Pediatric Drugs

, Volume 16, Issue 2, pp 169–177 | Cite as

Use of Methylxanthine Therapies for the Treatment and Prevention of Apnea of Prematurity

  • Katherine Schoen
  • Tian Yu
  • Chris Stockmann
  • Michael G. Spigarelli
  • Catherine M. T. Sherwin
Review Article


Apnea of prematurity (AOP) is a common complication of preterm birth, which affects more than 80 % of neonates with a birth weight less than 1,000 g. Methylxanthine therapies, including caffeine and theophylline, are a mainstay in the treatment and prevention of AOP. Despite their frequent use, little is known about the long-term safety and efficacy of these medications. In this review, we systematically evaluated the literature on neonatal methylxanthine therapies and found that caffeine is associated with fewer adverse effects and a wider therapeutic window when compared with theophylline. When used as a therapeutic agent, larger doses of caffeine citrate have been shown to improve acute neonatal outcomes when administered promptly, although further studies are needed to assess the long-term neurological consequences associated with the use of large loading doses. In a secondary analysis of data obtained from a randomized controlled trial, the prophylactic use of caffeine was associated with substantial cost savings and improved clinical outcomes. However, there remains a paucity of well-controlled, randomized clinical trials that have examined the use of caffeine as a prophylactic agent, and further prospective trials are needed to determine if caffeine is a safe and effective prophylactic agent. Additionally, measuring plasma concentrations longitudinally as a marker of therapeutic efficacy and/or toxicity has not been shown to be clinically useful in neonates who are responsive to treatment and exhibit no signs or symptoms of toxicity. However, in cases where toxicity is of concern or for neonates with congenital or pathophysiologic process that may alter the pharmacokinetics of these drugs, therapeutic drug monitoring may be warranted to monitor for methylxanthine toxicity.


  1. 1.
    Theobald K, Botwinski C, Albanna S, et al. Apnea of prematurity: diagnosis, implications for care, and pharmacologic management. Neonatal Netw. 2000;19(6):17–24.PubMedCrossRefGoogle Scholar
  2. 2.
    Zhao J, Gonzalez F, Mu D. Apnea of prematurity: from cause to treatment. Eur J Pediatrics. 2011;170(9):1097–105.CrossRefGoogle Scholar
  3. 3.
    Alden ER, Mandelkorn T, Woodrum DE, et al. Morbidity and mortality of infants weighing less than 1,000 grams in an intensive care nursery. Pediatrics. 1972;50(1):40–9.PubMedGoogle Scholar
  4. 4.
    Montandon G, Bairam A, Kinkead R. Long-term consequences of neonatal caffeine on ventilation, occurrence of apneas, and hypercapnic chemoreflex in male and female rats. Pediatr Res. 2006;59(4 Pt 1):519–24.PubMedCrossRefGoogle Scholar
  5. 5.
    Supinski GS, Deal EC Jr, Kelsen SG. The effects of caffeine and theophylline on diaphragm contractility. Am Rev Respir Dis. 1984;130(3):429–33.PubMedGoogle Scholar
  6. 6.
    Aranda JV, Turmen T. Methylxanthines in apnea of prematurity. Clin Perinatol. 1979;6(1):87–108.PubMedGoogle Scholar
  7. 7.
    Aranda JV, Turmen T, Davis J, et al. Effect of caffeine on control of breathing in infantile apnea. J Pediatrcs. 1983;103(6):975–8.CrossRefGoogle Scholar
  8. 8.
    Dzhala V, Desfreres L, Melyan Z, et al. Epileptogenic action of caffeine during anoxia in the neonatal rat hippocampus. Ann Neurol. 1999;46(1):95–102.PubMedCrossRefGoogle Scholar
  9. 9.
    Gu L, Gonzalez FJ, Kalow W, et al. Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. Pharmacogenetics. 1992;2(2):73–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Kalow W, Tang BK. The use of caffeine for enzyme assays: a critical appraisal. Clin Pharmacol Ther. 1993;53(5):503–14.PubMedCrossRefGoogle Scholar
  11. 11.
