Current Agents in Development for Treating Behavioral and Psychological Symptoms Associated with Dementia

  • Mehnaz Ahmed
  • Marlene Malik
  • Johannes Teselink
  • Krista L. Lanctôt
  • Nathan HerrmannEmail author
Review Article


Behavioral and psychological symptoms associated with dementia are highly prevalent and are associated with an increased risk of institutionalization and mortality. Current pharmacological treatments for these symptoms include cholinesterase inhibitors, antipsychotics, and selective serotonin reuptake inhibitors. When used for treating behavioral and psychological symptoms associated with dementia, they are associated with limited efficacy and/or serious adverse events. As such, there has been extensive research into novel agents with varying mechanisms of action targeting behavioral and psychological symptoms associated with dementia. In this article, we present the results of a comprehensive literature search and review that evaluates current agents that have completed or are currently in clinical trials for treating behavioral and psychological symptoms associated with dementia as a primary outcome. We highlight novel agents from miscellaneous drug classes, such as dextromethorphan/quinidine, bupropion/dextromethorphan, lumateperone, deudextromethorphan/quinidine, methylphenidate and scyllo-inositol, and drugs from various therapeutic classes (including atypical antipsychotics, selective serotonin reuptake inhibitors, and cannabinoids) that have demonstrated promising results and were generally well tolerated. Future research with large appropriately powered studies using validated outcome measures for behavioral and psychological symptoms associated with dementia should be conducted to further establish the clinical utility of these agents.


Compliance with Ethical Standards


No sources of funding were provided for the preparation of this review article.

Conflict of Interest

Krista L. Lanctôt has received research grants from the National Institute of Aging for “Apathy in Alzheimer’s Disease Methylphenidate Trial II (ADMET II)” and “Escitalopram for Agitation in Alzheimer’s Disease (S-CitAD)”, Alzheimer Drug Discovery Fund, the Alzheimer Society of Canada (Grant 15–17), Alzheimer’s Association, Canadian Institutes of Health Research, AbbVie, Lundbeck, Pfizer, Sanofi-Aventis, Janssen-Ortho Inc., Roche, and Wyeth; and honoraria from Abbvie and Lundbeck. Nathan Herrmann has received research grants from the Alzheimer Drug Discovery Fund, the Alzheimer Society of Canada, the National Institutes of Health, Canadian Institute of Health Research, Lundbeck, and Roche; and consultation fees from Lilly, Merck, and Astellas. Mehnaz Ahmed, Marlene Malik and Johannes Teselink declare they have no conflicts of interest relevant to the content of this review article.


  1. 1.
    WHO. Dementia: a public health priority. Dementia. 2015;1–4. Google Scholar
  2. 2.
    Gonfrier S, Andrieu S, Renaud D, Vellas B, Robert P. Course of neuropsychiatric symptoms during a 4-year follow up in the REAL-FR cohort. J Nutr Health Aging. 2012;16(2):134–7.Google Scholar
  3. 3.
    Antonsdottir IM, Smith J, Keltz M, Porsteinsson AP. Advancements in the treatment of agitation in Alzheimer’s disease. Expert Opin Pharmacother. 2015;16(11):1649–56. Scholar
  4. 4.
    Devshi R, Shaw S, Elliott-King J, Hogervorst E, Hiremath A, Velayudhan L, et al. Prevalence of behavioral and psychological symptoms of dementia in individuals with learning disabilities. Diagnostics (Basel). 2015;5(4):564–76.Google Scholar
  5. 5.
    Masopust J, Protopopová D, Vališ M, Pavelek Z, Klímová B. Treatment of behavioral and psychological symptoms of dementias with psychopharmaceuticals: a review. Neuropsychiatr Dis Treat. 2018;14:1211–20.Google Scholar
  6. 6.
    Steinberg M, Shao H, Zandi P, Lyketsos CG, Kathleen A, Norton MC, et al. In dementia: the Cache County Study. Int J Geriatr Psychiatry. 2010;23(2):170–7.Google Scholar
  7. 7.
    Brodaty H, Donkin M. Family caregivers of people with dementia. Dialogues Clin Neurosci. 2009;11(2):217–28.Google Scholar
  8. 8.
    Vaingankar JA, Chong SA, Abdin E, Picco L, Jeyagurunathan A, Seow E, et al. Behavioral and psychological symptoms of dementia: prevalence, symptom groups and their correlates in community-based older adults with dementia in Singapore. Int Psychogeriatrics. 2017;29(8):1363–76.Google Scholar
  9. 9.
    Murman DL, Colenda CC. The economic impact of neuropsychiatric symptoms in Alzheimer's disease: can drugs ease the burden? PharmacoEconomics. 2006;23:227–42.Google Scholar
  10. 10.
    Herrmann N, Lanctôt KL, Sambrook R, Lesnikova N, Hébert R, McCracken P, et al. The contribution of neuropsychiatric symptoms to the cost of dementia care. Int J Geriatr Psychiatry. 2006;21(10):972–6.Google Scholar
  11. 11.
    Kales HC, Gitlin LN, Lyketsos CG. Assessment and management of behavioral and psychological symptoms of dementia. BMJ. 2015;2(350):h369. Scholar
  12. 12.
    Blanco-Silvente L, Castells X, Saez M, Barcelo MA, Garre-olmo J, Vilalta-Franch J, Capella D. Discontinuation, efficacy, and safety of cholinesterase inhibitors for Alzheimer’s disease: a meta-analysis and meta-regression of 43 randomized clinical trials enrolling 16 106 patients. Int J Neuropsychopharmacol. 2017;20(7):519–28.Google Scholar
  13. 13.
    Wang J, Yu JT, Wang HF, Meng XF, Wang C, Tan CC, Tan L. Pharmacological treatment of neuropsychiatric symptoms in Alzheimer’s disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2015;86(1):101–9.Google Scholar
  14. 14.
    Moore A, Patterson C, Lee L, Vedel I, Bergman H. Fourth Canadian Consensus Conference on the Diagnosis and Treatment of Dementia. Can Fam Physician. 2014;60:433–8.Google Scholar
  15. 15.
    Vigen CLP, Mack WJ, Keefe R, Sano M, Sultzer D, Stroup S, et al. Cognitive effects of atypical antipsychotic medications in patients with Alzheimer’s disease: outcomes from CATIE-AD. Am J Psychiatry. 2011;168(8):831–9.Google Scholar
  16. 16.
    Alexopoulos GS, Jeste D V, Chung H, Carpenter D, Ross R, Docherty JP. The expert consensus guideline series. Treatment of dementia and its behavioral disturbances. Postgr Med. 2005; Spec No:6-22.Google Scholar
  17. 17.
    Tampi RR, Tampi DJ, Balachandran S, Srinivasan S. Antipsychotic use in dementia: a systematic review of benefits and risks from meta-analyses. Ther Adv Chronic Dis. 2016;7(5):229–45.Google Scholar
  18. 18.
    Tran E, Dishman B. Citalopram-induced QTc prolongation: a brief review of the data. Ment Health Clin. 2012;2(6):139–41.Google Scholar
  19. 19.
    Porsteinsson AP, Drye LT, Pollock BG, Devanand DP, Frangakis C, Ismail Z, et al. Effect of citalopram on agitation in Alzheimer disease: The CitAD randomized clinical trial. JAMA - J Am Med Assoc. 2014;311(7):682–91.Google Scholar
  20. 20.
    Ballard CG, Waite J, Birks J. Atypical antipsychotics for aggression and psychosis in Alzheimer’s disease. Cochrane Database Syst Rev. 2006;(1). Google Scholar
  21. 21.
    Campanelli CM, Fick DM, Semla T, Beizer J. Potentially inappropriate medication use in older adults: the American Geriatrics Society 2012 Beers Criteria. J Am Geriatr Soc. 2012;60(4):616–31.Google Scholar
  22. 22.
    Lai CKY. The merits and problems of Neuropsychiatric Inventory as an assessment tool in people with dementia and other neurological disorders. Clin Interv Aging. 2014;9:1051–61.Google Scholar
  23. 23.
    Radloff LS. A self-report depression scale for research in the general population. Appl Psychol Meas. 1977;1:385–401.Google Scholar
  24. 24.
    Kørner A, Lauritzen L, Abelskov K, Gulmann NC, Brodersen A-M, Wedervang-Jensen T, et al. Rating scales for depression in the elderly: external and internal validity. J Clin Psychiatry. 2007;68(3):384–9.Google Scholar
  25. 25.
    Helmes E, Csapo KG, Short JA. Standardization and validation of the multidimensional oberservation scale for elderly subjects (MOSES). J Gerontol. 1987;42(4):395–405.Google Scholar
  26. 26.
    Cohen-Mansfield J, Marx MS, Rosenthal AS. A description of agitation in a nursing home. J Gerontol. 1989;44(3):77–84.Google Scholar
  27. 27.
    Mega M, Carusi DA, Cummings JL, Rosenberg-Thompson S, Gornbein J, Gray K. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology. 2012;44(12):2308.Google Scholar
  28. 28.
    Michael M, Cain M, Zubenko GS, Kollar M, Rosen J, Burgio L, et al. The Pittsburgh Agitation Scale: a user-friendly instrument for rating agitation in dementia patients. Am J Geriatr Psychiatry. 2009;2(1):52–9.Google Scholar
  29. 29.
    Mohammad D, Ellis C, Rau A, Rosenberg PB, Mintzer J, Ruthirakuhan M, Herrmann N, Lanctôt KL. Psychometric properties of apathy scales in dementia: a systematic review. J Alzheimers Dis. 2018;66(3):1065–82.Google Scholar
  30. 30.
    Steinberg M, Lyketsos CG. Atypical antipsychotic use in patients with dementia: managing safety concerns. Am J Psychiatry. 2012;169(9):900–6.Google Scholar
  31. 31.
    Das S, Barnwal P, Winston AB, Mondal S, Saha I. Brexpiprazole: so far so good. Ther Adv Psychopharmacol. 2016;6(1):39–54.Google Scholar
  32. 32.
    Diefenderfer LA, Luppa C. Brexpiprazole: a review of a new treatment option for schizophrenia and major depressive disorder. Ment Health Clin. 2017;7(5):207–12.Google Scholar
  33. 33.
    Lundbeck H, Otsuka. Otsuka and Lundbeck announce improvement of agitation symptoms related to about brexpiprazole. Corporate Release. 2017;613:1–7. Accessed 17 Oct 2018.Google Scholar
  34. 34.
    Scale SP, Mcginley E. Intra-Cellular Therapies announces positive top-line results from the first phase 3 trial of ITI-007 in patients with schizophrenia and confirms the unique pharmacology of ITI-007 in a separate positron emission tomography study. Corporate Release. 2015;8–11. Accessed 20 Oct 2018.
  35. 35.
    Intra-Cellular Therapies (ICT). Intra-Cellular Therapies presents data on lumateperone, ITI-214 and ITI-333. Corporate Release. 2017;1–2. Accessed 22 Oct 2018.
  36. 36.
    Zhang L, Hendrick J. The presynaptic D2 partial agonist lumateperone acts as a postsynaptic D2 antagonist. Matters. 2018;1–4. Accessed 24 Mar 2019.
  37. 37.
    Hellebø O, Howell J, Hunt M. Corporate presentation: behavioral disturbances in dementia, including Alzheimer’s Dis. 2007. Accessed 23 Oct 2018.
  38. 38.
    Vanover K, Dmitrienko A, Glass S, Kozauer S, Saillard J, Weingart M. Lumateperone (ITI-007) for the treatment of schizophrenia: placebo-controlled clinical trials and open-label safety switching study. Schizophr Bull. 2018;44:341.Google Scholar
  39. 39.
    Snyder GL, Vanover KE, Zhu H, Miller DB, O’Callaghan JP, Tomesch J, et al. Functional profile of a novel modulator of serotonin, dopamine, and glutamate neurotransmission. Psychopharmacology. 2015;232(3):605–21.Google Scholar
  40. 40.
    Stahl SM. Mechanism of action of pimavanserin in Parkinson’s disease psychosis: targeting serotonin 5HT2A and 5HT2C receptors. CNS Spectr. 2016;21(4):271–5.Google Scholar
  41. 41.
    Ballard C, Banister C, Khan Z, Cummings J, Demos G, Coate B, et al. Evaluation of the safety, tolerability, and efficacy of pimavanserin versus placebo in patients with Alzheimer’s disease psychosis: a phase 2, randomised, placebo-controlled, double-blind study. Lancet Neurol. 2018;17(3):211–2.Google Scholar
  42. 42.
    Cruz MP. Pimavanserin (Nuplazid): a treatment for hallucinations and delusions associated with Parkinson’s disease. P T. 2017;42(6):368–71.Google Scholar
  43. 43.
    Trillo L, Das D, Hsieh W, Medina B, Moghadam S, Lin B, et al. Ascending monoaminergic systems alterations in Alzheimer’s disease: translating basic science into clinical care. Neurosci Biobehav Rev. 2013;37(8):1363–79. Scholar
  44. 44.
    Lanctôt KL, Herrmann N, Mazzotta P. Role of serotonin in the behavioral and psychological symptoms of dementia. J Neuropsychiatry Clin Neurosci. 2001;13(1):5–21. Scholar
  45. 45.
    Mitchell RA, Herrmann N, Lanctôt KL. The role of dopamine in symptoms and treatment of apathy in Alzheimer’s disease. CNS Neurosci Ther. 2011;17(5):411–27.Google Scholar
  46. 46.
    Herrmann N, Lanctôt KL, Eryavec G, Khan LR. Noradrenergic activity is associated with response to pindolol in aggressive Alzheimer’s disease patients. J Psychopharmacol. 2004;18(2):215–20.Google Scholar
  47. 47.
    Herrmann N, Lanctôt KL, Eryavec G, Van Reekum R, Khan LR. Growth hormone response to clonidine predicts aggression in Alzheimer’s disease. Psychoneuroendocrinology. 2004;29(9):1192–7.Google Scholar
  48. 48.
    Lanctôt KL, Herrmann N, Eryavec G, Van Reekum R, Reed K, Naranjo CA. Central serotonergic activity is related to the aggressive behaviors of Alzheimer’s disease. Neuropsychopharmacology. 2002;27(4):646–54.Google Scholar
  49. 49.
    Lanctôt KL, Herrmann N, Van Reekum R, Eryavec G, Naranjo CA. Gender, aggression and serotonergic function are associated with response to sertraline for behavioral disturbances in Alzheimer’s disease. Int J Geriatr Psychiatry. 2002;17(6):531–41.Google Scholar
  50. 50.
    Wilkins JM, Forester BP. Update on SSRI treatment for neuropsychiatric symptoms of dementia. Curr Psychiatry Rep. 2016;18(2):1–7.Google Scholar
  51. 51.
    Joubert AF, Sánchez C, Larsen F. Citalopram. Hum Psychopharmacol Clin Exp. 2000;15(6):439–45.Google Scholar
  52. 52.
    Pollock BG, Mulsant BH, Rosen J, Sweet RA, Mazumdar S, Bharucha A, et al. Comparison of citalopram, perphenazine, and placebo for the acute treatment of psychosis and behavioral disturbances in hospitalized, demented patients. Res Pract Alzheimers Dis. 2003;7:180–6.Google Scholar
  53. 53.
    Pollock BG, Mulsant BH, Rosen J, Mazumdar S, Blakesley RE, Houck PR, et al. A double-blind comparison of citalopram and risperidone for the treatment of behavioral and psychotic symptoms associated with dementia. Am J Geriatr Psychiatry. 2007;15(11):942–52. Scholar
  54. 54.
    Viscogliosi G, Chiriac IM, Ettorre E. Efficacy and safety of citalopram compared to atypical antipsychotics on agitation in nursing home residents with Alzheimer dementia. J Am Med Dir Assoc. 2017;18(9):799–802. Scholar
  55. 55.
    Herrmann N. Lack of clinically useful response predictors for treating aggression and agitation in Alzheimer’s disease with citalopram. Evid Based Ment Health. 2016;19(4):e24-24. Scholar
  56. 56.
    Ho T, Pollock BG, Mulsant BH, Schantz O, Devanand DP, Mintzer JE, et al. R- and S-citalopram concentrations have differential effects on neuropsychiatric scores in elders with dementia and agitation. Br J Clin Pharmacol. 2016;3:784–92.Google Scholar
  57. 57.
    Wu E, Greenberg PE, Yang E, Yu A, Haim Erder M. Comparison of escitalopram versus citalopram for the treatment of major depressive disorder in a geriatric population. Curr Med Res Opin. 2008;24(9):2587–95.Google Scholar
  58. 58.
    Barak Y, Plopski I, Tadger S, Paleacu D. Escitalopram versus risperidone for the treatment of behavioral and psychotic symptoms associated with Alzheimer’s disease: a randomized double-blind pilot study. Int Psychogeriatr. 2011;23(9):1515–9.Google Scholar
  59. 59.
    An H, Choi B, Park K, Kim D-H, Yang DW, Hong CH, et al. the Effect of escitalopram on mood and cognition in depressive Alzheimer’s disease subjects. Alzheimers Dement. 2016;12(7):P825.Google Scholar
  60. 60.
    Sherman C, Ruthirakuhan M, Vieira D, Lanctot KL, Herrmann N. Cannabinoids for the treatment of neuropsychiatric symptoms, pain and weight loss in dementia. Curr Opin Psychiatry. 2018;31(2):40–146.Google Scholar
  61. 61.
    Liu CS, Chau SA, Ruthirakuhan M, Lanctot KL, Herrmann N. Cannabinoids for the treatment of agitation and aggression in Alzheimer’s disease. CNS Drugs. 2015;29(8):615–23.Google Scholar
  62. 62.
    Woodward MR, Harper DG, Stolyar A, Forester BP, Ellison JM. Dronabinol for the treatment of agitation and aggressive behavior in acutely hospitalized severely demented patients with noncognitive behavioral symptoms. Am J Geriatr Psychiatry. 2014;22(4):415–9. Scholar
  63. 63.
    Borgelt LM, Franson KL, Nussbaum AM, Wang GS. The pharmacologic and clinical effects of medical cannabis. Pharmacotherapy. 2013;33(2):195–209.Google Scholar
  64. 64.
    Tambaro S, Bortolato M. Cannabinoid-related agents in the treatment of anxiety disorders: current knowledge and future perspectives. Recent Pat CNS Drug Discov. 2012;7(1):25–40.Google Scholar
  65. 65.
    van den Elsen GA, Ahmed AI, Verkes RJ, Kramers C, Feuth T, Rosenberg PB, et al. Tetrahydrocannabinol for neuropsychiatric symptoms in dementia: a randomized controlled trial. Neurology. 2015;84(23):2338–46.Google Scholar
  66. 66.
    Shelef A, Barak Y, Berger U, et al. Safety and efficacy of medical cannabis oil for behavioral and psychological symptoms of dementia: an-open label, add-on, pilot study. J Alzheimers Dis. 2016;51(1):15–9.Google Scholar
  67. 67.
    Volicer L, Stelly M, McLaughlin J, Morris J, Volicer BJ. Effects of Dronabinol on anorexia and disturbed behavior in patients with Alzheimer’s disease. Int J Geriatr Psychiatry. 2002;12(9):913–9.Google Scholar
  68. 68.
    Walther S, Schupbach B, Seifritz E, Homan P, Strik W, S. W, et al. Randomized, controlled crossover trial of dronabinol, 2.5 mg, for agitation in 2 patients with dementia. J Clin Psychopharmacol. 2011;31(2):256–8.Google Scholar
  69. 69.
    Forester B, Romano C, Quayle W, Georgakas J, Rosenberg PB. Pilot trial of dronabinol adjunctive treatment of agitation in Alzheimer’s disease (Ad) (Thc-Ad). Alzheimers Dement. 2017;13(7):P940.Google Scholar
  70. 70.
    ​Lanctot K, Ruthirakuhan M, Gallagher D, Sherman C, Abraham EH, Verhoeff NPLG, Herrmann N, et al. Nabilone significantly improves agitation/aggression in patients with moderate-to-severe AD: preliminary results of a placebo-controlled, double-blind, cross-over trial. Alzheimer’s & Dementia. 2018;14(7):1385–7.Google Scholar
  71. 71.
    Nguyen L, Thomas KL, Lucke-Wold BP, Cavendish JZ, Crowe MS, Matsumoto RR. Dextromethorphan: an update on its utility for neurological and neuropsychiatric disorders. Pharmacol Ther. 2016;159:1–22. Scholar
  72. 72.
    Taylor CP, Traynelis SF, Siffert J, Pope LE, Matsumoto RR. Pharmacology of dextromethorphan: relevance to dextromethorphan/quinidine (Nuedexta®) clinical use. Pharmacol Ther. 2016;164:170–82. Scholar
  73. 73.
    Capon DA, Bochner F, Kerry N, Mikus G, Danz C, Somogyi AA. The influence of CYP2D6 polymorphism and quinidine on the disposition and antitussive effect of dextromethorphan in humans. Clin Pharmacol Ther. 1996;60(3):295–307.Google Scholar
  74. 74.
    Cummings JL, Lyketsos CG, Peskind ER, Porsteinsson AP, Mintzer JE, Scharre DW, et al. Effect of dextromethorphan-quinidine on agitation in patients with Alzheimer disease dementia: a randomized clinical trial. JAMA. 2015;314(12):1242–54.Google Scholar
  75. 75.
    Tung R. The development of deuterium-containing drugs. Innov Pharm Technol. 2010;32:24–8.Google Scholar
  76. 76.
    Cummings J, Lyketsos CG, Tariot P, Peskind E, Nguyen U. Dextromethorphan/quinidine (AVP-923). Efficacy and safety for treatment of agitation in persons with Alzheimer’s disease: results from a phase 2 study (NCT01584440). 2015 AAGP Annual Meeting Peer to Peer Behavioral Activa. Am J Geriatr Psychiatry. 2015;23(3):S164–5.
  77. 77.
    Garay RP, Grossberg GT. AVP-786 for the treatment of agitation in dementia of the Alzheimer’s type. Expert Opin Investig Drugs. 2017;26(1):121–32. Scholar
  78. 78.
    Mclaurin J, Golomb R, Jurewicz A, Antel JP, Fraser PE. Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid B-Peptide and inhibit AB -induced Toxicity. J Biol Chem. 2000;275(24):18495–502.Google Scholar
  79. 79.
    Fenili D, Brown M, Rappaport R, McLaurin JA. Properties of scyllo-inositol as a therapeutic treatment of AD-like pathology. J Mol Med. 2007;85(6):603–11.Google Scholar
  80. 80.
    Salloway S, Sperling R, Keren R, Porsteinsson AP, Van Dyck CH, Tariot PN, Crans G. A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology. 2011;77(13):1253–62.Google Scholar
  81. 81.
    Abushakra S, Boada Rovira M, Porsteinsson AP, Liang E, Pastrak A, Vellas B. Study of ELND005 in agitation and aggression of Alzheimer’s disease (harmony-AD): diagnostic criteria and patient characteristics. Neurodegener Dis. 2015;15(1):802.Google Scholar
  82. 82.
    Sadasivan S, Pond BB, Pani AK, Qu C, Jiao Y, Smeyne RJ. Methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice. PLoS One. 2012;7(3):e33693.Google Scholar
  83. 83.
    Prommer E. Methylphenidate: established and expanding roles in symptom management. Am J Hosp Palliat Med. 2012;29(6):483–90.Google Scholar
  84. 84.
    Padala PR, Burke WJ, Shostrom VK, Bhatia SC, Wengel SP, Potter JF, et al. Methylphenidate for apathy and functional status in dementia of the Alzheimer type. Am J Geriatr Psychiatry. 2010;18(4):371–4.Google Scholar
  85. 85.
    Lensing SY, Sullivan DH, Ramirez D, Dennis RA, Padala PR, Bopp MM, et al. Methylphenidate for apathy in community-dwelling older veterans with mild Alzheimer’s disease: a double-blind, randomized, placebo-controlled trial. Am J Psychiatry. 2017;175(2):159–68.Google Scholar
  86. 86.
    Rosenberg PPB, Lanctot KL, Drye LT, Scherer RW, Herrmann N, Mintzer JE, et al. Safety and efficacy of methylphenidate for apathy in Alzheimer’s disease: a randomized, placebo-controlled trial. J Clin Psychiatry. 2013;74(8):810–6.Google Scholar
  87. 87.
    Ruthirakuhan M, Herrmann N, Abraham EH, Chan S, Lanctot KL. Pharmacological interventions for apathy in Alzheimer’s disease. Cochrane Database Syst Rev. 2018;5:CD012197.Google Scholar
  88. 88.
    Scherer RW, Drye L, Mintzer J, Lanctôt K, Rosenberg P, Herrmann N, et al. The Apathy in Dementia Methylphenidate Trial 2 (ADMET 2): study protocol for a randomized controlled trial. Trials. 2018;19(1):1–15.Google Scholar
  89. 89.
    Van Der Mussele S, Mariën P, Saerens J, Somers N, Goeman J, De Deyn PP, et al. Behavioral syndromes in mild cognitive impairment and Alzheimer’s disease. J Alzheimer’s Dis. 2014;38(2):319–29.Google Scholar
  90. 90.
    Katsouri L, Vizcaychipi MP, McArthur S, Harrison I, Suárez-Calvet M, Lleo A, et al. Prazosin, an α1-adrenoceptor antagonist, prevents memory deterioration in the APP23 transgenic mouse model of Alzheimer’s disease. Neurobiol Aging. 2013;34(4):1105–15.Google Scholar
  91. 91.
    Wang LY, Shofer JB, Rohde K, Hart KL, Hoff DJ, McFall YH, Peskind ER. Prazosin for the treatment of behavioral symptoms in Alzheimer’s disease patients with agitation and aggression. Am J Geriatr Psychiatry. 2010;17(9):744–51.Google Scholar
  92. 92.
    Shorter E. The history of lithium therapy. Bipolar Disord. 2009;11(Suppl. 2):4–9.Google Scholar
  93. 93.
    Rapoport SI, Basselin M, Kim Hyung-Wook SRJ. Bipolar disorder and mechanisms of action of mood stabilizers. Brain Res Rev. 2009;61(2):185–209.Google Scholar
  94. 94.
    Phiel CJ, Wilson CA, Lee VM-Y, Klein PS. GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature. 2003;423(6938):435–9.Google Scholar
  95. 95.
    Findling RL, Frazier JA, Kafantaris V, Kowatch R, McClellan J, Pavuluri M, et al. The Collaborative Lithium Trials (CoLT): specific aims, methods, and implementation. Child Adolesc Psychiatry Ment Health. 2008;2(4):1–13.Google Scholar
  96. 96.
    Brown KM, Tracy DK. Lithium: the pharmacodynamic actions of the amazing ion. Ther Adv Psychopharmacol. 2013;3(3):163–76.Google Scholar
  97. 97.
    Motoi Y, Shimada K, Ishiguro K, Hattori N. Lithium and autophagy. ACS Chem Neurosci. 2014;5(6):434–42.Google Scholar
  98. 98.
    Yu F, Zhang Y, Chuang D-M. Lithium reduces BACE1 overexpression, beta amyloid accumulation, and spatial learning deficits in mice with traumatic brain injury. J Neurotrauma. 2012;29(13):2342–51.Google Scholar
  99. 99.
    Zhang X, Heng X, Li T, Li L, Yang D, Zhang X, et al. Long-term treatment with lithium alleviates memory deficits and reduces amyloid-beta production in an aged Alzheimer's disease transgenic mouse model. J Alzheimers Dis. 2011;24(4):739–49.Google Scholar
  100. 100.
    Kovacsics CE, Gould TD. Shock-induced aggression in mice is modified by lithium. Pharmacol Biochem Behav. 2010;94(3):380–6.Google Scholar
  101. 101.
    Redrobe JP, Bourin M. The effect of lithium administration in animal models of depression: a short review. Fundam Clin Pharmacol. 1999;13(3):293–9.Google Scholar
  102. 102.
    Ambrósio AF, Soares-da-Silva P, Carvalho CM, Carvalho AP, Bailly S, Pocidalo J, et al. Mechanisms of Action of Carbamazepine and Its. J Mol Biol. 2002;57(5):203–35.Google Scholar
  103. 103.
    Al-Majed A, Bakheit AH, Alharbi RM, Abdel Aziz HA. Mirtazapine. Profiles Drug Subst Excipients Relat Methodol. 2018;43:209–54.Google Scholar
  104. 104.
    Cakir S, Kulaksizoglu IB. The efficacy of mirtazapine in agitated patients with Alzheimer’s disease: a 12-week open-label pilot study. Neuropsychiatr Dis Treat. 2008;4(5):963–6.Google Scholar
  105. 105.
    Lemke MR. Effect of carbamazepine on agitation and emotional lability associated with severe dementia. Eur Psychiatry. 1995;10(5):259–62.Google Scholar
  106. 106.
    Tariot PN, Erb R, Podgorski CA, Cox C, Patel S, Jakimovich L, Irvine C. Efficacy and tolerability of carbamazepine for agitation and aggression in dementia. Am J Psychiatry. 1998;155(1):54–61.Google Scholar
  107. 107.
    Mitochon Pharmaceuticals. Mitochon pharmaceuticals raises $1.6M for clinical stage development of MP 101; the first mitochondrial targeted agent to treat neurodegenerative diseases [press release] (2016 May 17). Accessed 20 Sept 2018.
  108. 108.
    Onyango IG, Dennis J, Khan SM. Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis. 2016;7(2):201. Scholar
  109. 109.
    Axsome Therapeutics. Agitation in patients with Alzheimer`s disease (AD). 2016. Accessed 20 Sept 2018.
  110. 110.
    Patel K, Allen S, Haque MN, Angelescu I, Baumeister D, Tracy DK. Bupropion: a systematic review and meta-analysis of effectiveness as an antidepressant. Ther Adv Psychopharmacol. 2016;6(2):99–144. Scholar
  111. 111.
    Hughes J, Stead L, Cahill K, Lancaster T. Antidepressants for smoking cessation (Review). Cochrane Libr. 2014;1:1–145. Scholar
  112. 112.
    Pedersen CA, Gibson CM, Rau SW, Salimi K, Smedley KL, Casey RL, Leserman J, Fredrik Jarskog L, Penn DL. Intranasal oxytocin reduces psychotic symptoms and improves Theory of Mind and social perception in schizophrenia. Schizophr Res. 2011;132(1):50–3.Google Scholar
  113. 113.
    Jesso S, Morlog D, Ross S, Pell MD, Pasternak SH, Mitchell DGV, Kertesz A, Finger EC. The effects of oxytocin on social cognition and behaviour in frontotemporal dementia. Brain. 2011;134(9):2493–501.Google Scholar
  114. 114.
    Finger EC, MacKinley J, Blair M, Oliver LD, Jesso S, Tartaglia MC, Borrie M, Wells J, Dziobek I, Pasternak S, Mitchell DGV, Rankin K, Kertesz A, Boxer A. Oxytocin for frontotemporal dementia: a randomized dose-finding study of safety and tolerability. Neurol. 2015;84(2):174–81.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Neuropsychopharmacology Research Group, Hurvitz Brain Sciences ProgramSunnybrook Research Institute, Sunnybrook Health Sciences CentreTorontoCanada
  2. 2.Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada
  3. 3.Department of PsychiatryUniversity of TorontoTorontoCanada
  4. 4.Geriatric Psychiatry, Sunnybrook Health Sciences CentreTorontoCanada

Personalised recommendations