Drugs & Aging

, Volume 30, Issue 7, pp 527–547 | Cite as

Sulfonylureas and Risk of Falls and Fractures: A Systematic Review

  • Kate L. Lapane
  • Shibing Yang
  • Monique J. Brown
  • Rachel Jawahar
  • Caleb Pagliasotti
  • Swapnil Rajpathak
Systematic Review



Sulfonylureas have been linked to increased risk of hypoglycemia. Hypoglycemia may lead to falls, and falls may lead to fracture. However, studies quantifying the association between sulfonylureas and fractures are sparse and yield inconsistent results.


The purpose of this article was to review the literature regarding sulfonylurea use and falls or fall-related fractures among older adults with type 2 diabetes mellitus and to delineate areas for future research.

Data Sources

We searched MEDLINE (1966–March 2012) and CINAHL (1937–March 2012) for studies of patients with type 2 diabetes mellitus living in the community or nursing homes.

Study Selection

The search algorithms combined three domains: (1) diabetic patients, (2) sulfonylurea medications, and (3) fractures or falls. We included only publications in English that pertained to human subjects. We found 9 randomized trials and 12 non-experimental studies that met the inclusion criteria.

Study Appraisal and Synthesis Methods

The guidelines provided by the Cochrane handbook or Agency for Healthcare Research and Quality (AHRQ) Methods Guide are too general to distinguish the quality of included non-experimental studies, so we developed several specific domains based on those general guidelines. These domains included study design, study population, follow-up time, comparison group, exposure definition, outcome definition, induction period, confounding adjustment, and attrition or missing data. The data were not amenable to a meta-analysis.


No clinical trials included fracture as a primary endpoint. Most clinical trials excluded older adults. Most studies were not designed to evaluate the risk of sulfonylureas on fractures or falls. Studies did not show an increased risk of falls/fractures with sulfonylurea.


The data available from existing studies suffer from methodological limitations including insufficient events, lack of primary endpoints, exclusion of older adults, and lack of clarity or inappropriate comparison groups.


Future studies are needed to appropriately estimate the effect of sulfonylureas on falls or fall-related fractures in older adults who are at increased risk for hypoglycemia, the hypothesized mechanism for fractures related to sulfonylurea therapy.


  1. 1.
    Ben Salem C, Fathallah N, Hmouda H, et al. Drug-induced hypoglycaemia: an update. Drug Saf. 2011;34(1):21–45.PubMedCrossRefGoogle Scholar
  2. 2.
    Bennett WL, Maruthur NM, Singh S, et al. Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann Intern Med. 2011;154(9):602–13.PubMedCrossRefGoogle Scholar
  3. 3.
    UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837–53.CrossRefGoogle Scholar
  4. 4.
    Wright AD, Cull CA, Macleod KM, on behalf of UKPDS Group, et al. Hypoglycemia in Type 2 diabetic patients randomized to and maintained on monotherapy with diet, sulfonylurea, metformin, or insulin for 6 years from diagnosis: UKPDS73. J Diabetes Complications. 2009;20(6):395–401.CrossRefGoogle Scholar
  5. 5.
    Meier C, Kraenzlin ME, Bodmer M, et al. Use of thiazolidinediones and fracture risk. Arch Intern Med. 2008;168(8):820–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia. 2005;48(7):1292–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Melton LJ, Leibson C, Achenbach S, et al. Fracture risk in type 2 diabetes: update of a population-based study. J Bone Miner Res. 2008;23(8):1334–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Cheung BM, Ong KL, Cherny SS, et al. Diabetes prevalence and therapeutic target achievement in the United States, 1999 to 2006. Am J Med. 2009;122(5):443–53.PubMedCrossRefGoogle Scholar
  9. 9.
    Dodd AH, Colby MS, Boye KS, et al. Treatment approach and HbA1c control among US adults with type 2 diabetes: NHANES 1999–2004. Curr Med Res Opin. 2009;25(7):1605–13.PubMedCrossRefGoogle Scholar
  10. 10.
    Ross PD, Davis JW, Vogel JM, et al. A critical review of bone mass and the risk of fractures in osteoporosis. Calcif Tissue Int. 1990;46(3):149–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Looker AC, Melton LJ, Harris TB, et al. Prevalence and trends in low femur bone density among older US adults: NHANES 2005–2006 compared with NHANES III. J Bone Miner Res. 2010;25(1):64–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Ivers RQ, Cumming RG, Mitchell P, et al. Diabetes and risk of fractures: The Blue Mountains Eye study. Diab Care. 2001;24(7):1198–203.CrossRefGoogle Scholar
  13. 13.
    Rix M, Andreassen H, Eskildsen P. Impact of peripheral neuropathy on bone density in patients with type 1 diabetes. Diabetes Care. 1999;22(5):827–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Vogt MT, Cauley JA, Kuller LH, et al. Bone mineral density and blood flow to the lower extremities: the study of osteoporotic fractures. J Bone Miner Res. 1997;12(2):283–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Sanada M, Taguchi A, Higashi Y, et al. Forearm endothelial function and bone mineral loss in postmenopausal women. Atherosclerosis. 2004;176(2):387–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Moher D, Liberati A, Tetzlaff J, on behalf of the PRISMA Group, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;21(339):b2535.CrossRefGoogle Scholar
  17. 17.
    Wright RW, Brand RA, Dunn W, et al. How to write a systematic review. Clin Orthop Relat Res. 2007;455:23–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Kitchenham B. Procedures for Performing Systematic Reviews. Keele (Staffs): Keele University, 2004 Jul. Report no.: TR/SE-040.Google Scholar
  19. 19.
    Kanazawa I, Yamaguchi T, Yamamoto M, et al. Relationship between treatments with insulin and oral hypoglycemic agents versus the presence of vertebral fractures in type 2 diabetes mellitus. J Bone Miner Metab. 2010;28(5):554–60.PubMedCrossRefGoogle Scholar
  20. 20.
    Bilik D, McEwen LN, Brown MB, et al. Thiazolidinediones and fractures: Evidence from translating research into action for diabetes. J Clin Endocrinol Metab. 2010;95(10):4560–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Douglas I, Evans S, Pocock S, et al. The risk of fractures associated with thiazolidinediones: A self-controlled case-series study. PLoS Med. 2009;6(9):e1000154.PubMedCrossRefGoogle Scholar
  22. 22.
    Dormuth CR, Carney G, Carleton B, et al. Thiazolidinediones and fractures in men and women. Arch Intern Med. 2009;169(15):1395–402.PubMedCrossRefGoogle Scholar
  23. 23.
    Yamamoto M, Yamaguchi T, Yamauchi M, et al. Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res. 2009;24(4):702–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Tzoulaki I, Molokhia M, Curcin V, et al. Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: Retrospective cohort study using UK general practice research database. BMJ. 2009;3(339):b4731.CrossRefGoogle Scholar
  25. 25.
    Solomon DH, Cadarette SM, Choudhry NK, et al. A cohort study of thiazolidinediones and fractures in older adults with diabetes. J Clin Endocrinol Metab. 2009;94(8):2792–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Monami M, Cresci B, Colombini A, et al. Bone fractures and hypoglycemic treatment in type 2 diabetic patients: A case-control study. Diabetes Care. 2008;31(2):199–203.PubMedCrossRefGoogle Scholar
  27. 27.
    Huang ES, Karter AJ, Danielson KK, et al. The association between the number of prescription medications and incident falls in a multiethnic population of adult type-2 diabetes patients: The diabetes and aging study. J Gen Intern Med. 2010;25(2):141–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Göke B, Gallwitz B, Eriksson J, on behalf of the D1680C00001 Investigators, et al. Saxagliptin is non-inferior to glipizide in patients with type 2 diabetes mellitus inadequately controlled on metformin alone: A 52-week randomised controlled trial. Int J Clin Pract. 2010;64(12):1619–31.PubMedCrossRefGoogle Scholar
  29. 29.
    Seck T, Nauck M, Sheng D, et al. Safety and efficacy of treatment with sitagliptin or glipizide in patients with type 2 diabetes inadequately controlled on metformin: A 2-year study. Int J Clin Pract. 2010;64(5):562–76.PubMedCrossRefGoogle Scholar
  30. 30.
    Arechavaleta R, Seck T, Chen Y, et al. Efficacy and safety of treatment with sitagliptin or glimepiride in patients with type 2 diabetes inadequately controlled on metformin monotherapy: A randomized, double-blind, non-inferiority trial. Diabetes Obes Metab. 2011;13(2):160–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Ferrannini E, Fonseca V, Zinman B, et al. Fifty-two-week efficacy and safety of vildagliptin vs. glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin monotherapy. Diabetes Obes Metab. 2009;11(2):157–66.PubMedCrossRefGoogle Scholar
  32. 32.
    Kahn S, Zinman B, Lachin J, on behalf of the ADOPT Study Group, et al. Rosiglitazone-associated fractures in type 2 diabetes: an Analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care. 2008;31(5):845–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Home P, Pocock S, Beck Nielsen H, on behalf of the RECORD Study Team, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): A multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125–35.PubMedCrossRefGoogle Scholar
  34. 34.
    Nissen SE, Nicholls SJ, Wolski K, on behalf of the PERISCOPE Investigators, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: The PERISCOPE randomized controlled trial. JAMA. 2008;299(13):1561–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Jain R, Osei K, Kupfer S, et al. Long-term safety of pioglitazone versus glyburide in patients with recently diagnosed type 2 diabetes mellitus. Pharmacotherapy. 2006;26(10):1388–95.PubMedCrossRefGoogle Scholar
  36. 36.
    Hamann A, Garcia-Puig J, Paul G, et al. Comparison of fixed-dose rosiglitazone/metformin combination therapy with sulphonylurea plus metformin in overweight individuals with type 2 diabetes inadequately controlled on metformin alone. Exp Clin Endocrinol Diabetes. 2008;116(1):6–13.PubMedCrossRefGoogle Scholar
  37. 37.
    Green JB, Feinglos MN. Are sulfonylureas passe? Curr Diab Rep. 2006;6(5):373–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Ligthelm RJ, Kaiser M, Vora J, et al. Insulin use in elderly adults: risk of hypoglycemia and strategies for care. J Am Geriatr Soc. 2012;60(8):1564–70.PubMedCrossRefGoogle Scholar
  39. 39.
    Lamy PP. Physiological changes due to age: Pharmacodynamic changes of drug action and implications for therapy. Drugs Aging. 1991;1(5):385–404.PubMedCrossRefGoogle Scholar
  40. 40.
    Census Bureau. USA QuickFacts [online]. http://quickfacts.census.gov/qfd/states/00000.html. Accessed 6 Jan 2013.
  41. 41.
    Organisation for Economic Co-operation and Development (OECD). OECD Factbook 2009: Economic, Environmental and Social Statistics [online]. http://masetto.sourceoecd.org/vl=2314270/cl=16/nw=1/rpsv/factbook2009/index.htm. Accessed 6 Jan 2013.
  42. 42.
    Gurwitz JH. Polypharmacy: A new paradigm for quality drug therapy in the elderly. Arch Intern Med. 2004;164(18):1957–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Georgetown University’s Center on an Aging Society. Prescription drugs: a vital component of health care [online]. http://ihcrp.georgetown.edu/agingsociety/pdfs/rxdrugs.pdf. Accessed 6 Jan 2013.
  44. 44.
    The Kaiser Family Foundation. Kaiser Public Opinion Update: The Public and Prescription Drugs [online]. http://www.kff.org/rxdrugs/loader.cfm?url=/commonspot/security/getfile.cfm&PageID=13541. Accessed 6 Jan 2013.
  45. 45.
    Prybys KM. Deadly drug interactions in emergency medicine. Emerg Med Clin North Am. 2004;22(4):845–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Tinetti ME, Doucette J, Claus E, et al. Risk factors for serious injury during falls by older persons in the community. J Am Geriatr Soc. 1995;43(11):1214–21.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Kate L. Lapane
    • 1
  • Shibing Yang
    • 2
  • Monique J. Brown
    • 2
  • Rachel Jawahar
    • 2
  • Caleb Pagliasotti
    • 2
  • Swapnil Rajpathak
    • 3
  1. 1.Department of Quantitative Health ScienceUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Department of Epidemiology and Community HealthVirginia Commonwealth UniversityRichmondUSA
  3. 3.US Outcomes Research/Medical Affairs Merck & Co., Inc.Whitehouse StationUSA

Personalised recommendations