    Carrillo JA, Benitez J. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin Pharmacokinet. 2000;39(2):127–53.PubMedCrossRefGoogle Scholar
  12. 12.
    Ha HR, Chen J, Freiburghaus AU, et al. Metabolism of theophylline by cDNA-expressed human cytochromes P-450. Br J Clin Pharmacol. 1995;39(3):321–6.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Robson RA, Miners JO, Matthews AP, et al. Characterisation of theophylline metabolism by human liver microsomes: inhibition and immunochemical studies. Biochem Pharmacol. 1988;37(9):1651–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Bory C, Baltassat P, Porthault M, et al. Metabolism of theophylline to caffeine in premature newborn infants. J Pediatr. 1979;94(6):988–93.PubMedCrossRefGoogle Scholar
  15. 15.
    Steer P, Flenady V, Shearman A, et al. High dose caffeine citrate for extubation of preterm infants: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2004;89(6):F499–503.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Tracy MB, Klimek J, Hinder M, et al. Does caffeine impair cerebral oxygenation and blood flow velocity in preterm infants? Acta Paediatr. 2010;99(9):1319–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Henderson-Smart DJ, Steer PA. Caffeine versus theophylline for apnea in preterm infants. Cochrane Database Syst Rev. 2010;(1):CD000273.Google Scholar
  18. 18.
    Charles BG, Townsend SR, Steer PA, et al. Caffeine citrate treatment for extremely premature infants with apnea: population pharmacokinetics, absolute bioavailability, and implications for therapeutic drug monitoring. Ther Drug Monit. 2008;30(6):709–16.PubMedCrossRefGoogle Scholar
  19. 19.
    Comer AM, Perry CM, Figgitt DP. Caffeine citrate: a review of its use in apnoea of prematurity. Paediatr Drugs. 2001;3(1):61–79.PubMedCrossRefGoogle Scholar
  20. 20.
    Natarajan G, Botica ML, Thomas R, et al. Therapeutic drug monitoring for caffeine in preterm neonates: an unnecessary exercise? Pediatrics. 2007;119(5):936–40.PubMedCrossRefGoogle Scholar
  21. 21.
    Bairam A, Boutroy MJ, Badonnel Y, et al. Theophylline versus caffeine: comparative effects in treatment of idiopathic apnea in the preterm infant. J Pediatr. 1987;110(4):636–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Brouard C, Moriette G, Murat I, et al. Comparative efficacy of theophylline and caffeine in the treatment of idiopathic apnea in premature infants. Am J Dis Child. 1985;139(7):698–700.PubMedGoogle Scholar
  23. 23.
    Fuglsang G, Nielsen K, Kjaer Nielsen L, et al. The effect of caffeine compared with theophylline in the treatment of idiopathic apnea in premature infants. Acta Paediatr Scand. 1989;78(5):786–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Scanlon JE, Chin KC, Morgan ME, et al. Caffeine or theophylline for neonatal apnoea? Arch Dis Child. 1992;67(4 Spec No):425–8.Google Scholar
  25. 25.
    Kumar SP, Mehta PN, Bradley BS, Ezhuthachan SG. Documented monitoring (DM) shows theophylline (T) to be more effective than caffeine (C) in prematurity apnea (PA). Pediatr Res. 1992;31:208A.Google Scholar
  26. 26.
    Laubscher B, Greenough A, Dimitriou G. Comparative effects of theophylline and caffeine on respiratory function of prematurely born infants. Early Human Dev. 1998;50(2):185–92.CrossRefGoogle Scholar
  27. 27.
    Patel RM, Leong T, Carlton DP, et al. Early caffeine therapy and clinical outcomes in extremely preterm infants. J Perinatol Off J Calif Perinatal Assoc. 2013;33(2):134–40.CrossRefGoogle Scholar
  28. 28.
