Drugs & Therapy Perspectives

, Volume 30, Issue 7, pp 264–267 | Cite as

To avoid muscle-related adverse events, choose statins carefully in patients receiving antiviral protease inhibitors



The appropriate statin to treat co-morbid dyslipidaemia requires careful selection in patient with hepatitis C virus (HCV) infection receiving HCV protease inhibitors (e.g. telaprevir and boceprevir), and those with HIV-1 infection receiving ritonavir- or cobicistat-boosted HIV protease inhibitors. HCV and boosted-HIV protease inhibitors can increase the plasma concentrations of certain statins, thereby increasing the risk of the potential for statin-related myopathy.


  1. 1.
    Penzak SR, Chuck SK, Stajich GV. Safety and efficacy of HMG-CoA reductase inhibitors for treatment of hyperlipidemia in patients with HIV infection. Pharmacotherapy. 2000;20(9):1066–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Samaras K. Metabolic consequences and therapeutic options in highly active antiretroviral therapy in human immunodeficiency virus-1 infection. J Antimicrob Chemother. 2008;61(2):238–45.PubMedCrossRefGoogle Scholar
  3. 3.
    Grunfeld C, Pang M, Doerrler W, et al. Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. J Clin Endocrinol Metab. 1992;74(5):1045–52.PubMedGoogle Scholar
  4. 4.
    Chauvin B, Drouot S, Barrail-Tran A, et al. Drug–drug interactions between HMG-CoA reductase inhibitors (statins) and antiviral protease inhibitors. Clin Pharmacokinet. 2013;52(10):815–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Ucar M, Mjorndal T, Dahlqvist R. HMG-CoA reductase inhibitors and myotoxicity. Drug Saf. 2000;22(6):441–57.PubMedCrossRefGoogle Scholar
  6. 6.
    Williams D, Feely J. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet. 2002;41(5):343–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Ferenci P, Reddy KR. Impact of HCV protease-inhibitor-based triple therapy for chronic HCV genotype 1 infection. Antivir Ther. 2011;16(8):1187–201.PubMedCrossRefGoogle Scholar
  8. 8.
    Chopra A, Klein PL, Drinnan T, et al. How to optimize HCV therapy in genotype 1 patients: management of side-effects. Liver Int. 2013;33(Suppl 1):30–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Thompson MA, Aberg JA, Hoy JF, et al. Antiretroviral treatment of adult HIV infection: 2012 recommendations of the International Antiviral Society-USA panel. JAMA. 2012;308(4):387–402.PubMedCrossRefGoogle Scholar
  10. 10.
    Aberg JA, Tebas P, Overton ET, et al. Metabolic effects of darunavir/ritonavir versus atazanavir/ritonavir in treatment-naive, HIV type 1-infected subjects over 48 weeks. AIDS Res Hum Retroviruses. 2012;28(10):1184–95.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Friis-Moller N, Reiss P, Sabin CA, et al. Class of antiretroviral drugs and the risk of myocardial infarction. N Engl J Med. 2007;356(17):1723–35.PubMedCrossRefGoogle Scholar
  12. 12.
    Bellosta S, Corsini A. Statin drug interactions and related adverse reactions. Expert Opin Drug Saf. 2012;11(6):933–46.PubMedCrossRefGoogle Scholar
  13. 13.
    Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63(1):157–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Ieiri I, Higuchi S, Sugiyama Y. Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin Drug Metab Toxicol. 2009;5(7):703–29.PubMedCrossRefGoogle Scholar
  15. 15.
    Koenen A, Kroemer HK, Grube M, et al. Current understanding of hepatic and intestinal OATP-mediated drug–drug interactions. Expert Rev Clin Pharmacol. 2011;4(6):729–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Tamraz B, Fukushima H, Wolfe AR, et al. OATP1B1-related drug–drug and drug–gene interactions as potential risk factors for cerivastatin-induced rhabdomyolysis. Pharmacogenet Genomics. 2013;23(7):355–64.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Williams GC, Sinko PJ. Oral absorption of the HIV protease inhibitors: a current update. Adv Drug Deliv Rev. 1999;39(1–3):211–38.PubMedCrossRefGoogle Scholar
  18. 18.
    Martinez-Cajas JL, Wainberg MA. Protease inhibitor resistance in HIV-infected patients: molecular and clinical perspectives. Antiviral Res. 2007;76(3):203–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Mouly SJ, Matheny C, Paine MF, et al. Variation in oral clearance of saquinavir is predicted by CYP3A5*1 genotype but not by enterocyte content of cytochrome P450 3A5. Clin Pharmacol Ther. 2005;78(6):605–18.PubMedCrossRefGoogle Scholar
  20. 20.
    Wilby KJ, Greanya ED, Ford JA, et al. A review of drug interactions with boceprevir and telaprevir: implications for HIV and transplant patients. Ann Hepatol. 2012;11(2):179–85.PubMedGoogle Scholar
  21. 21.
    Mathias AA, German P, Murray BP, et al. Pharmacokinetics and pharmacodynamics of GS-9350: a novel pharmacokinetic enhancer without anti-HIV activity. Clin Pharmacol Ther. 2009;87(3):322–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Deeks ED. Cobicistat: a review of its use as a pharmacokinetic enhancer of atazanavir and darunavir in patients with HIV-1 infection. Drugs. 2014;74(2):195–205.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.AdisNorth ShoreNew Zealand

Personalised recommendations