11):1632–8.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Dubuquoy L, Rousseaux C, Thuru X, et al. PPARgamma as a new therapeutic target in inflammatory bowel diseases. Gut. 2006;55(9):1341–9.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Pedersen G, Brynskov J. Topical rosiglitazone treatment improves ulcerative colitis by restoring peroxisome proliferator-activated receptor-gamma activity. Am J Gastroenterol. 2010;105(7):1595–603.PubMedCrossRefGoogle Scholar
  22. 22.
    Rousseaux C, Lefebvre B, Dubuquoy L, et al. Intestinal anti-inflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. J Exp Med. 2005;201(8):1205–15.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Levine A, de Bie CI, Turner D, et al. Atypical disease phenotypes in pediatric ulcerative colitis: 5-year analyses of the EUROKIDS Registry. Inflam Bowel Dis. 2013;19(2):370–7.CrossRefGoogle Scholar
  24. 24.
    Moss AC, Cheifetz AS, Peppercorn M. A combined oral and topical mesalazine treatment for extensive ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006;3(5):290–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Marshall JK, Thabane M, Steinhart AH, et al. Rectal 5-aminosalicylic acid for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev. 2012;(11):CD004118.Google Scholar
  26. 26.
    Marshall JK, Irvine EJ. Rectal corticosteroids versus alternative treatments in ulcerative colitis: a meta-analysis. Gut. 1997;40(6):775–81.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    D’Haens G, Sandborn WJ, Barrett K, et al. Once-daily MMX® mesalamine for endoscopic maintenance of remission of ulcerative colitis. Am J Gastroenterol. 2012;107(7):1064–77.PubMedCrossRefGoogle Scholar
  28. 28.
    Truelove SC, Witts LJ. Cortisone in ulcerative colitis; final report on a therapeutic trial. BMJ. 1955;2(4947):1041–8.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Beattie RM, Nicholls SW, Domizio P, et al. Endoscopic assessment of the colonic response to corticosteroids in children with ulcerative colitis. J Pediatr Gastroenterol Nutr. 1996;22(4):373–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Baron JH, Connell AM, Kanaghinis TG, et al. Out-patient treatment of ulcerative colitis: comparison between three doses of oral prednisone. BMJ. 1962;2(5302):441–3.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Hyams J, Markowitz J, Lerer T, et al. The natural history of corticosteroid therapy for ulcerative colitis in children. Clin Gastroenterol Hepatol. 2006;4(9):1118–23.PubMedCrossRefGoogle Scholar
  32. 32.
    Buchman AL. Side effects of corticosteroid therapy. J Clin Gastroenterol. 2001;33(4):289–94.PubMedCrossRefGoogle Scholar
  33. 33.
    Harris DM. Some properties of beclomethasone dipropionate and related steroids in man. Postgrad Med J. 1975;51(Suppl 4):20–5.PubMedGoogle Scholar
  34. 34.
    Bansky G, Buhler H, Stamm B, et al. Treatment of distal ulcerative colitis with beclomethasone enemas: high therapeutic efficacy without endocrine side effects. A prospective, randomized, double-blind trial. Dis Colon Rectum. 1987;30(4):288–92.PubMedCrossRefGoogle Scholar
  35. 35.
    Romano C, Famiani A, Comito D, et al. Oral beclomethasone dipropionate in pediatric active ulcerative colitis: a comparison trial with mesalazine. J Pediatr Gastroenterol Nutr. 2010;50(4):385–9.PubMedGoogle Scholar
  36. 36.
    Brunner M, Ziegler S, Di Stefano AF, et al. Gastrointestinal transit, release and plasma pharmacokinetics of a new oral budesonide formulation. Br J Clin Pharmacol. 2006;61(1):31–8.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Gross V, Bunganic I, Belousova EA, et al. 3 g mesalazine granules are superior to 9 mg budesonide for achieving remission in active ulcerative colitis: a double-blind, double-dummy, randomised trial. J Crohns Colitis. 2011;5(2):129–38.PubMedCrossRefGoogle Scholar
  38. 38.
    Tiede I, Fritz G, Strand S, et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest. 2003;111(8):1133–45.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Hyams JS, Lerer T, Mack D, et al. Outcome following thiopurine use in children with ulcerative colitis: a prospective multicenter registry study. A J Gastroenterol. 2011;106(5):981–7.CrossRefGoogle Scholar
  40. 40.
