Advertisement

Drugs & Aging

, Volume 36, Issue 3, pp 213–234 | Cite as

Practical Regional Anesthesia Guide for Elderly Patients

  • Carole Lin
  • Curtis Darling
  • Ban C. H. TsuiEmail author
Review Article
  • 43 Downloads

Abstract

Ultrasound-guided regional anesthesia is an important part of the practice of anesthesia for the elderly population, the growth of which will continue to outpace that of the younger population due to improvements in lifespan worldwide. The elderly patient is uniquely vulnerable to the effects of systemic anesthetic drugs, and our understanding of the potential toxicities that general anesthetics can have on the elderly brain and body continues to evolve. Aging impacts both the pharmacokinetics and pharmacodynamics of sedative medications and local anesthetics. Alongside the physiologic aging process often comes a myriad of pathologic co-morbidities that can accumulate with age, and result in a great variability of physiologic reserve. This variability in overall functional status is described by a newer concept termed ‘frailty,’ which is used to evaluate and risk-stratify elderly patients perioperatively. The choice for regional anesthesia is based on a combination of factors such as duration of surgery, pre-existing patient risk factors, and the skill and technique of the anesthesiologist. The utilization of preoperative and intraoperative sedation is now recognized as a key component in maximizing the safety and success rate of regional anesthesia. Excellent pain management with minimal to no sedation during the operation may have benefits that extend far beyond the immediate perioperative setting. Regional anesthesia is increasingly integrated as an important part of multimodal enhanced recovery after surgery (ERAS) protocols, which aim to decrease the cost, enhance safety, and improve the patient’s subjective experience during and after hospitalization. Ultrasound-guided techniques, recently developed regional blocks, medications for sedation, and local anesthetics are reviewed in this article.

Notes

Compliance with Ethical Standards

Conflict of Interest

Carole Lin, Curtis Darling, and Ban C. H. Tsui have no conflicts to report.

Funding

The authors acknowledge internal departmental financial support (Department of Anesthesiology, Perioperative and Pain Medicine, Lucille Packard Children’s Hospital, Stanford University, School of Medicine, Stanford, CA, USA).

