Advertisement

Drugs

, Volume 79, Issue 14, pp 1567–1582 | Cite as

Prevention of Cisplatin-Induced Acute Kidney Injury: A Systematic Review and Meta-Analysis

  • Aghilès HamrounEmail author
  • Rémi Lenain
  • Jean Joel Bigna
  • Elodie Speyer
  • Linh Bui
  • Paul Chamley
  • Nicolas Pottier
  • Christelle Cauffiez
  • Edmone Dewaeles
  • Xavier Dhalluin
  • Arnaud Scherpereel
  • Marc Hazzan
  • Mehdi Maanaoui
  • François Glowacki
Systematic Review

Abstract

Purpose

Cisplatin-induced acute kidney injury (CIA) is a serious adverse event that affects 20–40% of exposed patients, despite any implemented precaution to avoid it. The aim of this work was therefore to identify a relevant nephroprotective method for CIA.

Methods

We searched Pubmed, Embase, and Web of Science from 1 January 1978 to 1 June 2018, without language restriction. All studies (observational and interventional) assessing a CIA prevention method for adults receiving at least one course of cisplatin were eligible. The primary outcome was acute nephrotoxicity, as defined by the AKI-KDIGO classification (2012). The odds ratio and corresponding 95% confidence interval were used to assess the associations. We used narrative synthesis in case of heterogeneity regarding intervention, population, or outcome. When possible, a random-effects model was used to pool studies. The heterogeneity between studies was quantified (I2), and multiple meta-regressions were carried out to identify potential confounders.

Results

Within 4520 eligible studies, 51 articles fulfilling the selection criteria were included in the review, assessing 21 different prevention methods. A meta-analysis could only be performed on the 15 observational studies concerning magnesium supplementation (1841 patients), and showed a significant nephroprotective effect for all combined grades of CIA (OR 0.24, [0.19–0.32], I2 = 0.0%). This significant nephroprotective effect was also observed for grades 2 and 3 CIA (OR 0.22, [0.14–0.33], I2 = 0.0% and OR 0.25, [0.08–0.76], I2 = 0.0%, respectively).

Conclusion

While no method of prevention had so far demonstrated its indisputable efficacy, our results highlight the potential protective effect of magnesium supplementation on cisplatin-induced acute nephrotoxicity.

Trial Registration

This study is registered in PROSPERO, CRD42018090612.

Notes

Acknowledgements

The authors thank Prof. Sylvester who sent us the raw data of his study and allowed us to integrate it in our work.

Authors’ Contributions

Conceptualization: AH, RL, MM, JJB, FG. Supervision: AH, RL, MM, JJB, FG. Search strategy: AH, RL. Studies selection: AH, RL. Data curation: AH, RL, MM. Data synthesis and analysis: JJB. Data interpretation: AH, RL, MM, JJB, FG. Manuscript writing: AH, MM. Validation: AH, RL, MM, JJB, ES, PC, LB, NP, CC, ED, FG, MH, AS, and XD. Review and editing: ES, PC, LB, NP, CC, ED, FG, MH, AS, and XD (editing by an English native speaker: PC). Approved the final version of the manuscript: all the authors.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest related to the content of this article (AH, RL, MM, JJB, ES, PC, LB, NP, CC, ED, FG, MH, AS, and XD).

Funding

This review received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Supplementary material

40265_2019_1182_MOESM1_ESM.pdf (943 kb)
Supplementary material 1 (PDF 942 kb)

