Pediatric Drugs

, Volume 15, Issue 5, pp 363–376 | Cite as

Clinical Pharmacology of Indomethacin in Preterm Infants: Implications in Patent Ductus Arteriosus Closure

Review Article


Indomethacin is a non-steroidal anti-inflammatory drug that is a potent inhibitor of prostaglandin E2 synthesis. After birth, the ductus arteriosus closes spontaneously within 2–4 days in term infants. The major factor closing the ductus arteriosus is the tension of oxygen, which increases significantly after birth. Prostaglandin E2 has the opposite effect to that of oxygen; it relaxes smooth muscle and tends to inhibit the closure of the ductus arteriosus. In preterm infants with respiratory distress syndrome, the ductus arteriosus fails to close (patent ductus arteriosus [PDA]) because the concentration of prostaglandin E2 is relatively high. PDA occurs in more than 70 % of neonates weighing less than 1,500 g at birth. The aim of this article was to review the published data on the clinical pharmacology of indomethacin in preterm infants in order to provide a critical analysis of the literature and a useful tool for physicians. The bibliographic search was performed electronically using the PubMed and EMBASE databases as search engines and February 2012 was the cutoff point. A remarkable interindividual variability was observed for the half-life (t½), clearance (CL), and volume of distribution (Vd) of indomethacin. Prophylactic indomethacin consists of a continuous infusion of low levels of indomethacin and may be useful in preterm infants. Extremely preterm infants are less likely to respond to indomethacin. Infants with a postnatal age of 2 months do not respond to treatment with indomethacin. Indomethacin has several adverse effects, the most common of which is renal failure. An increase in serum creatinine of ≥0.5 % mg/dL after indomethacin was observed in about 10–15 % of the patients and creatinine returns to a normal level about 1 week after cessation of therapy. Indomethacin should be administered intravenously by syringe pump for at least 30 min to minimize adverse effects on cerebral, gastrointestinal, and renal blood flow velocities. A prolonged course of indomethacin appears to reduce the risk of severe intracranial hemorrhage and renal impairment in patients with PDA. In conclusion, indomethacin is a useful drug to treat PDA.


  1. 1.
    Al Za’abi M, Donovan T, Tudehope D, et al. Orogastric and intravenous indomethacin administration to very premature neonates with patent ductus arteriosus: population pharmacokinetics, absolute bioavailability, and treatment outcome. Ther Drug Monit. 2007;29:807–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Evans NJ, Archer LN. Postnatal circulatory adaptation in healthy term and preterm neonates. Arch Dis Child. 1990;65:24–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Dudell GG, Gersony WM. Patent ductus arteriosus in neonates with severe respiratory disease. J Pediatr. 1984;104:915–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Rajadurai VS, Yu VY. Intravenous indomethacin therapy in preterm neonates with patent ductus arteriosus. J Paediatr Child Health. 1991;27:370–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Narayan M, Clyman R. Pharmacologic closure of patent ductus arteriosus in the neonate. Neo Rev. 2003;4:e215–22.Google Scholar
  6. 6.
    Friedman WF, Hirschklau MJ, Printz MP, et al. Pharmacologic closure of patent ductus arteriosus in the premature infant. N Engl J Med. 1976;295:526–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Friedman WF, Molony DA, Kirkpatrick SE. Prostaglandins: physiological and clinical correlations. Adv Pediatr. 1978;25:151–204.PubMedGoogle Scholar
  8. 8.
    Coceani F, Olley PM, Bodach E. Lamb ductus arteriosus: effect of prostaglandin synthesis inhibitors on the muscle tone and the response to prostaglandin E2. Prostaglandins. 1975;9:299–308.PubMedGoogle Scholar
  9. 9.
    Herrera C, Holberton J, Davis P. Prolonged versus short course of indomethacin for the treatment of patent ductus arteriosus in preterm infants. Cochrane Database Syst Rev. 2007;(2):CD003480.Google Scholar
  10. 10.
    Malcolm WF, Hornik C, Evans A, et al. Vocal fold paralysis following surgical ductal closure in extremely low birth weight infants: a case series of feeding and respiratory complications. J Perinatol. 2008;28:782–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Chorne N, Leonard C, Piecuch R, et al. Patent ductus arteriosus and its treatment as risk factors for neonatal and neurodevelopmental morbidity. Pediatrics. 2007;119:1165–74.PubMedCrossRefGoogle Scholar
  12. 12.
    Gersony WM, Peckham GJ, Ellison RC, et al. Effects of indomethacin in premature infants with patent ductus arteriosus: results of a national collaborative study. J Pediatr. 1983;102:895–906.PubMedCrossRefGoogle Scholar
  13. 13.
    Ramsay JM, Murphy DJ Jr, Vick GW 3rd. Response of the patent ductus arteriosus to indomethacin treatment. Am J Dis Child. 1987;141:294–7. J Paediatr Child Health. 1987;33:38–41.Google Scholar
  14. 14.
    Young TE, Mangum B. Cardiovascular. In: Neofax: a manual of drugs used in neonatal care. 23rd ed. Montvale: Thomson Reuters; 2010. p. 180–1.Google Scholar
  15. 15.
    Douidar SM, Richardson J, Snodgrass WR. Role of indomethacin in ductus closure: an update evaluation. Dev Pharmacol Ther. 1988;11:196–212.PubMedGoogle Scholar
  16. 16.
    Quinn D, Cooper B, Clyman RI. Factors associated with permanent closure of the ductus arteriosus: a role for prolonged indomethacin therapy. Pediatrics. 2002;110(1 Pt 1):e10.PubMedCrossRefGoogle Scholar
  17. 17.
    McMurphy DM, Heymann MA, Rudolph AM, et al. Developmental changes in constriction of the ductus arteriosus: responses to oxygen and vasoactive agents in the isolated ductus arteriosus of the fetal lamb. Pediatr Res. 1972;6:231–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Fay FS, Nair P, Whalen WJ. Mechanism of oxygen induced contraction of ductus arteriosus. Adv Exp Med Biol. 1977;78:123–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Sharpe GL, Larsson KS, Thalme B. Studies on closure of the ductus arteriosus: XII. In utero effect of indomethacin and sodium salicylate in rats and rabbits. Prostaglandins. 1975;9:585–96.PubMedGoogle Scholar
  20. 20.
    Heymann MA, Rudolph AM, Silverman NH. Closure of the ductus arteriosus in premature infants by inhibition of prostaglandin synthesis. N Engl J Med. 1976;295:530–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Ohlsson A, Walia R, Shah S. Ibuprofen for the treatment of patent ductus arteriosus in preterm and/or low birth weight infants. Cochrane Database Syst Rev. 2005;(4):CD003481.Google Scholar
  22. 22.
    Thomas RL, Parker GC, Van Overmeire B, et al. A meta-analysis of ibuprofen versus indomethacin for closure of patent ductus arteriosus. Eur J Pediatr. 2005;164:135–40 (review).Google Scholar
  23. 23.
    Bhat R, Vidyasagar D, Fisher E, et al. Pharmacokinetics of oral and intravenous indomethacin in preterm infants. Dev Pharmacol Ther. 1980;1:101–10.PubMedGoogle Scholar
  24. 24.
    Brash AR, Hickey DE, Graham TP, et al. Pharmacokinetics of indomethacin in the neonate. Relation of plasma indomethacin levels to response of the ductus arteriosus. N Engl J Med. 1981;305:67–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Sperandio M, Beedgen B, Feneberg R, et al. Effectiveness and side effects of an escalating, stepwise approach to indomethacin treatment for symptomatic patent ductus arteriosus in premature infants below 33 weeks of gestation. Pediatrics. 2005;116:1361–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Shaffer CL, Gal P, Ransom JL, et al. Effect of age and birth weight on indomethacin pharmacodynamics in neonates treated for patent ductus arteriosus. Crit Care Med. 2002;30:343–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Kumar RK, Yu VY. Prolonged low-dose indomethacin therapy for patent ductus arteriosus in very low birthweight infants. J Paediatr Child Health. 1997;33:38–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Friedman CA, Temple DM, Wender DF, et al. Metabolism and disposition of indomethacin in preterm infants. Dev Pharmacol Ther. 1991;17(1–2):1–7.PubMedGoogle Scholar
  29. 29.