    Davis PG, Schmidt B, Roberts RS, et al. Caffeine for apnea of prematurity trial: benefits may vary in subgroups. J Pediatr. 2010;156(3):382–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Skouroliakou M, Bacopoulou F, Markantonis SL. Caffeine versus theophylline for apnea of prematurity: a randomised controlled trial. J Paediatr Child Health. 2009;45(10):587–92.PubMedCrossRefGoogle Scholar
  30. 30.
    Bucher HU, Duc G. Does caffeine prevent hypoxaemic episodes in premature infants? A randomized controlled trial. Eur J Pediatr. 1988;147(3):288–91.PubMedCrossRefGoogle Scholar
  31. 31.
    Schmidt B, Roberts RS, Davis P, et al. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006;354(20):2112–21.PubMedCrossRefGoogle Scholar
  32. 32.
    Schmidt B, Roberts RS, Davis P, et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med. 2007;357(19):1893–902.PubMedCrossRefGoogle Scholar
  33. 33.
    Dukhovny D, Lorch SA, Schmidt B, et al. Economic evaluation of caffeine for apnea of prematurity. Pediatrics. 2011;127(1):e146–55.PubMedCrossRefGoogle Scholar
  34. 34.
    McGowan JD, Altman RE, Kanto WP Jr. Neonatal withdrawal symptoms after chronic maternal ingestion of caffeine. South Med J. 1988;81(9):1092–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Banner W Jr, Czajka PA. Acute caffeine overdose in the neonate. Am J Dis Child. 1980;134(5):495–8.PubMedGoogle Scholar
  36. 36.
    Kulkarni PB, Dorand RD. Caffeine toxicity in a neonate. Pediatrics. 1979;64(2):254–5.PubMedGoogle Scholar
  37. 37.
    Gray PH, Flenady VJ, Charles BG, et al. Caffeine citrate for very preterm infants: effects on development, temperament and behaviour. J Paediatr Child Health. 2011;47(4):167–72.PubMedCrossRefGoogle Scholar
  38. 38.
    Hoecker C, Nelle M, Poeschl J, et al. Caffeine impairs cerebral and intestinal blood flow velocity in preterm infants. Pediatrics. 2002;109(5):784–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Saliba E, Autret E, Gold F, et al. Effect of caffeine on cerebral blood flow velocity in preterm infants. Biol Neonate. 1989;56(4):198–203.PubMedCrossRefGoogle Scholar
  40. 40.
    Hoecker C, Nelle M, Beedgen B, et al. Effects of a divided high loading dose of caffeine on circulatory variables in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2006;91(1):F61–4.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Hascoet JM, Hamon I, Boutroy MJ. Risks and benefits of therapies for apnoea in premature infants. Drug Saf. 2000;23(5):363–79.PubMedCrossRefGoogle Scholar
  42. 42.
    Lowry JA, Jarrett RV, Wasserman G, et al. Theophylline toxicokinetics in premature newborns. Arch Pediatr Adolesc Med. 2001;155(8):934–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Aden U. Methylxanthines during pregnancy and early postnatal life. Handb Exp Pharmacol. 2011;200:373–89.PubMedCrossRefGoogle Scholar
  44. 44.
    Carnielli VP, Verlato G, Benini F, et al. Metabolic and respiratory effects of theophylline in the preterm infant. Arch Dis Child Fetal Neonatal Ed. 2000;83(1):F39–43.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Bauer J, Maier K, Linderkamp O, et al. Effect of caffeine on oxygen consumption and metabolic rate in very low birth weight infants with idiopathic apnea. Pediatrics. 2001;107(4):660–3.PubMedCrossRefGoogle Scholar
  46. 46.
    Skopnik H, Koch G, Heimann G. Effect of methylxanthines on periodic respiration and acid gastroesophageal reflux in newborn infants [in German]. Monatsschr Kinderheilkd. 1990;138(3):123–7.PubMedGoogle Scholar
  47. 47.
    Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology: drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67.PubMedCrossRefGoogle Scholar
  48. 48.