    Louis E, Belaiche J. Optimizing treatment with thioguanine derivatives in inflammatory bowel disease. Best Pract Res Clin Gastroenterol. 2003;17(1):37–46.PubMedCrossRefGoogle Scholar
  41. 41.
    Derijks LJ, Gilissen LP, Hooymans PM, et al. Review article: thiopurines in inflammatory bowel disease. Aliment Pharmacol Ther. 2006;24(5):715–29.PubMedCrossRefGoogle Scholar
  42. 42.
    Dubinsky MC, Lamothe S, Yang HY, et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology. 2000;118(4):705–13.PubMedCrossRefGoogle Scholar
  43. 43.
    Cuffari C, Hunt S, Bayless T. Utilisation of erythrocyte 6-thioguanine metabolite levels to optimise azathioprine therapy in patients with inflammatory bowel disease. Gut. 2001;48(5):642–6.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Osterman MT, Kundu R, Lichtenstein GR, et al. Association of 6-thioguanine nucleotide levels and inflammatory bowel disease activity: a meta-analysis. Gastroenterology. 2006;130(4):1047–53.PubMedCrossRefGoogle Scholar
  45. 45.
    Pearson DC, May GR, Fick GH, et al. Azathioprine and 6-mercaptopurine in Crohn disease: a meta-analysis. Ann Intern Med. 1995;123(2):132–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Curkovic I, Rentsch KM, Frei P, et al. Low allopurinol doses are sufficient to optimize azathioprine therapy in inflammatory bowel disease patients with inadequate thiopurine metabolite concentrations. Eur J Clin Pharmacol. 2013;69(8):1521–31.PubMedCrossRefGoogle Scholar
  47. 47.
    Rahhal RM, Bishop WP. Initial clinical experience with allopurinol-thiopurine combination therapy in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2008;14(12):1678–82.PubMedCrossRefGoogle Scholar
  48. 48.
    Shih DQ, Nguyen M, Zheng L, et al. Split-dose administration of thiopurine drugs: a novel and effective strategy for managing preferential 6-MMP metabolism. Aliment Pharmacol Ther. 2012;36(5):449–58.PubMedCrossRefGoogle Scholar
  49. 49.
    Chande N, MacDonald JK, McDonald JW. Methotrexate for induction of remission in ulcerative colitis. Cochrane Database Syst Rev. 2007;(4):CD006618.Google Scholar
  50. 50.
    Jolivet J, Cowan KH, Curt GA, et al. The pharmacology and clinical use of methotrexate. New Engl J Med. 1983;309(18):1094–104.PubMedCrossRefGoogle Scholar
  51. 51.
    Ravikumara M, Hinsberger A, Spray CH. Role of methotrexate in the management of Crohn disease. J Pediatr Gastroenterol Nutr. 2007;44(4):427–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Morabito L, Montesinos MC, Schreibman DM, et al. Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-5′-nucleotidase-mediated conversion of adenine nucleotides. J Clin Invest. 1998;101(2):295–300.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Genestier L, Paillot R, Fournel S, et al. Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J Clin Investig. 1998;102(2):322–8.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Cronstein BN. The mechanism of action of methotrexate. Rheum Dis Clin North Am. 1997;23(4):739–55.PubMedCrossRefGoogle Scholar
  55. 55.
    Khan N, Abbas AM, Moehlen M, et al. Methotrexate in ulcerative colitis: a nationwide retrospective cohort from the Veterans Affairs Health Care System. Inflamm Bowel Dis. 2013;19(7):1379–83.PubMedCrossRefGoogle Scholar
  56. 56.
    Cummings JR, Herrlinger KR, Travis SP, et al. Oral methotrexate in ulcerative colitis. Aliment Pharmacol Ther. 2005;21(4):385–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Oren R, Arber N, Odes S, et al. Methotrexate in chronic active ulcerative colitis: a double-blind, randomized Israeli multicenter trial. Gastroenterology. 1996;110(5):1416–21.PubMedCrossRefGoogle Scholar
  58. 58.
    Aloi M, Di Nardo G, Conte F, et al. Methotrexate in paediatric ulcerative colitis: a retrospective survey at a single tertiary referral centre. Aliment Pharmacol Ther. 2010;32(8):1017–22.PubMedCrossRefGoogle Scholar
  59. 59.
    Jakobsen C, Bartek J Jr, Wewer V, et al. Differences in phenotype and disease course in adult and paediatric inflammatory bowel disease: a population-based study. Aliment Pharmacol Ther. 2011;34(10):1217–24.PubMedCrossRefGoogle Scholar
  60. 60.
    Wilson A, Patel V, Chande N, et al. Pharmacokinetic profiles for oral and subcutaneous methotrexate in patients with Crohn’s disease. Aliment Pharmacol Ther. 2013;37(3):340–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Ho S, Clipstone N, Timmermann L, et al. The mechanism of action of cyclosporin A and FK506. Clin Immunol Immunopathol. 1996;80(3 Pt 2):S40–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Lichtiger S, Present DH, Kornbluth A, et al. Cyclosporine in severe ulcerative colitis refractory to steroid therapy. N Engl J Med. 1994;330(26):1841–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Palestine AG, Austin HA 3rd, Balow JE, et al. Renal histopathologic alterations in patients treated with cyclosporine for uveitis. N Engl J Med. 1986;314(20):1293–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Fox DS, Cruz MC, Sia RA, et al. Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12-FK506 in Cryptococcus neoformans. Mol Microbiol. 2001;39(4):835–49.PubMedCrossRefGoogle Scholar
  65. 65.
    Ogata H, Kato J, Hirai F, et al. Double-blind, placebo-controlled trial of oral tacrolimus (FK506) in the management of hospitalized patients with steroid-refractory ulcerative colitis. Inflamm Bowel Dis. 2012;18(5):803–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Watson S, Pensabene L, Mitchell P, et al. Outcomes and adverse events in children and young adults undergoing tacrolimus therapy for steroid-refractory colitis. Inflamm Bowel Dis. 2011;17(1):22–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Breese EJ, Michie CA, Nicholls SW, et al. Tumor necrosis factor alpha-producing cells in the intestinal mucosa of children with inflammatory bowel disease. Gastroenterology. 1994;106(6):1455–66.PubMedGoogle Scholar
  68. 68.
    Viallard JF, Pellegrin JL, Ranchin V, et al. Th1 (IL-2, interferon-gamma (IFN-gamma)) and Th2 (IL-10, IL-4) cytokine production by peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE). Clin Exp Immunol. 1999;115(1):189–95.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Ringheanu M, Markowitz J. Inflammatory bowel disease in children. Curr Treat Options Gastroenterol. 2002;5(3):181–96.PubMedCrossRefGoogle Scholar
  70. 70.
    Rutgeerts P, Sandborn WJ, Feagan BG, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2005;353(23):2462–76.PubMedCrossRefGoogle Scholar
  71. 71.
    Hyams J, Damaraju L, Blank M, et al. Induction and maintenance therapy with infliximab for children with moderate to severe ulcerative colitis. Clin Gastroenterol Hepatol. 2012;10(4):391–9 e1.Google Scholar
  72. 72.
    Colombel JF, Sandborn WJ, Reinisch W, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010;362(15):1383–95.PubMedCrossRefGoogle Scholar
  73. 73.
    Panaccione R, Ghosh S, Middleton S, et al. Combination therapy with infliximab and azathioprine is superior to monotherapy with either agent in ulcerative colitis. Gastroenterology. 2014;146:392–400.PubMedCrossRefGoogle Scholar
  74. 74.
    Sandborn WJ, van Assche G, Reinisch W, et al. Adalimumab induces and maintains clinical remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2012;142(2):257–65 e1–3.Google Scholar
  75. 75.
    Reinisch W, Sandborn WJ, Panaccione R, et al. 52-week efficacy of adalimumab in patients with moderately to severely active ulcerative colitis who failed corticosteroids and/or immunosuppressants. Inflamm Bowel Dis. 2013;19(8):1700–9.PubMedGoogle Scholar
  76. 76.
    Afif W, Loftus EV Jr, Faubion WA, et al. Clinical utility of measuring infliximab and human anti-chimeric antibody concentrations in patients with inflammatory bowel disease. Am J Gastroenterol. 2010;105(5):1133–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Gastroenterology, Inflammatory Bowel Disease Center, GI Division-Hunnewell Ground, Harvard Medical SchoolBoston Children’s HospitalBostonUSA

Personalised recommendations