References

  1. 1.
    He W, Goodkind D, Kowal P. An aging world : 2015. International population reports. Washington, DC: U.S. Government Publishing Office; 2016.Google Scholar
  2. 2.
    Parker MJ, Handoll HHG, Griffiths R. Anaesthesia for hip fracture surgery in adults. Cochrane Database Syst Rev. 2004.  https://doi.org/10.1002/14651858.CD000521.pub2.
  3. 3.
    Lam C-F, Hsieh S-Y, Wang J-H, Pan H-S, Liu X-Z, Ho Y-C, et al. Incidence and characteristic analysis of in-hospital falls after anesthesia. Perioper Med (Lond). 2016;5:11.Google Scholar
  4. 4.
    Rozell JC, Hasenauer M, Donegan DJ, Neuman M. Recent advances in the treatment of hip fractures in the elderly. F1000Res. 2016.  https://doi.org/10.12688/f1000research.8172.1.Google Scholar
  5. 5.
    Nordquist D, Halaszynski TM. Perioperative multimodal anesthesia using regional techniques in the aging surgical patient. Pain Res Treat. 2014;2014:1–13.Google Scholar
  6. 6.
    Slieker J, Frauche P, Jurt J, Addor V, Blanc C, Demartines N, et al. Enhanced recovery ERAS for elderly: a safe and beneficial pathway in colorectal surgery. Int J Colorectal Dis. 2017;32:215–21.Google Scholar
  7. 7.
    Pirrera B, Lucchi A, Gabbianelli C, Alagna V, Martorelli G, Berti P, et al. E.R.A.S. pathway in colorectal surgery in elderly: Our experience: a retrospective cohort study. Int J Surg. 2017;43:101–6.Google Scholar
  8. 8.
    Braga M, Pecorelli N, Scatizzi M, Borghi F, Missana G, Radrizzani D, et al. Enhanced recovery program in high-risk patients undergoing colorectal surgery: results from the PeriOperative Italian Society Registry. World J Surg. 2017;41:860–7.Google Scholar
  9. 9.
    Chow WB, Rosenthal RA, Merkow RP, Ko CY, Esnaola NF, American College of Surgeons National Surgical Quality Improvement Program; American Geriatrics Society. Optimal preoperative assessment of the geriatric surgical patient: a best practices guideline from the American College of Surgeons National Surgical Quality Improvement Program and the American Geriatrics Society. J Am Coll Surg. 2012;215:453–66.Google Scholar
  10. 10.
    Harari D, Hopper A, Dhesi J, Babic-Illman G, Lockwood L, Martin F. Proactive care of older people undergoing surgery (‘POPS’): designing, embedding, evaluating and funding a comprehensive geriatric assessment service for older elective surgical patients. Age Ageing. 2007;36:190–6.Google Scholar
  11. 11.
    Shem Tov L, Matot I. Frailty and anesthesia. Curr Opin Anaesthesiol. 2017;30:409–17.Google Scholar
  12. 12.
    Chen X, Mao G, Leng SX. Frailty syndrome: an overview. Clin Interv Aging. 2014;9:433–41.Google Scholar
  13. 13.
    Lin H-S, Watts JN, Peel NM, Hubbard RE. Frailty and post-operative outcomes in older surgical patients: a systematic review. BMC Geriatr. 2016;16:157.Google Scholar
  14. 14.
    Scurrah A, Shiner CT, Stevens JA, Faux SG. Regional nerve blockade for early analgesic management of elderly patients with hip fracture—a narrative review. Anaesthesia. 2018;73:769–83.Google Scholar
  15. 15.
    Haan J, van Kleef JW, Bloem BR, Zwartendijk J, Lanser JB, Brand R, et al. Cognitive function after spinal or general anesthesia for transurethral prostatectomy in elderly men. J Am Geriatr Soc. 1991;39:596–600.Google Scholar
  16. 16.
    Ouanes J-PP, Tomas VG, Sieber F. Special anesthetic consideration for the patient with a fragility fracture. Clin Geriatr Med. 2014;30:243–59.Google Scholar
  17. 17.
    Halaszynski TM. Pain management in the elderly and cognitively impaired patient: the role of regional anesthesia and analgesia. Curr Opin Anaesthesiol. 2009;22:594–9.Google Scholar
  18. 18.
    Gustafson Y, Berggren D, Brännström B, Bucht G, Norberg A, Hansson L-I, et al. Acute confusional states in elderly patients treated for femoral neck fracture. J Am Geriatr Soc. 1988;36:525–30.Google Scholar
  19. 19.
    Ní Chonchubhair A, Valacio R, Kelly J, O’Keefe S. Use of the abbreviated mental test to detect postoperative delirium in elderly people. Br J Anaesth. 1995;75:481–2.Google Scholar
  20. 20.
    Evered L, Scott DA, Silbert B. Cognitive decline associated with anesthesia and surgery in the elderly. Curr Opin Psychiatry. 2017;30:220–6.Google Scholar
  21. 21.
    O’Brien H, Mohan H, Hare CO, Reynolds JV, Kenny RA. Mind over matter? The hidden epidemic of cognitive dysfunction in the older surgical patient. Ann Surg. 2017;265:677–91.Google Scholar
  22. 22.
    Kilaru P, Reddy AR, Reddy M, Kidiyoor B, Joseph V, Reddy AG. Postoperative cognitive dysfunction in Indian patients undergoing total knee replacement under spinal anesthesia. Anesth Essays Res. 2018;12:116–8.Google Scholar
  23. 23.
    Evered LA, Silbert BS. Postoperative cognitive dysfunction and noncardiac surgery. Anesth Analg. 2018;127:496–505.Google Scholar
  24. 24.
    Berger M, Nadler JW, Browndyke J, Terrando N, Ponnusamy V, Cohen HJ, et al. Postoperative cognitive dysfunction. Anesthesiol Clin. 2015;33:517–50.Google Scholar
  25. 25.
    Hole A, Terjesen T, Breivik H. Epidural versus general anaesthesia for total hip arthroplasty in elderly patients. Acta Anaesthesiol Scand. 1980;24:279–87.Google Scholar
  26. 26.
    Wang Y, Zhang J, Zhang S. Influence of different anesthetic and analgesic methods on early cognitive function of elderly patients receiving non-cardiac surgery. Pak J Med Sci. 2016;32:369–72.Google Scholar
  27. 27.
    Mason SE, Noel-Storr A, Ritchie CW. The impact of general and regional anesthesia on the incidence of post-operative cognitive dysfunction and post-operative delirium: a systematic review with meta-analysis. J Alzheimers Dis. 2010;22(Suppl 3):67–79.Google Scholar
  28. 28.
    Mracek J, Holeckova I, Chytra I, Mork J, Stepanek D, Vesela P. The impact of general versus local anesthesia on early subclinical cognitive function following carotid endarterectomy evaluated using P3 event-related potentials. Acta Neurochir (Wien). 2012;154:433–8.Google Scholar
  29. 29.
    Xu T, Bo L, Wang J, Zhao Z, Xu Z, Deng X, et al. Risk factors for early postoperative cognitive dysfunction after non-coronary bypass surgery in Chinese population. J Cardiothorac Surg. 2013;8:204.Google Scholar
  30. 30.
    Vanderweyde T, Bednar MM, Forman SA, Wolozin B. Iatrogenic risk factors for Alzheimer’s disease: surgery and anesthesia. J Alzheimers Dis. 2010;22(Suppl 3):91–104.Google Scholar
  31. 31.
    Sieber FE, Neufeld KJ, Gottschalk A, Bigelow GE, Oh ES, Rosenberg PB, et al. Effect of depth of sedation in older patients undergoing hip fracture repair on postoperative delirium. JAMA Surg. 2018;153:987–95.Google Scholar
  32. 32.
    Hou R, Wang H, Chen L, Qiu Y, Li S. POCD in patients receiving total knee replacement under deep vs light anesthesia: a randomized controlled trial. Brain Behav. 2018;8:e00910.Google Scholar
  33. 33.
    Brown CH, Azman AS, Gottschalk A, Mears SC, Sieber FE. Sedation depth during spinal anesthesia and survival in elderly patients undergoing hip fracture repair. Anesth Analg. 2014;118:977–80.Google Scholar
  34. 34.
    Brox WT, Chan PH, Cafri G, Inacio MCS. Similar mortality with general or regional anesthesia in elderly hip fracture patients. Acta Orthop. 2016;87:152–7.Google Scholar
  35. 35.
    Modig J. Influence of regional anesthesia, local anesthetics, and sympathicomimetics on the pathophysiology of deep vein thrombosis. Acta Chir Scand Suppl. 1989;550:119–24 (discussion 124–7).Google Scholar
  36. 36.
    Memtsoudis SG, Poeran J, Zubizarreta N, Olson A, Cozowicz C, Mörwald EE, et al. Do hospitals performing frequent neuraxial anesthesia for hip and knee replacements have better outcomes? Anesthesiology. 2018;129:428–39.Google Scholar
  37. 37.
    Ekstein M, Gavish D, Ezri T, Weinbroum AA. Monitored anaesthesia care in the elderly: guidelines and recommendations. Drugs Aging. 2008;25:477–500.Google Scholar
  38. 38.
    Eilers H, Niemann CU. Clinically important drug interactions with intravenous anaesthetics in older patients. Drugs Aging. 2003;20:969–80.Google Scholar
  39. 39.
    Struys MM, De Smet T, Glen JI, Vereecke HE, Absalom AR, Schnider TW. The history of target-controlled infusion. Anesth Analg. 2016;122:56–69.Google Scholar
  40. 40.
    Qi Y, Yao X, Zhang B, Du X. Comparison of recovery effect for sufentanil and remifentanil anesthesia with TCI in laparoscopic radical resection during colorectal cancer. Oncol Lett. 2016;11:3361–5.Google Scholar
  41. 41.
    Absalom AR, Glen JI, Zwart GJC, Schnider TW, Struys MMRF. Target-controlled infusion. Anesth Analg. 2016;122:70–8.Google Scholar
  42. 42.
    Dryden PE. Target-controlled infusions. Anesth Analg. 2016;122:86–9.Google Scholar
  43. 43.
    Yao Y, Yu C, Yuan Y, Huang G, Li S. Median effective concentration of remifentanil in target controlled infusion for smooth tracheal extubation during emergence from general anesthesia in elderly patients. J Clin Anesth. 2016;31:13–8.Google Scholar
  44. 44.
    Li S, Yu F, Zhu H, Yang Y, Yang L, Lian J. The median effective concentration (EC50) of propofol with different doses of fentanyl during colonoscopy in elderly patients. BMC Anesthesiol. 2016;16:24.Google Scholar
  45. 45.
    Gotoda T, Okada H, Hori K, Kawahara Y, Iwamuro M, Abe M, et al. Propofol sedation with a target-controlled infusion pump and bispectral index monitoring system in elderly patients during a complex upper endoscopy procedure. Gastrointest Endosc. 2016;83:756–64.Google Scholar
  46. 46.
    Yang N, Zuo M-Z, Yue Y, Wang Y, Shi Y, Zhang X-N. Comparison of C50 for propofol-remifentanil target-controlled infusion and bispectral index at loss of consciousness and response to painful stimulus in elderly and young patients. Chin Med J (Engl). 2015;128:1994–9.Google Scholar
  47. 47.
    Marhofer P. Regional blocks carried out during general anesthesia or deep sedation. Curr Opin Anaesthesiol. 2017;30:621–6.Google Scholar
  48. 48.
    Jacobs JR, Reves JG, Marty J, White WD, Bai SA, Smith LR. Aging increases pharmacodynamic sensitivity to the hypnotic effects of midazolam. Anesth Analg. 1995;80:143–8.Google Scholar
  49. 49.
    Shorr RI, Robin DW. Rational use of benzodiazepines in the elderly. Drugs Aging. 1994;4:9–20.Google Scholar
  50. 50.
    Piekarski JM, Rossmann JA, Putman J. Benzodiazepine reversal with flumazenil—a review of the literature. J Can Dent Assoc. 1992;58:307–10.Google Scholar
  51. 51.
    Metzner JI, Rooke GA. Analgesics and sedatives. In: Barnett SR, editor. Manual of geriatric anesthesia. New York: Springer; 2013. p. 75–91.Google Scholar
  52. 52.
    Cepeda M, Farrar JT, Baumgarten M, Boston R, Carr DB, Strom BL. Side effects of opioids during short-term administration: effect of age, gender, and race. Clin Pharmacol Ther. 2003;74:102–12.Google Scholar
  53. 53.
    Marrocco-Trischitta M, Bandiera G, Camilli S, Stillo F, Cirielli C, Guerrini P. Remifentanil conscious sedation during regional anaesthesia for carotid endarterectomy: rationale and safety. Eur J Vasc Endovasc Surg. 2001;22:405–9.Google Scholar
  54. 54.
    Rosenzweig AB, Sittambalam CD. A new approach to the prevention and treatment of delirium in elderly patients in the intensive care unit. J Community Hosp Intern Med Perspect. 2015;5:27950.Google Scholar
  55. 55.
    Akin S, Aribogan A, Arslan G. Dexmedetomidine as an adjunct to epidural analgesia after abdominal surgery in elderly intensive care patients: a prospective, double-blind, clinical trial. Curr Ther Res. 2008;69:16–28.Google Scholar
  56. 56.
    Kunisawa T, Hanada S, Kurosawa A, Suzuki A, Takahata O, Iwasaki H. Dexmedetomidine was safely used for sedation during spinal anesthesia in a very elderly patient. J Anesth. 2010;24:938–41.Google Scholar
  57. 57.
    Lee JM, Lee SK, Lee SJ, Hwang WS, Jang SW, Park EY. Comparison of remifentanil with dexmedetomidine for monitored anaesthesia care in elderly patients during vertebroplasty and kyphoplasty. J Int Med Res. 2016;44:307–16.Google Scholar
  58. 58.
    Wang C, Zhang H, Fu Q. Effective dose of dexmedetomidine as an adjuvant sedative to peripheral nerve blockade in elderly patients. Acta Anaesthesiol Scand. 2018;62:848–56.Google Scholar
  59. 59.
    Kuang Y, Zhang R, Pei Q, Tan H, Guo C-X, Huang J, et al. Pharmacokinetic and pharmacodynamic study of dexmedetomidine in elderly patients during spinal anesthesia. Int J Clin Pharmacol Ther. 2015;53:1005–15.Google Scholar
  60. 60.
    Ko K-H, Jun I-J, Lee S, Lim Y, Yoo B, Kim K-M. Effective dose of dexmedetomidine to induce adequate sedation in elderly patients under spinal anesthesia. Korean J Anesthesiol. 2015;68:575–80.Google Scholar
  61. 61.
    Park SH, Shin YD, Yu HJ, Bae JH, Yim KH. Comparison of two dosing schedules of intravenous dexmedetomidine in elderly patients during spinal anesthesia. Korean J Anesthesiol. 2014;66:371–6.Google Scholar
  62. 62.
    Shin H-J, Koo B-W, Bang S-U, Kim J-H, Hwang J-W, Do S-H, et al. Intraoperative dexmedetomidine sedation reduces the postoperative agitated behavior in elderly patients undergoing orthopedic surgery compared to the propofol sedation. Minerva Anestesiol. 2017;83:1042–50.Google Scholar
  63. 63.
    Yun SH, Park JC, Kim SR, Choi YS. Effects of dexmedetomidine on serum interleukin-6, hemodynamic stability, and postoperative pain relief in elderly patients under spinal anesthesia. Acta Med Okayama. 2016;70:37–43.Google Scholar
  64. 64.
    Hong J-Y, Kim WO, Yoon Y, Choi Y, Kim S-H, Kil HK. Effects of intravenous dexmedetomidine on low-dose bupivacaine spinal anaesthesia in elderly patients. Acta Anaesthesiol Scand. 2012;56:382–7.Google Scholar
  65. 65.
    Liu Y, Ma L, Gao M, Guo W, Ma Y. Dexmedetomidine reduces postoperative delirium after joint replacement in elderly patients with mild cognitive impairment. Aging Clin Exp Res. 2016;28:729–36.Google Scholar
  66. 66.
    Mei B, Meng G, Xu G, Cheng X, Chen S, Zhang Y, et al. Intraoperative sedation with dexmedetomidine is superior to propofol for elderly patients undergoing hip arthroplasty. Clin J Pain. 2018;34:811–7.Google Scholar
  67. 67.
    Cheng H, Li Z, Young N, Boyd D, Atkins Z, Ji F, et al. The effect of dexmedetomidine on outcomes of cardiac surgery in elderly patients. J Cardiothorac Vasc Anesth. 2016;30:1502–8.Google Scholar
  68. 68.
    Zhang D-F, Su X, Meng Z-T, Li H-L, Wang D-X, Li X-Y, et al. Impact of dexmedetomidine on long-term outcomes after noncardiac surgery in elderly. Ann Surg. 2018.  https://doi.org/10.1097/SLA.0000000000002801 (Epub 2018 May 8).Google Scholar
  69. 69.
    Chen J, Yan J, Han X. Dexmedetomidine may benefit cognitive function after laparoscopic cholecystectomy in elderly patients. Exp Ther Med. 2013;5:489–94.Google Scholar
  70. 70.
    Quibell R, Prommer EE, Mihalyo M, Twycross R, Wilcock A. Ketamine. J Pain Symptom Manag. 2011;41:640–9.Google Scholar
  71. 71.
    Sener S, Eken C, Schultz CH, Serinken M, Ozsarac M. Ketamine with and without midazolam for emergency department sedation in adults: a randomized controlled trial. Ann Emerg Med. 2011;57(109–114):e2.Google Scholar
  72. 72.
    Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, et al. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol Rev. 2018;70:621–60.Google Scholar
  73. 73.
    Carter EL, Adapa RM. Adult epilepsy and anaesthesia. BJA Educ. 2015;15:111–7.Google Scholar
  74. 74.
    Imbelloni LE, Lima U, Pedrosa FK. Successful anesthesia and hip surgery in a 107-year-old patient. Am J Case Rep. 2014;15:308–11.Google Scholar
  75. 75.
    Bryson HM, Fulton BR, Faulds D. Propofol Drugs. 1995;50:513–59.Google Scholar
  76. 76.
    Smith I, White PF, Nathanson M, Gouldson R. Propofol. An update on its clinical use. Anesthesiology. 1994;81:1005–43.Google Scholar
  77. 77.
    Sahinovic MM, Struys MMRF, Absalom AR. Clinical pharmacokinetics and pharmacodynamics of propofol. Clin Pharmacokinet. 2018;57(12):1539–58.Google Scholar
  78. 78.
    Schnider TW, Minto CF, Shafer SL, Gambus PL, Andresen C, Goodale DB, et al. The influence of age on propofol pharmacodynamics. Anesthesiology. 1999;90:1502–16.Google Scholar
  79. 79.
    Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, et al. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 1998;88:1170–82.Google Scholar
  80. 80.
    Gragasin FS, Bourque SL, Davidge ST. Vascular aging and hemodynamic stability in the intraoperative period. Front Physiol. 2012;3:74.Google Scholar
  81. 81.
    Smith I, Monk TG, White PF, Ding Y. Propofol infusion during regional anesthesia: sedative, amnestic, and anxiolytic properties. Anesth Analg. 1994;79:313–9.Google Scholar
  82. 82.
    Minville V, Castel A, Asehnoune K, Chassery C, Lafosse J-M, Nguyen L, et al. Propofol to facilitate spinal anesthesia in the lateral position in patients with femoral neck fracture [in French]. Can J Anaesth. 2006;53:1186–9.Google Scholar
  83. 83.
    Veering BT, Burm AG, Vletter AA, van den Hoeven RA, Spierdijk J. The effect of age on systemic absorption and systemic disposition of bupivacaine after subarachnoid administration. Anesthesiology. 1991;74:250–7.Google Scholar
  84. 84.
    Veering BT, Burm AGL, Vletter AA, van den Heuvel RPM, Onkenhout W, Spierdijk J. The effect of age on the systemic absorption, disposition and pharmacodynamics of bupivacaine after epidural administration. Clin Pharmacokinet. 1992;22:75–84.Google Scholar
  85. 85.
    Brandfonbrener M, Landowne M, Shock W. Changes in cardiac output with age. Circulation. 1955;12:557–66.Google Scholar
  86. 86.
    Kuikka JT, Lansimies E. Effect of age on cardiac index, stroke index and left ventricular ejection fraction at rest and during exercise as studied by radiocardiography. Acta Physiol Scand. 1982;114:339–43.Google Scholar
  87. 87.
    Rodeheffer RJ, Gerstenblith G, Becker LC, Fleg JL, Weisfeldt ML, Lakatta EG. Exercise cardiac output is maintained with advancing age in healthy human subjects: cardiac dilatation and increased stroke volume compensate for a diminished heart rate. Circulation. 1984;69:203–13.Google Scholar
  88. 88.
    Sadean MR, Glass PSA. Pharmacokinetics in the elderly. Best Pract Res Clin Anaesthesiol. 2003;17:191–205.Google Scholar
  89. 89.
    Denson D, Coyle D, Thompson G, Myers J. Alpha1-acid glycoprotein and albumin in human serum bupivacaine binding. Clin Pharmacol Ther. 1984;35:409–15.Google Scholar
  90. 90.
    Routledge PA, Barchowsky A, Bjornsson TD, Kitchell BB, Shand DG. Lidocaine plasma protein binding. Clin Pharmacol Ther. 1980;27:347–51.Google Scholar
  91. 91.
    Routledge PA, Shand DG, Barchowsky A, Wagner G, Stargel WW. Relationship between α1-acid glycoprotein and lidocaine disposition in myocardial infarction. Clin Pharmacol Ther. 1981;30:154–7.Google Scholar
  92. 92.
    Shand DG. alpha 1-Acid glycoprotein and plasma lidocaine binding. Clin Pharmacokinet. 1984;9(Suppl 1):27–31.Google Scholar
  93. 93.
    Piafsky KM, Knoppert D. Binding of local anesthetics to α1-acid glycoprotein. Clin Res. 1978;26:836A.Google Scholar
  94. 94.
    Abernethy DR, Kerzner L. Age effects on alpha-1-acid glycoprotein concentration and imipramine plasma protein binding. J Am Geriatr Soc. 1984;32:705–8.Google Scholar
  95. 95.
    Wallace SM, Verbeeck RK. Plasma protein binding of drugs in the elderly. Clin Pharmacokinet. 1987;12:41–72.Google Scholar
  96. 96.
    Pacifici GM, Viani A, Taddeucci-Brunelli G, Rizzo G, Carrai M, Schulz HU. Effects of development, aging, and renal and hepatic insufficiency as well as hemodialysis on the plasma concentrations of albumin and alpha 1-acid glycoprotein: implications for binding of drugs. Ther Drug Monit. 1986;8:259–63.Google Scholar
  97. 97.
    Neal JM, Barrington MJ, Fettiplace MR, Gitman M, Memtsoudis SG, Mörwald EE, et al. The third American Society of Regional Anesthesia and Pain Medicine practice advisory on local anesthetic systemic toxicity: executive summary 2017. Reg Anesth Pain Med. 2018;43:113–23.Google Scholar
  98. 98.
    El-Boghdadly K, Pawa A, Chin KJ. Local anesthetic systemic toxicity: current perspectives. Local Reg Anesth. 2018;11:35–44.Google Scholar
  99. 99.
    American Society of Regional Anesthesia and Pain Medicine. Checklist for treatment of local anesthetic systemic toxicity. https://www.asra.com/advisory-guidelines/article/3/checklist-for-treatment-of-local-anesthetic-systemic-toxicity. Accessed 9 Nov 2018.
  100. 100.
    Cummings K III, Chahar P. Liposomal bupivacaine: a review of a new bupivacaine formulation. J Pain Res. 2012;5:257–64.Google Scholar
  101. 101.
    Lonner J. Role of liposomal bupivacaine in pain management after total joint arthroplasty. J Surg Orthop Adv. 2014;23:37–41.Google Scholar
  102. 102.
    Richard BM, Newton P, Ott LR, Haan D, Brubaker AN, Cole PI, et al. The safety of EXPAREL® (bupivacaine liposome injectable suspension) administered by peripheral nerve block in rabbits and dogs. J Drug Deliv. 2012;2012:962101.Google Scholar
  103. 103.
    McAlvin JB, Padera RF, Shankarappa SA, Reznor G, Kwon AH, Chiang HH, et al. Multivesicular liposomal bupivacaine at the sciatic nerve. Biomaterials. 2014;35:4557–64.Google Scholar
  104. 104.
    Ilfeld BM, Viscusi ER, Hadzic A, Minkowitz HS, Morren MD, Lookabaugh J, et al. Safety and side effect profile of liposome bupivacaine (Exparel) in peripheral nerve blocks. Reg Anesth Pain Med. 2015;40:572–82.Google Scholar
  105. 105.
    Davidson EM, Barenholz Y, Cohen R, Haroutiunian S, Kagan L, Ginosar Y. High-dose bupivacaine remotely loaded into multivesicular liposomes demonstrates slow drug release without systemic toxic plasma concentrations after subcutaneous administration in humans. Anesth Analg. 2010;110:1018–23.Google Scholar
  106. 106.
    Zhang X, Yang Q, Zhang Z. The efficiency and safety of local liposomal bupivacaine infiltration for pain control in total hip arthroplasty: a systematic review and meta-analysis. Medicine (Baltimore). 2017;96:e8433.Google Scholar
  107. 107.
    Kuang M-J, Du Y, Ma J-X, He W, Fu L, Ma X-L. The efficacy of liposomal bupivacaine using periarticular injection in total knee arthroplasty: a systematic review and meta-analysis. J Arthroplast. 2017;32:1395–402.Google Scholar
  108. 108.
    Sun H, Huang Z, Zhang Z, Liao W. A meta-analysis comparing liposomal bupivacaine and traditional periarticular injection for pain control after total knee arthroplasty. J Knee Surg. 2018.  https://doi.org/10.1055/s-0038-1641141 (Epub 2018 Apr 4).Google Scholar
  109. 109.
    Yan Z, Chen Z, Ma C. Liposomal bupivacaine versus interscalene nerve block for pain control after shoulder arthroplasty: a meta-analysis. Medicine (Baltimore). 2017;96:e7226.Google Scholar
  110. 110.
    Wang K, Zhang H-X. Liposomal bupivacaine versus interscalene nerve block for pain control after total shoulder arthroplasty: a systematic review and meta-analysis. Int J Surg. 2017;46:61–70.Google Scholar
  111. 111.
    Sun H, Li S, Wang K, Zhou J, Wu G, Fang S, et al. Do liposomal bupivacaine infiltration and interscalene nerve block provide similar pain relief after total shoulder arthroplasty: a systematic review and meta-analysis. J Pain Res. 2018;11:1889–900.Google Scholar
  112. 112.
    Kilinc LT, Sivrikaya GU, Eksioglu B, Hanci A, Dobrucali H. Comparison of unilateral spinal and continous spinal anesthesia for hip surgery in elderly patients. Saudi J Anaesth. 2013;7:404–9.Google Scholar
  113. 113.
    Lessing NL, Edwards CC, Lin C, Brown CH. Complex lumbar spine fusion for an elderly patient under spinal anesthesia. Orthopedics. 2017;40:e915–7.Google Scholar
  114. 114.
    Lessing NL, Edwards CC, Brown CH, Ledford EC, Dean CL, Lin C, et al. Spinal anesthesia in elderly patients undergoing lumbar spine surgery. Orthopedics. 2017;40:e317–22.Google Scholar
  115. 115.
    Beaupre LA, Jones CA, Saunders LD, Johnston DWC, Buckingham J, Majumdar SR. Best practices for elderly hip fracture patients. J Gen Intern Med. 2005;20:1019–25.Google Scholar
  116. 116.
    Rabinowitz A, Bourdet B, Minville V, Chassery C, Pianezza A, Colombani A, et al. The paramedian technique: a superior initial approach to continuous spinal anesthesia in the elderly. Anesth Analg. 2007;105:1855–7.Google Scholar
  117. 117.
    Pintaric TS, Hadzic A, Strbenc M, Podpecan O, Podbregar M, Cvetko E. Inflammatory response after injection of aqueous gel into subarachnoid space in piglets. Reg Anesth Pain Med. 2013;38:100–5.Google Scholar
  118. 118.
    Veering BT. The role of aging in local anesthesia. Pain Rev. 1999;6:167–73.Google Scholar
  119. 119.
    Dohl S, Naito H, Takahashi T. Age-related changes in blood pressure and duration of motor block in spinal anesthesia. Anesthesiology. 1979;50:319–23.Google Scholar
  120. 120.
    Park WY, Balingit PE, Macnamara TE. Effects of patient age, pH of cerebrospinal fluid, and vasopressors on onset and duration of spinal anesthesia. Anesth Analg. 1975;54:455–8.Google Scholar
  121. 121.
    Tuominen M, Pitkänen M, Doepel M, Rosenberg PH. Spinal anaesthesia with hyperbaric tetracaine: effect of age and body mass. Acta Anaesthesiol Scand. 1987;31:474–8.  https://doi.org/10.1111/j.1399-6576.1987.tb02606.x.Google Scholar
  122. 122.
    Pitkanen MT, Haapaniemi L, Tuominen M, Rosenberg PH. Influence of age on spinal anaesthesia with isobaric 0.5° bupivacaine. Br J Anaesth. 1984;56:279–84.Google Scholar
  123. 123.
    Racle JP, Benkhadra A, Poy JY, Gleizal B. Spinal analgesia with hyperbaric bupivacaine: influence of age. Br J Anaesth. 1988;60:508–14.Google Scholar
  124. 124.
    Veering BT, Burm AG, van Kleef JW, Hennis PJ, Spierdijk J. Spinal anesthesia with glucose-free bupivacaine: effects of age on neural blockade and pharmacokinetics. Anesth Analg. 1987;66:965–70.Google Scholar
  125. 125.
    Veering BT, Burm AGL, Spierdijk J. Spinal anasthesia with hyperbaric bupivacaine. Br J Anaesth. 1988;60:187–94.Google Scholar
  126. 126.
    Chen M, Xia Z. Effect of concentration on median effective dose (ED50) for motor block of intrathecal plain bupivacaine in elderly patients. Med Sci Monit. 2015;21:2588–94.Google Scholar
  127. 127.
    Carpenter RL, Caplan RA, Brown DL, Stephenson C, Wu R. Incidence and risk factors for side effects of spinal anesthesia. Anesthesiology. 1992;76:906–16.Google Scholar
  128. 128.
    Tanaka M, Nishikawa T. Absence of reflex tachycardia after spinal anesthesia in the elderly. Anesth Analg. 2001;92:1357.Google Scholar
  129. 129.
    Errando CL, Peiró CM, Gimeno A, Soriano JL. Single shot spinal anesthesia with very low hyperbaric bupivacaine dose (3.75 mg) for hip fracture repair surgery in the elderly. A randomized, double blinded study. Rev Esp Anestesiol Reanim. 2014;61:481–8.Google Scholar
  130. 130.
    Ferré F, Marty P, Bruneteau L, Merlet V, Bataille B, Ferrier A, et al. Prophylactic phenylephrine infusion for the prevention of hypotension after spinal anesthesia in the elderly: a randomized controlled clinical trial. J Clin Anesth. 2016;35:99–106.Google Scholar
  131. 131.
    Owczuk R, Wenski W, Twardowski P, Dylczyk-Sommer A, Sawicka W, Wujtewicz MA, et al. Ondansetron attenuates the decrease in blood pressure due to spinal anesthesia in the elderly: a double blind, placebo-controlled study. Minerva Anestesiol. 2015;81:598–607.Google Scholar
  132. 132.
    Messina A, Frassanito L, Colombo D, Vergari A, Draisci G, Della Corte F, et al. Hemodynamic changes associated with spinal and general anesthesia for hip fracture surgery in severe ASA III elderly population: a pilot trial. Minerva Anestesiol. 2013;79:1021–9.Google Scholar
  133. 133.
    Biboulet P, Capdevila X, Aubas P, Rubenovitch J, Deschodt J, d’Athis F. Causes and prediction of maldistribution during continuous spinal anesthesia with isobaric or hyperbaric bupivacaine. Anesthesiology. 1998;88:1487–94.Google Scholar
  134. 134.
    Biboulet P, Jourdan A, Van Haevre V, Morau D, Bernard N, Bringuier S, et al. Hemodynamic profile of target-controlled spinal anesthesia compared with 2 target-controlled general anesthesia techniques in elderly patients with cardiac comorbidities. Reg Anesth Pain Med. 2012;37:433–40.Google Scholar
  135. 135.
    Hampl K, Steinfeldt T, Wulf H. Spinal anesthesia revisited. Curr Opin Anaesthesiol. 2014;27:549–55.Google Scholar
  136. 136.
    Boico O, Bonnet F, Mazoit JX. Effects of epinephrine and clonidine on plasma concentrations of spinal bupivacaine. Acta Anaesthesiol Scand. 1992;36:684–8.Google Scholar
  137. 137.
    Racle JP, Benkhadra A, Poy JY, Gleizal B. Prolongation of isobaric bupivacaine spinal anesthesia with epinephrine and clonidine for hip surgery in the elderly. Anesth Analg. 1987;66:442–6.Google Scholar
  138. 138.
    Fournier R, Van Gessel E, Weber A, Gamulin Z. Epinephrine and clonidine do not improve intrathecal sufentanil analgesia after total hip replacement. Br J Anaesth. 2002;89:562–6.Google Scholar
  139. 139.
    Hashimoto K, Hampl KF, Nakamura Y, Bollen AW, Feiner J, Drasner K. Epinephrine increases the neurotoxic potential of intrathecally administered lidocaine in the rat. Anesthesiology. 2001;94:876–81.Google Scholar
  140. 140.
    Kim JE, Kim NY, Lee HS, Kil HK. Effects of intrathecal dexmedetomidine on low-dose bupivacaine spinal anesthesia in elderly patients undergoing transurethral prostatectomy. Biol Pharm Bull. 2013;36:959–65.Google Scholar
  141. 141.
    Kim NY, Kim SY, Ju HM, Kil HK. Selective spinal anesthesia using 1 mg of bupivacaine with opioid in elderly patients for transurethral resection of prostate. Yonsei Med J. 2015;56:535–42.Google Scholar
  142. 142.
    Shaikh S, Revur L, Mallappa M. Comparison of epidural clonidine and dexmedetomidine for perioperative analgesia in combined spinal epidural anesthesia with intrathecal levobupivacaine: a randomized controlled double-blind study. Anesth Essays Res. 2017;11:503–7.Google Scholar
  143. 143.
    Zhang C, Li C, Pirrone M, Sun L, Mi W. Comparison of dexmedetomidine and clonidine as adjuvants to local anesthetics for intrathecal anesthesia: a meta-analysis of randomized controlled trials. J Clin Pharmacol. 2016;56:827–34.Google Scholar
  144. 144.
    Togal T, Demirbilek S, Koroglu A, Yapici E, Ersoy O. Effects of S(+) ketamine added to bupivacaine for spinal anaesthesia for prostate surgery in elderly patients. Eur J Anaesthesiol. 2004;21:193–7.Google Scholar
  145. 145.
    Kataria AP, Singh H, Mohan B, Thakur M, Jarewal V, Khan S. Intrathecal nalbuphine versus ketamine with hyperbaric bupivacaine in lower abdominal surgeries. Anesth Essays Res. 2018;12:366–70.Google Scholar
  146. 146.
    Vranken JH, Troost D, Wegener JT, Kruis MR, van der Vegt MH. Neuropathological findings after continuous intrathecal administration of S(+)-ketamine for the management of neuropathic cancer pain. Pain. 2005;117:231–5.Google Scholar
  147. 147.
    Errando CL, Sifre C, Moliner S, Valía JC, Gimeno O, Mínguez A, et al. Subarachnoid ketamine in swine–pathological findings after repeated doses: acute toxicity study. Reg Anesth Pain Med. 1999;24:146–52.Google Scholar
  148. 148.
    Fournier R, Van Gessel E, Weber A, Gamulin Z. A comparison of intrathecal analgesia with fentanyl or sufentanil after total hip replacement. Anesth Analg. 2000;90:918–22.Google Scholar
  149. 149.
    Ornek D, Emre C, Kahveci K, Doger C, Yüksel B, Canoler O. Effects of intrathecal bupivacaine and bupivacaine plus sufentanil in elderly patients undergoing transurethral resection. Niger J Clin Pract. 2014;17:149.Google Scholar
  150. 150.
    Zohar E, Noga Y, Rislick U, Leibovitch I, Fredman B. Intrathecal anesthesia for elderly patients undergoing short transurethral procedures: a dose-finding study. Anesth Analg. 2007;104:552–4.Google Scholar
  151. 151.
    Chaudhary A, Bogra J, Singh PK, Saxena S, Chandra G, Verma R. Efficacy of spinal ropivacaine versus ropivacaine with fentanyl in transurethral resection operations. Saudi J Anaesth. 2014;8:88–91.Google Scholar
  152. 152.
    Yamashita K, Fukusaki M, Ando Y, Tanabe T, Terao Y, Sumikawa K. Postoperative analgesia with minidose intrathecal morphine for bipolar hip prosthesis in extremely elderly patients. J Anesth. 2009;23:504–7.Google Scholar
  153. 153.
    Rutili A, Maggiani M, Bertelloni C, Molinari D. Persistent overdose caused by a very small dose of intrathecal morphine in an elderly patient undergoing vaginal hysterectomy: a case report. Minerva Anestesiol. 2007;73:433–6.Google Scholar
  154. 154.
    Shepherd SJ, Klein AA, Martinez G. Enhanced recovery for thoracic surgery in the elderly. Curr Opin Anaesthesiol. 2017;31:1.Google Scholar
  155. 155.
    Geng J, Chen XL, Wang XD, Guo XY, Li M. Ultrasound imaging increases first-attempt success rate of neuraxial block in elderly patients [in Chinese]. Zhonghua Yi Xue Za Zhi. 2016;96:3459–63.Google Scholar
  156. 156.
    Mulroy MF. Modification of regional anesthetic techniques. In: McLeskey C, editor. Geriatric anesthesiology. Baltimore, MD: Williams and Wilkins; 1997. p. 381–8.Google Scholar
  157. 157.
    Pumberger M, Memtsoudis SG, Stundner O, Herzog R, Boettner F, Gausden E, et al. An analysis of the safety of epidural and spinal neuraxial anesthesia in more than 100,000 consecutive major lower extremity joint replacements. Reg Anesth Pain Med. 2013;38:515–9.Google Scholar
  158. 158.
    Pitkanen MT, Aromaa U, Cozanitis DA, Forster JG. Serious complications associated with spinal and epidural anaesthesia in Finland from 2000 to 2009. Acta Anaesthesiol Scand. 2013;57:553–64.Google Scholar
  159. 159.
    Faccenda KA, Finucane BT. Complications of regional anaesthesia Incidence and prevention. Drug Saf. 2001;24:413–42.Google Scholar
  160. 160.
    Yuen EC, Layzer RB, Weitz SR, Olney RK. Neurologic complications of lumbar epidural anesthesia and analgesia. Neurology. 1995;45:1795–801.Google Scholar
  161. 161.
    Simon MJG, Veering BT, Stienstra R, van Kleef JW, Burm AGL. The effects of age on neural blockade and hemodynamic changes after epidural anesthesia with ropivacaine. Anesth Analg. 2002;94:1325–30.Google Scholar
  162. 162.
    Nishimura N, Kitahara T, Kusakabe T. The spread of lidocaine and I-131 solution in the epidural space. Anesthesiology. 1959;20:785–8.Google Scholar
  163. 163.
    Hirabayashi Y, Shimizu R, Matsuda I, Inoue S. Effect of extradural compliance and resistance on spread of extradural analgesia. Br J Anaesth. 1990;65:508–13.Google Scholar
  164. 164.
    Bromage PR. Anatomy. In: Bromage PR, editor. Epidural analgesia. Philadelphia: WB Saunders; 1978. p. 10–67.Google Scholar
  165. 165.
    Shantha TR, Evans JA. The relationship of epidural anesthesia to neural membranes and arachnoid villi. Anesthesiology. 1972;37:543–57.Google Scholar
  166. 166.
    Van Waesberghe J, Stevanovic A, Rossaint R, Coburn M. General vs. neuraxial anaesthesia in hip fracture patients: a systematic review and meta-analysis. BMC Anesthesiol. 2017;17:87.Google Scholar
  167. 167.
    Seitz D, Hussain M, Eckenhoff R, Berger M. General anesthetic and the risk of dementia in elderly patients: current insights. Clin Interv Aging. 2014;9:1619.Google Scholar
  168. 168.
    Groeben H. Epidural anesthesia and pulmonary function. J Anesth. 2006;20:290–9.Google Scholar
  169. 169.
    Kim YI, Lee JS, Jin HC, Chae WS, Kim SH. Thoracic epidural anesthesia for laparoscopic cholecystectomy in an elderly patient with severely impaired pulmonary function tests. Acta Anaesthesiol Scand. 2007;51:1394–6.Google Scholar
  170. 170.
    Nakashima H, Ueo H, Takeuchi H, Arinaga S, Shibuta K, Tsuji H, et al. Pancreaticoduodenectomy under epidural anesthesia without endotracheal intubation for the elderly. Int Surg. 1995;80:125–7.Google Scholar
  171. 171.
    Raj PP. Conduction blocks. In: Raj PP, editor. Textbook of regional anesthesia. London: Churchill Livingstone; 2002. p. 285–306.Google Scholar
  172. 172.
    Sear JW, Higham H. Issues in the perioperative management of the elderly patient with cardiovascular disease. Drugs Aging. 2002;19:429–51.Google Scholar
  173. 173.
    Gupta K, Gupta P, Rastogi B, Rastogi A, Singhal A, Singh I. Hemiarthroplasty in high risk elderly patient under epidural anesthesia with 0.75% ropivacaine-fentanyl versus 0.5% bupivacaine-fentanyl: clinical trial. Saudi J Anaesth. 2013;7:142–5.Google Scholar
  174. 174.
    Hong J-M, Lee HJ, Oh Y-J, Cho AR, Kim HJ, Lee D-W, et al. Observations on significant hemodynamic changes caused by a high concentration of epidurally administered ropivacaine: correlation and prediction study of stroke volume variation and central venous pressure in thoracic epidural anesthesia. BMC Anesthesiol. 2017;17:153.Google Scholar
  175. 175.
    Crescenzi G, Landoni G, Monaco F, Bignami E, De Luca M, Frau G, et al. Epidural anesthesia in elderly patients undergoing coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2009;23:807–12.Google Scholar
  176. 176.
    Mehta Y, Juneja R, Arora D, Raizada A, Trehan N, Zawar B. Nonanalgesic benefits of combined thoracic epidural analgesia with general anesthesia in high risk elderly off pump coronary artery bypass patients. Ann Card Anaesth. 2015;18:385–91.Google Scholar
  177. 177.
    El-Morsy GZ, El-Deeb A. The outcome of thoracic epidural anesthesia in elderly patients undergoing coronary artery bypass graft surgery. Saudi J Anaesth. 2012;6:16–21.Google Scholar
  178. 178.
    Mehta S, Gajbhare M, Kamble N. Comparison of epidural analgesia using 0.2% bupivacaine and 0.2% ropivacaine for the management of postoperative pain in major orthopedic surgery. Anesth Essays Res. 2018;12:586–91.Google Scholar
  179. 179.
    Sharrock NE, Go G, Mineo R. Effect of i.v. low-dose adrenaline and phenylephrine infusions on plasma concentrations of bupivacaine after lumbar extradural anaesthesia in elderly patients. Br J Anaesth. 1991;67:694–8.Google Scholar
  180. 180.
    Wang L, Wu Y, Yang L, Han J, Liu R, Wang L. Effects of continuous intravenous infusion of methoxamine on the intraoperative hemodynamics of elderly patients undergoing total hip arthroplasty. Med Sci Monit. 2014;20:1969–76.Google Scholar
  181. 181.
    Morgan P. The role of vasopressors in the management of hypotension induced by spinal and epidural anaesthesia. Can J Anaesth. 1994;41:404–13.Google Scholar
  182. 182.
    Koh JC, Song Y, Kim SY, Park S, Ko SH, Han DW. Postoperative pain and patient-controlled epidural analgesia-related adverse effects in young and elderly patients: a retrospective analysis of 2,435 patients. J Pain Res. 2017;10:897–904.Google Scholar
  183. 183.
    Guinard JP, Mulroy MF, Carpenter RL. Aging reduces the reliability of epidural epinephrine test doses. Reg Anesth. 1995;20:193–8.Google Scholar
  184. 184.
    Sathyanarayana LA, Heggeri VM, Simha PP, Narasimaiah S, Narasimaiah M, Subbarao BK. Comparison of epidural bupivacaine, levobupivacaine and dexmedetomidine in patients undergoing vascular surgery. J Clin Diagn Res. 2016;10:UC13–7.Google Scholar
  185. 185.
    El Shobary HM, Sonbul ZM, Schricker TP. Epidural ketamine for postoperative analgesia in the elderly. Middle East J Anaesthesiol. 2008;19:1369–78.Google Scholar
  186. 186.
    Li H, Li Y, He R. Sparing effects of sufentanil on epidural ropivacaine in elderly patients undergoing transurethral resection of prostate surgery. Yonsei Med J. 2015;56:832–7.Google Scholar
  187. 187.
    Swathi N, Ashwini N, Shukla MI. Comparative study of epidural bupivacaine with butorphanol and bupivacaine with tramadol for postoperative pain relief in abdominal surgeries. Anesth Essays Res. 2016;10:462–7.Google Scholar
  188. 188.
    Thornblade LW, Seo YD, Kwan T, Cardoso JH, Pan E, Dembo G, et al. Enhanced recovery via peripheral nerve block for open hepatectomy. J Gastrointest Surg. 2018;22:981–8.Google Scholar
  189. 189.
    Halawi MJ, Grant SA, Bolognesi MP. Multimodal analgesia for total joint arthroplasty. Orthopedics. 2015;38:e616–25.Google Scholar
  190. 190.
    Lenart MJ, Wong K, Gupta RK, Mercaldo ND, Schildcrout JS, Michaels D, et al. The impact of peripheral nerve techniques on hospital stay following major orthopedic surgery. Pain Med. 2012;13:828–34.Google Scholar
  191. 191.
    Salinas FV, Hanson NA. Evidence-based medicine for ultrasound-guided regional anesthesia. Anesthesiol Clin. 2014;32:771–87.Google Scholar
  192. 192.
    Wahal C, Kumar A, Pyati S. Advances in regional anaesthesia: a review of current practice, newer techniques and outcomes. Indian J Anaesth. 2018;62:94.Google Scholar
  193. 193.
    Neal JM, Brull R, Chan VWS, Grant SA, Horn J-L, Liu SS, et al. The ASRA evidence-based medicine assessment of ultrasound-guided regional anesthesia and pain medicine. Reg Anesth Pain Med. 2010;35:S1–9.Google Scholar
  194. 194.
    Li J, Halaszynski T. Neuraxial and peripheral nerve blocks in patients taking anticoagulant or thromboprophylactic drugs: challenges and solutions. Local Reg Anesth. 2015;8:21–32.Google Scholar
  195. 195.
    Horlocker TT, Vandermeuelen E, Kopp SL, Gogarten W, Leffert LR, Benzon HT. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy. Reg Anesth Pain Med. 2018;43:263–309.Google Scholar
  196. 196.
    Tsui BCH. A systematic approach to scoring bleeding risk in regional anesthesia procedures. J Clin Anesth. 2018;49:69–70.Google Scholar
  197. 197.
    Pintaric TS, Potocnik I, Hadzic A, Stupnik T, Pintaric M, Jankovic VN. Comparison of continuous thoracic epidural with paravertebral block on perioperative analgesia and hemodynamic stability in patients having open lung surgery. Reg Anesth Pain Med. 2011;36:256–60.Google Scholar
  198. 198.
    Aksoy M, Dostbil A, Ince I, Ahiskalioglu A, Alici HA, Aydin A, et al. Continuous spinal anaesthesia versus ultrasound-guided combined psoas compartment-sciatic nerve block for hip replacement surgery in elderly high-risk patients: a prospective randomised study. BMC Anesthesiol. 2014;14:99.Google Scholar
  199. 199.
    Mei B, Zha H, Lu X, Cheng X, Cheng S, Liu X, et al. Peripheral nerve block as a supplement to light or deep general anesthesia in elderly patients receiving total hip arthroplasty: a prospective randomized study. Clin J Pain. 2017;33:1053–9.Google Scholar
  200. 200.
    Corbin KB, Gardner ED. Decrease in number of myelinated fibers in human spinal roots with age. Anat Rec. 1937;68:63–74.Google Scholar
  201. 201.
    Gregg EW, Sorlie P, Paulose-Ram R, Gu Q, Eberhardt MS, Wolz M, et al. Prevalence of lower-extremity disease in the US adult population >=40 years of age with and without diabetes: 1999–2000 national health and nutrition examination survey. Diabetes Care. 2004;27:1591–7.Google Scholar
  202. 202.
    Snoeck MMJ, Vree TB, Gielen MJM, Lagerwert AJ. Steady state bupivacaine plasma concentrations and safety of a femoral "3-in-1" nerve block with bupivacaine in patients over 80 years of age. Int J Clin Pharmacol Ther. 2003;41:107–13.Google Scholar
  203. 203.
    Ritcey B, Pageau P, Woo MY, Perry JJ. Regional nerve blocks for hip and femoral neck fractures in the emergency department: a systematic review. CJEM. 2016;18:37–47.Google Scholar
  204. 204.
    Riddell M, Ospina M, Holroyd-Leduc JM. Use of femoral nerve blocks to manage hip fracture pain among older adults in the emergency department: a systematic review. CJEM. 2016;18:245–52.Google Scholar
  205. 205.
    Fraser TW, Doty JF. Peripheral nerve blocks in foot and ankle surgery. Orthop Clin North Am. 2017;48:507–15.Google Scholar
  206. 206.
    Kim DH, Lin Y, Goytizolo EA, Kahn RL, Maalouf DB, Manohar A, et al. Adductor canal block versus femoral nerve block for total knee arthroplasty. Anesthesiology. 2014;120:540–50.Google Scholar
  207. 207.
    Jæger P, Koscielniak-Nielsen ZJ, Hilsted KL, Fabritius ML, Dahl JB. Adductor canal block with 10 mL versus 30 mL local anesthetics and quadriceps strength. Reg Anesth Pain Med. 2015;40:553–8.Google Scholar
  208. 208.
    Hussain N, Ferreri TG, Prusick PJ, Banfield L, Long B, Prusick VR, et al. Adductor canal block versus femoral canal block for total knee arthroplasty. Reg Anesth Pain Med. 2016;41:314–20.Google Scholar
  209. 209.
    Burckett-St. Laurant D, Peng P, Girón Arango L, Niazi AU, Chan VWS, Agur A, et al. The nerves of the adductor canal and the innervation of the knee. Reg Anesth Pain Med. 2016;41:321–7.Google Scholar
  210. 210.
    Bendtsen TF, Moriggl B, Chan V, Børglum J. The optimal analgesic block for total knee arthroplasty. Reg Anesth Pain Med. 2016;41:711–9.Google Scholar
  211. 211.
    Kulhari S, Bharti N, Bala I, Arora S, Singh G. Efficacy of pectoral nerve block versus thoracic paravertebral block for postoperative analgesia after radical mastectomy: a randomized controlled trial. Br J Anaesth. 2016;117:382–6.Google Scholar
  212. 212.
    Syal K, Chandel A. Comparison of the post-operative analgesic effect of paravertebral block, pectoral nerve block and local infiltration in patients undergoing modified radical mastectomy: a randomised double-blind trial. Indian J Anaesth. 2017;61:643.Google Scholar
  213. 213.
    Baeriswyl M, Kirkham KR, Kern C, Albrecht E. The analgesic efficacy of ultrasound-guided transversus abdominis plane block in adult patients. Anesth Analg. 2015;121:1640–54.Google Scholar
  214. 214.
    Hariharan U, Baduni N, Singh BP. Bilateral rectus sheath block for single-incision laparoscopic tubal ligation in a cardiac patient. J Anaesthesiol Clin Pharmacol. 2016;32:414–5.Google Scholar
  215. 215.
    Hamill JK, Rahiri J-L, Liley A, Hill AG. Rectus sheath and transversus abdominis plane blocks in children: a systematic review and meta-analysis of randomized trials. Pediatr Anesth. 2016;26:363–71.Google Scholar
  216. 216.
    Su Y, Zhang Z, Zhang Y, Wei L-G, Shi W. Efficacy of ropivacaine by the concentration of 0.25%, 0.5%, and 0.75% on surgical performance, postoperative analgesia, and patient’s satisfaction in inguinal hernioplasty: a randomized controlled trial. Patient Prefer Adherence. 2015;9:1375–9.Google Scholar
  217. 217.
    Murouchi T, Iwasaki S, Yamakage M. Quadratus lumborum block. Reg Anesth Pain Med. 2016;41:146–50.Google Scholar
  218. 218.
    El-Boghdadly K, Elsharkawy H, Short A, Chin KJ. Quadratus lumborum block nomenclature and anatomical considerations. Reg Anesth Pain Med. 2016;41:548–9.Google Scholar
  219. 219.
    Cornish PB. Erector spinae plane block. Reg Anesth Pain Med. 2018;43:644–5.Google Scholar
  220. 220.
    De Cassai A, Tonetti T. Local anesthetic spread during erector spinae plane block. J Clin Anesth. 2018;48:60–1.Google Scholar
  221. 221.
    De Cassai A, Ieppariello G, Ori C. Erector spinae plane block and dual antiplatelet therapy. Minerva Anestesiol. 2018;84:1230–1.Google Scholar
  222. 222.
    Schwartzmann A, Peng P, Maciel MA, Forero M. Mechanism of the erector spinae plane block: insights from a magnetic resonance imaging study. Can J Anesth. 2018;65:1165–6.Google Scholar
  223. 223.
    Ueshima H, Hiroshi O. Erector spinae plane block for carotid endarterectomy. J Clin Anesth. 2018;48:11.Google Scholar
  224. 224.
    Tsui BCH, Fonseca A, Munshey F, McFadyen G, Caruso TJ. The erector spinae plane (esp) block: apooled review of 242 cases. J Clin Anesth. 2018;53:29–34.Google Scholar
  225. 225.
    Wong J, Navaratnam M, Boltz G, Maeda K, Ramamurthi RJ, Tsui BCH. Bilateral continuous erector spinae plane blocks for sternotomy in a pediatric cardiac patient. J Clin Anesth. 2018;47:82–3.Google Scholar
  226. 226.
    Ueshima H. Pneumothorax after the erector spinae plane block. J Clin Anesth. 2018;48:12.Google Scholar
  227. 227.
    Leblanc I, Chterev V, Rekik M, Boura B, Costanzo A, Bourel P, Combes M, Philip I. Safety and efficiency of ultrasound-guided intermediate cervical plexus block for carotid surgery. Anaesth Crit Care Pain Med. 2016;35(2):109–14.Google Scholar
  228. 228.
    Pandit JJ, Satya-Krishna R, Gration P. Superficial or deep cervical plexus block for carotid endarterectomy: a systematic review of complications. Br J Anaesth. 2007;99(2):159–69.Google Scholar
  229. 229.
    Aslim E, Akay TH, Candan S, Ozkan S, Akpek E, Gultekin B. Regional anesthesia in elderly patients undergoing carotid surgery: report of a case series. Semin Cardiothorac Vasc Anesth. 2008;12:29–32.Google Scholar
  230. 230.
    Nawratil J, Felder TK, Stundner O, Mader N, Gerner P. Ropivacaine 0.375% vs 0.75% with prilocaine for intermediate cervical plexus block for carotid endarterectomy. Eur J Anaesthesiol. 2015;32:781–9.Google Scholar
  231. 231.
    Bailard NS, Ortiz J, Flores RA. Additives to local anesthetics for peripheral nerve blocks: evidence, limitations, and recommendations. Am J Heal Pharm. 2014;71:373–85.Google Scholar
  232. 232.
    Kirksey MA, Haskins SC, Cheng J, Liu SS. Local anesthetic peripheral nerve block adjuvants for prolongation of analgesia: a systematic qualitative review. PLoS One. 2015;10:e0137312.Google Scholar
  233. 233.
    Schoenmakers KPW, Fenten MGE, Louwerens JW, Scheffer GJ, Stienstra R. The effects of adding epinephrine to ropivacaine for popliteal nerve block on the duration of postoperative analgesia: a randomized controlled trial. BMC Anesthesiol. 2015;15:100.Google Scholar
  234. 234.
    Pöpping DM, Elia N, Marret E, Wenk M, Tramèr MR. Clonidine as an adjuvant to local anesthetics for peripheral nerve and plexus blocks. Anesthesiology. 2009;111:406–15.Google Scholar
  235. 235.
    Kelika P, Arun JM. Evaluation of clonidine as an adjuvant to brachial plexus block and its comparison with tramadol. J Anaesthesiol Clin Pharmacol. 2017;33:197–202.Google Scholar
  236. 236.
    Keplinger M, Marhofer P, Kettner SC, Marhofer D, Kimberger O, Zeitlinger M. A pharmacodynamic evaluation of dexmedetomidine as an additive drug to ropivacaine for peripheral nerve blockade. Eur J Anaesthesiol. 2015;32:790–6.Google Scholar
  237. 237.
    Marhofer D, Kettner SC, Marhofer P, Pils S, Weber M, Zeitlinger M. Dexmedetomidine as an adjuvant to ropivacaine prolongs peripheral nerve block: a volunteer study. Br J Anaesth. 2013;110:438–42.Google Scholar
  238. 238.
    Abdallah FW, Brull R. Facilitatory effects of perineural dexmedetomidine on neuraxial and peripheral nerve block: a systematic review and meta-analysis. Br J Anaesth. 2013;110:915–25.Google Scholar
  239. 239.
    Schnabel A, Reichl SU, Weibel S, Kranke P, Zahn PK, Pogatzki-Zahn EM, et al. Efficacy and safety of dexmedetomidine in peripheral nerve blocks: a meta-analysis and trial sequential analysis. Eur J Anaesthesiol. 2018;35:745–58.Google Scholar
  240. 240.
    Knight JB, Schott NJ, Kentor ML, Williams BA. Neurotoxicity of common peripheral nerve block adjuvants. Curr Opin Anaesthesiol. 2015;28:598–604.Google Scholar
  241. 241.
    Pehora C, Pearson AM, Kaushal A, Crawford MW, Johnston B. Dexamethasone as an adjuvant to peripheral nerve block. Cochrane Database Syst Rev. 2017;11:CD011770.Google Scholar
  242. 242.
    Salam A, Afshan G. Patient refusal for regional anesthesia in elderly orthopedic population: a cross-sectional survey at a tertiary care hospital. J Anaesthesiol Clin Pharmacol. 2016;32:94–8.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology, Perioperative and Pain Medicine, Lucille Packard Children’s HospitalStanford University, School of MedicineStanfordUSA

Personalised recommendations