    Helleberg L. Clinical Pharmacokinetics of indomethacin. Clin Pharmacokinet. 1981;6:245–58.PubMedCrossRefGoogle Scholar
  30. 30.
    Bhat R, Vidyasagar D, Vadapalli M, et al. Disposition of indomethacin in preterm infants. J Pediatr. 1979;95:313–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Yaffe SJ, Friedman WF, Rogers D, et al. The disposition of indomethacin in preterm babies. J Pediatr. 1980;97:1001–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Bianchetti G, Monin P, Marchal F, et al. Pharmacokinetics of indomethacin in the premature infant. Dev Pharmacol Ther. 1980;1:111–24.PubMedGoogle Scholar
  33. 33.
    Alván G, Orme M, Bertilsson L, et al. Pharmacokinetics of indomethacin. Clin Pharmacol Ther. 1975;18:364–73.PubMedGoogle Scholar
  34. 34.
    Thalji AA, Carr I, Yeh TF, et al. Pharmacokinetics of intravenously administered indomethacin in premature infants. J Pediatr. 1980;97:995–1000.PubMedCrossRefGoogle Scholar
  35. 35.
    Berl T, Raz A, Wald H, et al. Prostaglandin synthesis inhibition and the action of vasopressin: studies in man and rat. Am J Physiol. 1977;232:F529–37.PubMedGoogle Scholar
  36. 36.
    Halliday HL, Hirata T, Brady JP. Indomethacin therapy for large patent ductus arteriosus in the very low birth weight infant: results and complications. Pediatrics. 1979;64:154–9.PubMedGoogle Scholar
  37. 37.
    Evans M, Bhat R, Vidyasagar D, et al. A comparison of oral and intravenous indomethacin dispositions in the premature infant with patent ductus arteriosus. Pediatr Pharmacol (New York). 1981;1:251–8.Google Scholar
  38. 38.
    O’Donovan DJ, Fernandes CJ, Nguyen NY, et al. Indomethacin therapy for patent ductus arteriosus in premature infants: efficacy of a dosing strategy based on a second-dose peak plasma indomethacin level and estimated plasma indomethacin levels. Am J Perinatol. 2004;21:191–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Gal P, Ransom JL, Weaver RL, et al. Indomethacin pharmacokinetics in neonates: the value of volume of distribution as a marker of permanent patent ductus arteriosus closure. Ther Drug Monit. 1991;13:42–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Weninger M, Pollak A, Salzer-Muhar U, et al. Pharmacokinetics of intra-arterial indomethacin treatment for patent ductus arteriosus. Eur J Pediatr. 1989;149:138–40.PubMedCrossRefGoogle Scholar
  41. 41.
    Wiest DB, Pinson JB, Gal PS, et al. Population pharmacokinetics of intravenous indomethacin in neonates with symptomatic patent ductus arteriosus. Clin Pharmacol Ther. 1991;49:550–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Smyth JM, Collier PS, Darwish M, et al. Intravenous indometacin in preterm infants with symptomatic patent ductus arteriosus: a population pharmacokinetic study. Br J Clin Pharmacol. 2004;58:249–58.PubMedCrossRefGoogle Scholar
  43. 43.
    Yoshimoto S, Sakai H, Ueda M, et al. Prophylactic indomethacin in extremely premature infants between 23 and 24 weeks gestation. Pediatr Int. 2010;52:374–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Fowlie PW, Davis PG, McGuire W. Prophylactic intravenous indomethacin for preventing mortality and morbidity in preterm infants. Cochrane Database Syst Rev. 2010;(7):CD000174.Google Scholar
  45. 45.
    Fowlie PW, Davis PG. Prophylactic indomethacin for preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2003;88:F464–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Cooke L, Steer P, Woodgate P. Indomethacin for asymptomatic patent ductus arteriosus in preterm infants. Cochrane Database Syst Rev. 2003;(2):CD003745.Google Scholar
  47. 47.
    Ivey HH, Kattwinkel J, Park TS, et al. Failure of indomethacin to close persistent ductus arteriosus in infants weighing under 1000 grams. Br Heart J. 1979;41:304–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Obeyesekere HI, Pankhurst S, Yu VY. Pharmacological closure of ductus arteriosus in preterm infants using indomethacin. Arch Dis Child. 1980;55:271–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Achanti B, Yeh TF, Pildes RS. Indomethacin therapy in infants with advanced postnatal age and patent ductus arteriosus. Clin Invest Med. 1986;9:250–3.PubMedGoogle Scholar
  50. 50.
    Green TP, Thompson TR, Johnson DE, et al. Furosemide promotes patent ductus arteriosus in premature infants with the respiratory-distress syndrome. N Engl J Med. 1983;308:743–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Yeh TF, Wilks A, Singh J, et al. Furosemide prevents the renal side effects of indomethacin therapy in premature infants with patent ductus arteriosus. J Pediatr. 1982;101:433–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Andriessen P, Struis NC, Niemarkt H, et al. Furosemide in preterm infants treated with indomethacin for patent ductus arteriosus. Acta Paediatr. 2009;98:797–803.PubMedCrossRefGoogle Scholar
  53. 53.
    Lee J, Rajadurai VS, Tan KW, Wong KY, et al. Randomized trial of prolonged low-dose versus conventional-dose indomethacin for treating patent ductus arteriosus in very low birth weight infants. Pediatrics. 2003;112:345–50.PubMedCrossRefGoogle Scholar
  54. 54.
    Sharma PK, Garg SK, Narang A. A preliminary study on pharmacokinetics of oral indomethacin in premature infants in north India. Indian J Med Res. 2003;117:164–9.PubMedGoogle Scholar
  55. 55.
    Görk AS, Ehrenkranz RA, Bracken MB. Continuous infusion versus intermittent bolus doses of indomethacin for patent ductus arteriosus closure in symptomatic preterm infants. Cochrane Database Syst Rev. 2008;(1):CD006071.Google Scholar
  56. 56.
    de Vries NK, Jagroep FK, Jaarsma AS, et al. Continuous indomethacin infusion may be less effective than bolus infusions for ductal closure in very low birth weight infants. Am J Perinatol. 2005;22:71–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Hammerman C, Glaser J, Schimmel MS, et al. Continuous versus multiple rapid infusions of indomethacin: effects on cerebral blood flow velocity. Pediatrics. 1995;95:244–8.PubMedGoogle Scholar
  58. 58.
    Lambru G, Manzoni GC, Torelli P, et al. Reversible cerebral vasoconstriction phenomena following indomethacin administration. Headache. 2011;51:813–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Christmann V, Liem KD, Semmekrot BA, et al. Changes in cerebral, renal and mesenteric blood flow velocity during continuous and bolus infusion of indomethacin. Acta Paediatr. 2002;91:440–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Clyman RI, Campbell D, Heymann MA, et al. Persistent responsiveness of the neonatal ductus arteriosus in immature lambs: a possible cause for reopening of patent ductus arteriosus after indomethacin-induced closure. Circulation. 1985;71:141–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Tammela O, Ojala R, Iivainen T, et al. Short versus prolonged indomethacin therapy for patent ductus arteriosus in preterm infants. J Pediatr. 1999;134:552–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Rennie JM, Cooke RW. Prolonged low dose indomethacin for persistent ductus arteriosus of prematurity. Arch Dis Child. 1991;66:55–8.PubMedCrossRefGoogle Scholar
  63. 63.
    McPherson C, Gal P, Ransom JL, et al. Indomethacin pharmacodynamics are altered by surfactant: a possible challenge to current indomethacin dosing guidelines created before surfactant availability. Pediatr Cardiol. 2010;31:505–10.PubMedCrossRefGoogle Scholar
  64. 64.
    Seri I, Abbasi S, Wood DC, et al. Regional hemodynamic effects of dopamine in the indomethacin-treated preterm infant. J Perinatol. 2002;22:300–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Barrington K, Brion LP. Dopamine versus no treatment to prevent renal dysfunction in indomethacin-treated preterm newborn infants. Cochrane Database Syst Rev. 2002;(3):CD003213.Google Scholar
  66. 66.
    Fajardo CA, Whyte RK, Steele BT. Effect of dopamine on failure of indomethacin to close the patent ductus arteriosus. J Pediatr. 1992;121(5 Pt 1):771–5.PubMedGoogle Scholar
  67. 67.
    Seri I, Tulassay T, Kiszel J, et al. The use of dopamine for the prevention of the renal side effects of indomethacin in premature infants with patent ductus arteriosus. Int J Pediatr Nephrol. 1984;5:209–14.PubMedGoogle Scholar
  68. 68.
    vd Heijden AJ, Provoost AP, Nauta J, et al. Renal functional impairment in preterm neonates related to intrauterine indomethacin exposure. Pediatr Res. 1988;24:644–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Suarez VR, Thompson LL, Jain V, et al. The effect of in utero exposure to indomethacin on the need for surgical closure of a patent ductus arteriosus in the neonate. Am J Obstet Gynecol. 2002;187:886–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Hammerman C, Glaser J, Kaplan M, et al. Indomethacin tocolysis increases postnatal patent ductus arteriosus severity. Pediatrics. 1998;102:E56.PubMedCrossRefGoogle Scholar
  71. 71.
    Soraisham AS, Dalgleish S, Singhal N. Antenatal indomethacin tocolysis is associated with an increased need for surgical ligation of patent ductus arteriosus in preterm infants. J Obstet Gynaecol Can. 2010;32:435–42.PubMedGoogle Scholar
  72. 72.
    Abbasi S, Gerdes JS, Sehdev HM, et al. Neonatal outcome after exposure to indomethacin in utero: a retrospective case cohort study. Am J Obstet Gynecol. 2003;189:782–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Sood BG, Lulic-Botica M, Holzhausen KA, et al. The risk of necrotizing enterocolitis after indomethacin tocolysis. Pediatrics. 2011;128:e54–62.PubMedCrossRefGoogle Scholar
  74. 74.
    Allegaert K. The impact of ibuprofen or indomethacin on renal drug clearance in neonates. J Matern Fetal Neonatal Med. 2009;22(Suppl 3):88–91.PubMedCrossRefGoogle Scholar
  75. 75.
    Coombs RC, Morgan ME, Durbin GM, et al. Gut blood flow velocities in the newborn: effects of patent ductus arteriosus and parenteral indomethacin. Arch Dis Child. 1991;66:1261.PubMedCrossRefGoogle Scholar
  76. 76.
    Sehgal A, Ramsden CA, McNamara PJ. Indomethacin impairs coronary perfusion in infants with hemodynamically significant ductus arteriosus. Neonatology. 2012;101:20–7.PubMedCrossRefGoogle Scholar
  77. 77.
    George I, Mekahli D, Rayyan M, et al. Postnatal trends in creatinemia and its covariates in extremely low birth weight (ELBW) neonates. Pediatr Nephrol. 2011;26:1843–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Fanos V, Benini D, Verlato G, et al. Efficacy and renal tolerability of ibuprofen vs. indomethacin in preterm infants with patent ductus arteriosus. Fundam Clin Pharmacol. 2005;19:187–93.PubMedCrossRefGoogle Scholar
  79. 79.
    Guignard JP. The adverse renal effects of prostaglandin-synthesis inhibitors in the newborn rabbit. Semin Perinatol. 2002;26:398–405.PubMedCrossRefGoogle Scholar
  80. 80.
    Lee BS, Byun SY, Chung ML, Chang JY, et al. Effect of furosemide on ductal closure and renal function in indomethacin-treated preterm infants during the early neonatal period. Neonatology. 2010;98:191–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Shehata BM, Bare JB, Denton TD, et al. Premature closure of the ductus arteriosus: variable response among monozygotic twins after in utero exposure to indomethacin. Fetal Pediatr Pathol. 2006;25:151–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Hajj H, Dagle JM. Genetics of patent ductus arteriosus susceptibility and treatment. Semin Perinatol. 2012;36:98–104.PubMedCrossRefGoogle Scholar
  83. 83.
    Bökenkamp R, DeRuiter MC, van Munsteren C, et al. Insights into the pathogenesis and genetic background of patency of the ductus arteriosus. Neonatology. 2010;98:6–17.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Section of Pharmacology, Department of Translational Research and New Technologies in Medicine and Surgery, Medical SchoolUniversity of PisaPisaItaly

Personalised recommendations