    Aranda JV, Collinge JM, Zinman R, et al. Maturation of caffeine elimination in infancy. Arch Dis Child. 1979;54(12):946–9.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Arant BS Jr. Developmental patterns of renal functional maturation compared in the human neonate. J Pediatr. 1978;92(5):705–12.PubMedCrossRefGoogle Scholar
  50. 50.
    van den Anker JN, Schoemaker RC, Hop WC, et al. Ceftazidime pharmacokinetics in preterm infants: effects of renal function and gestational age. Clin Pharmacol Ther. 1995;58(6):650–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Bhatia J. Current options in the management of apnea of prematurity. Clin Pediatr. 2000;39(6):327–36.CrossRefGoogle Scholar
  52. 52.
    Ramanathan R, Corwin MJ, Hunt CE, et al. Cardiorespiratory events recorded on home monitors: comparison of healthy infants with those at increased risk for SIDS. JAMA. 2001;285(17):2199–207.PubMedCrossRefGoogle Scholar
  53. 53.
    Rosen CL, Glaze DG, Frost JD Jr. Home monitor follow-up of persistent apnea and bradycardia in preterm infants. Am J Dis Child. 1986;140(6):547–50.PubMedGoogle Scholar
  54. 54.
    Di Fiore JM, Arko MK, Miller MJ, et al. Cardiorespiratory events in preterm infants referred for apnea monitoring studies. Pediatrics. 2001;108(6):1304–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Lee TC, Charles B, Steer P, et al. Population pharmacokinetics of intravenous caffeine in neonates with apnea of prematurity. Clin Pharmacol Ther. 1997;61(6):628–40.PubMedCrossRefGoogle Scholar
  56. 56.
    Tayman C, Rayyan M, Allegaert K. Neonatal pharmacology: extensive interindividual variability despite limited size. J Pediatr Pharmacol Ther. 2011;16(3):170–84.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Jonkman JH, Upton RA. Pharmacokinetic drug interactions with theophylline. Clin Pharmacokinet. 1984;9(4):309–34.PubMedCrossRefGoogle Scholar
  58. 58.
    Healy DP, Polk RE, Kanawati L, et al. Interaction between oral ciprofloxacin and caffeine in normal volunteers. Antimicrob Agents Chemother. 1989;33(4):474–8.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Holstege A, Staiger M, Haag K, et al. Correlation of caffeine elimination and Child’s classification in liver cirrhosis. Klinische Wochenschrift. 1989;67(1):6–15.PubMedCrossRefGoogle Scholar
  60. 60.
    Piafsky KM, Sitar DS, Rangno RE, et al. Theophylline disposition in patients with hepatic cirrhosis. N Engl J Med. 1977;296(26):1495–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Leon AE, Michienzi K, Ma CX, et al. Serum caffeine concentrations in preterm neonates. Am J Perinatol. 2007;24(1):39–47.PubMedCrossRefGoogle Scholar
  62. 62.
    Aranda JV, Grondin D, Sasyniuk BI. Pharmacologic considerations in the therapy of neonatal apnea. Pediatr Clin North Am. 1981;28(1):113–33.PubMedGoogle Scholar
  63. 63.
    Pesce AJ, Rashkin M, Kotagal U. Standards of laboratory practice: theophylline and caffeine monitoring. National Academy of Clinical Biochemistry. Clin Chem. 1998;44(5):1124–8.PubMedGoogle Scholar
  64. 64.
    Hivert V, Bécas-Garro MP. Lists of medicinal products for rare diseases in Europe. Orphanet Report Series, Orphan Drugs Collection. October 2013.Google Scholar
  65. 65.
    Henderson-Smart DJ, De Paoli AG. Prophylactic methylxanthine for prevention of apnoea in preterm infants. Cochrane Database Syst Rev. 2010(12):CD000432.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Katherine Schoen
    • 1
  • Tian Yu
    • 1
  • Chris Stockmann
    • 1
  • Michael G. Spigarelli
    • 1
  • Catherine M. T. Sherwin
    • 1
  1. 1.Division of Clinical Pharmacology, Department of PaediatricsUniversity of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations