Advertisement

Pediatric Drugs

, Volume 15, Issue 3, pp 163–169 | Cite as

Potential Therapies for Anaplastic Lymphoma Kinase-Driven Tumors in Children: Progress to Date

  • Eric J. Lowe
  • Megan S. Lim
Leading Article

Abstract

Anaplastic lymphoma kinase (ALK) is an oncogenic tyrosine kinase that is deregulated due to a variety of molecular mechanisms in pediatric cancer. They include chromosomal translocations, activation mutations, and gene amplifications. Since the initial discovery of ALK as an oncogenic tyrosine kinase involved in the chromosomal translocation t(2, 5)(p23;q35) in 1994, more than 20 translocation partners of ALK have been identified in various cancers. Furthermore, deregulation of ALK tyrosine kinase activity is critical for the pathogenesis of several other pediatric tumors, including neuroblastomas and inflammatory myofibroblastic tumors. The recent discovery of ALK translocations in adult lung cancer patients (non-small cell lung cancer) has accelerated the development of inhibitors of ALK tyrosine kinase as therapeutic agents. While excellent clinical response has been observed in many patients, the acquisition of clinical resistance to ALK inhibition highlights the need for development of second-generation ALK kinase inhibitors and/or combination therapies that target downstream signaling mediators or antibody drug conjugates. This article provides an update on the spectrum of ALK-driven tumors in the pediatric population and the potential therapies which target these tumors.

Keywords

Anaplastic Lymphoma Kinase Anaplastic Large Cell Lymphoma Crizotinib Inflammatory Myofibroblastic Tumor Anaplastic Lymphoma Kinase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors have no conflicts of interest or sources of funding to declare.

References

  1. 1.
    Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411(6835):355–65.PubMedCrossRefGoogle Scholar
  2. 2.
    Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8(1):11–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Webb TR, Slavish J, George RE, Look AT, Xue L, Jiang Q, et al. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Rev Anticancer Ther. 2009;9(3):331–56.PubMedCrossRefGoogle Scholar
  4. 4.
    Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Scheijen B, Griffin JD. Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene. 2002;21(21):3314–33.PubMedCrossRefGoogle Scholar
  6. 6.
    Grande E, Bolos MV, Arriola E. Targeting oncogenic ALK: a promising strategy for cancer treatment. Mol Cancer Ther. 2011;10(4):569–79.PubMedCrossRefGoogle Scholar
  7. 7.
    George RE, Sanda T, Hanna M, Frohling S, Luther W 2nd, Zhang J, et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature. 2008;455(7215):975–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455(7215):930–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Sandlund JT, Downing JR, Crist WM. Non-Hodgkin’s lymphoma in childhood. N Engl J Med. 1996;334(19):1238–48.PubMedCrossRefGoogle Scholar
  10. 10.
    Stein H, Mason DY, Gerdes J, O’Connor N, Wainscoat J, Pallesen G, et al. The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed–Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985;66(4):848–58.PubMedGoogle Scholar
  11. 11.
    Swerdlow SH, Campo E, Harris NL, Jaffé E, Pileri S, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC; 2008.Google Scholar
  12. 12.
    Lowe EJ, Sposto R, Perkins SL, Gross TG, Finlay J, Zwick D, et al. Intensive chemotherapy for systemic anaplastic large cell lymphoma in children and adolescents: final results of Children’s Cancer Group Study 5941. Pediatr Blood Cancer. 2009;52(3):335–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Laver JH, Kraveka JM, Hutchison RE, Chang M, Kepner J, Schwenn M, et al. Advanced-stage large-cell lymphoma in children and adolescents: results of a randomized trial incorporating intermediate-dose methotrexate and high-dose cytarabine in the maintenance phase of the APO regimen: a Pediatric Oncology Group phase III trial. J Clin Oncol. 2005;23(3):541–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Le Deley MC, Rosolen A, Williams DM, Horibe K, Wrobel G, Attarbaschi A, et al. Vinblastine in children and adolescents with high-risk anaplastic large-cell lymphoma: results of the randomized ALCL99-vinblastine trial. J Clin Oncol. 2010;28(25):3987–93.PubMedCrossRefGoogle Scholar
  15. 15.
    Rosolen A, Pillon M, Garaventa A, Burnelli R, d’Amore ES, Giuliano M, et al. Anaplastic large cell lymphoma treated with a leukemia-like therapy: report of the Italian Association of Pediatric Hematology and Oncology (AIEOP) LNH-92 protocol. Cancer. 2005;104(10):2133–40.PubMedCrossRefGoogle Scholar
  16. 16.
    Seidemann K, Tiemann M, Schrappe M, Yakisan E, Simonitsch I, Janka-Schaub G, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Munster group trial NHL-BFM 90. Blood. 2001;97(12):3699–706.PubMedCrossRefGoogle Scholar
  17. 17.
    Woessmann W, Peters C, Lenhard M, Burkhardt B, Sykora KW, Dilloo D, et al. Allogeneic haematopoietic stem cell transplantation in relapsed or refractory anaplastic large cell lymphoma of children and adolescents: a Berlin-Frankfurt-Munster group report. Br J Haematol. 2006;133(2):176–82.PubMedCrossRefGoogle Scholar
  18. 18.
    Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. 2007;369(9579):2106–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N Engl J Med. 1999;341(16):1165–73.PubMedCrossRefGoogle Scholar
  20. 20.
    Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med. 2010;363(14):1324–34.PubMedCrossRefGoogle Scholar
  21. 21.
    Mosse YP, Wood A, Maris JM. Inhibition of ALK signaling for cancer therapy. Clin Cancer Res. 2009;15(18):5609–14.PubMedCrossRefGoogle Scholar
  22. 22.
    Griffin CA, Hawkins AL, Dvorak C, Henkle C, Ellingham T, Perlman EJ. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res. 1999;59(12):2776–80.PubMedGoogle Scholar
  23. 23.
    Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL, et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol. 2000;157(2):377–84.PubMedCrossRefGoogle Scholar
  24. 24.
    Gleason BC, Hornick JL. Inflammatory myofibroblastic tumours: where are we now? J Clin Pathol. 2008;61(4):428–37.PubMedCrossRefGoogle Scholar
  25. 25.
    Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–17.PubMedCrossRefGoogle Scholar
  26. 26.
    Christensen JG, Zou HY, Arango ME, Li Q, Lee JH, McDonnell SR, et al. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther. 2007;6(12 Pt 1):3314–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Christensen JG. Proof of principle for crizotinib in anaplastic lymphoma kinase-positive malignancies was achieved in ALK-positive nonclinical models. Mol Cancer Ther. 2011;10(11):2024.PubMedCrossRefGoogle Scholar
  28. 28.
    US Food and Drug Administration. FDA labeling information—Xalkori®. 2011. http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/202570s000lbl.pdf. Accessed July 2012.
  29. 29.
    Gambacorti-Passerini C, Messa C, Pogliani EM. Crizotinib in anaplastic large-cell lymphoma. N Engl J Med. 2011;364(8):775–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Stasia A, Guerra L, Berbard L, Cohen A, King M, Ordemann R, et al. Crizotinib obtains durable responses in advanced chemoresistant ALK + lymphoma patients [abstract no. 1153]. Haematologica. 2012;97(Suppl):478.Google Scholar
  31. 31.
    Mosse YP, Balis FM, Lim MS, Laliberte J, Voss SD, Fox E, et al. Efficacy of crizotinib in children with relapsed/refractory ALK-driven tumors including anaplastic large cell lymphoma and neuroblastoma: a Children’s Oncology Group phase I consortium study. J Clin Oncol. 2012;30(Suppl; abstr 9500).Google Scholar
  32. 32.
    Zhang S, Wang F, Keats J, Ning Y, Wardwell SD. AP26113, a potent ALK inhibitor, overcomes mutations in EML4-ALK that confer resistance to PF-02341066 (PF1066). Proc Am Assoc Cancer Res. 2010;51:abstract LB-298.Google Scholar
  33. 33.
    Kiura K, Seto T, Yamamoto N, Nishio M, Nakagawa K, Tamura T. A first-in-human phase I/II study of ALK inhibitor CH5424802 in patients with ALK-positive NSCLC. J Clin Oncol. 2012;30(Suppl; abstr 7602).Google Scholar
  34. 34.
    Mehra R, Camidge DR, Sharma S, Felip E, Tan D, Vansteenkiste JF, et al. First-in-human phase I study of the ALK inhibitor LDK378 in advanced solid tumors. J Clin Oncol. 2012;30(Suppl; abstr 3007).Google Scholar
  35. 35.
    Kuromitsu S, Mori M, Shimada I, Kondoh Y, Shindoh N, Soga T, et al. Antitumor activities of ASP3026 against EML4-ALK-dependent tumor models. In: Proceedings of the AACR-NCI-EORTC international conference 12–16 Nov 2011. Mol Cancer Ther. 2011;10(11 Suppl):abstract A227.Google Scholar
  36. 36.
    Lovly CM, Heuckmann JM, de Stanchina E, Chen H, Thomas RK, Liang C, et al. Insights into ALK-driven cancers revealed through development of novel ALK tyrosine kinase inhibitors. Cancer Res. 2011;71(14):4920–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Carpenter EL, Haglund EA, Mace EM, Deng D, Martinez D, Wood AC, et al. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene. 2012;31(46):4859–67.PubMedCrossRefGoogle Scholar
  38. 38.
    Gambacorti-Passerini C. Part I: milestones in personalised medicine—imatinib. Lancet Oncol. 2008;9(6):600.PubMedCrossRefGoogle Scholar
  39. 39.
    Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol. 2009;27(31):5175–81.PubMedCrossRefGoogle Scholar
  40. 40.
    Ait-Tahar K, Damm-Welk C, Burkhardt B, Zimmermann M, Klapper W, Reiter A, et al. Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk. Blood. 2010;115(16):3314–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Sakamoto H, Tsukaguchi T, Hiroshima S, Kodama T, Kobayashi T, Fukami TA, et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell. 2011;19(5):679–90.PubMedCrossRefGoogle Scholar
  42. 42.
    Katayama R, Khan TM, Benes C, Lifshits E, Ebi H, Rivera VM, et al. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci USA. 2011;108(18):7535–40.PubMedCrossRefGoogle Scholar
  43. 43.
    Lewis RT, Bode CM, Choquette DM, Potashman M, Romero K, Stellwagen JC, et al. The discovery and optimization of a novel class of potent, selective, and orally bioavailable anaplastic lymphoma kinase (ALK) inhibitors with potential utility for the treatment of cancer. J Med Chem. 2012;55(14):6523–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Goulden S, Sutcliffe F, Stevens A. NICE guidance on dasatinib, high-dose imatinib, and nilotinib for patients with CML who are resistant or intolerant to imatinib. Lancet Oncol. 2012;13(2):127–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Cussac D, Greenland C, Roche S, Bai RY, Duyster J, Morris SW, et al. Nucleophosmin-anaplastic lymphoma kinase of anaplastic large-cell lymphoma recruits, activates, and uses pp 60c-src to mediate its mitogenicity. Blood. 2004;103(4):1464–71.PubMedCrossRefGoogle Scholar
  46. 46.
    Schumacher JA, Crockett DK, Elenitoba-Johnson KS, Lim MS. Proteome-wide changes induced by the Hsp90 inhibitor, geldanamycin in anaplastic large cell lymphoma cells. Proteomics. 2007;7(15):2603–16.PubMedCrossRefGoogle Scholar
  47. 47.
    Slupianek A, Nieborowska-Skorska M, Hoser G, Morrione A, Majewski M, Xue L, et al. Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res. 2001;61(5):2194–9.PubMedGoogle Scholar
  48. 48.
    Chiarle R, Simmons WJ, Cai H, Dhall G, Zamo A, Raz R, et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med. 2005;11(6):623–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang X, Yue P, Page BD, Li T, Zhao W, Namanja AT, et al. Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. Proc Natl Acad Sci USA. 2012;109(24):9623–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Chiarle R, Martinengo C, Mastini C, Ambrogio C, D’Escamard V, Forni G, et al. The anaplastic lymphoma kinase is an effective oncoantigen for lymphoma vaccination. Nat Med. 2008;14(6):676–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Division of Pediatric Hematology-OncologyChildren’s Hospital of the King’s DaughtersVAUSA
  2. 2.Department of PathologyUniversity of MichiganAnn ArborUSA

Personalised recommendations