References

  1. 1.
    Rosenberg B, Vancamp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature. 1965;205:698–9.CrossRefGoogle Scholar
  2. 2.
    Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005;4(4):307–20.CrossRefGoogle Scholar
  3. 3.
    Wheate NJ, Walker S, Craig GE, Oun R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 2010;39(35):8113–27.CrossRefGoogle Scholar
  4. 4.
    Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334(2):115–24.CrossRefGoogle Scholar
  5. 5.
    Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994–1007.CrossRefGoogle Scholar
  6. 6.
    Mizuno T, Ishikawa K, Sato W, Koike T, Kushida M, Miyagawa Y, et al. The risk factors of severe acute kidney injury induced by cisplatin. Oncology. 2013;85(6):364–9.CrossRefGoogle Scholar
  7. 7.
    Stewart DJ, Dulberg CS, Mikhael NZ, Redmond MD, Montpetit VA, Goel R. Association of cisplatin nephrotoxicity with patient characteristics and cisplatin administration methods. Cancer Chemother Pharmacol. 1997;40(4):293–308.CrossRefGoogle Scholar
  8. 8.
    Miyoshi T, Misumi N, Hiraike M, Mihara Y, Nishino T, Tsuruta M, et al. Risk Factors Associated with Cisplatin-Induced Nephrotoxicity in Patients with Advanced Lung Cancer. Biol Pharm Bull. 2016;39(12):2009–14.CrossRefGoogle Scholar
  9. 9.
    Yamamoto Y, Watanabe K, Matsushita H, Tsukiyama I, Matsuura K, Wakatsuki A. Multivariate analysis of risk factors for cisplatin-induced nephrotoxicity in gynecological cancer. J Obstet Gynaecol Res. 2017;43(12):1880–6.CrossRefGoogle Scholar
  10. 10.
    Launay-Vacher V, Rey J-B, Isnard-Bagnis C, Deray G, Daouphars M. Prevention of cisplatin nephrotoxicity: state of the art and recommendations from the European Society of Clinical Pharmacy Special Interest Group on Cancer Care. Cancer Chemother Pharmacol. 2008;61(6):903–9.CrossRefGoogle Scholar
  11. 11.
    Lebwohl D, Canetta R. Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur J Cancer. 1998;34(10):1522–34.CrossRefGoogle Scholar
  12. 12.
    Arany I, Safirstein RL. Cisplatin nephrotoxicity. Semin Nephrol. 2003;23(5):460–4.CrossRefGoogle Scholar
  13. 13.
    Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. JASN. 2005;16(11):3365–70.CrossRefGoogle Scholar
  14. 14.
    Lafrance J-P, Miller DR. Acute kidney injury associates with increased long-term mortality. J Am Soc Nephrol. 2010;21(2):345–52.CrossRefGoogle Scholar
  15. 15.
    Ishitsuka R, Miyazaki J, Ichioka D, Inoue T, Kageyama S, Sugimoto M, et al. Impact of acute kidney injury defined by CTCAE v4.0 during first course of cisplatin-based chemotherapy on treatment outcomes in advanced urothelial cancer patients. Clin Exp Nephrol. 2017;21(4):732–40.Google Scholar
  16. 16.
    Systematic Reviews. CRD’s guidance for undertaking reviews in health care. Centers for Reviews and Dissemination. 2009.Google Scholar
  17. 17.
    Knobloch K, Yoon U, Vogt PM. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement and publication bias. J Craniomaxillofac Surg. 2011;39(2):91–2.CrossRefGoogle Scholar
  18. 18.
    KDIGO (Kidney Disease: Improving Global Outcomes) criteria could be a useful outcome predictor of cisplatin-induced acute kidney injury. Oncology. 2012;(6):354–9.Google Scholar
  19. 19.
    Ricci Z, Cruz D, Ronco C. The RIFLE criteria and mortality in acute kidney injury: a systematic review. Kidney Int. 2008;73(5):538–46.CrossRefGoogle Scholar
  20. 20.
    Common Terminology Criteria for Adverse Events (CTCAE), version 4.03. 2010.:196.Google Scholar
  21. 21.
    Schünemann HJ, Cuello C, Akl EA, Mustafa RA, Meerpohl JJ, Thayer K, et al. GRADE Guidelines: 18. How ROBINS-I and other tools to assess risk of bias in non-randomized studies should be used to rate the certainty of a body of evidence. J Clin Epidemiol. 2018.Google Scholar
  22. 22.
    Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.CrossRefGoogle Scholar
  23. 23.
    DerSimonian R, Laird N. Meta-Analysis in Clinical Trials Revisited. Contemp Clin Trials. 2015;45(0 0):139–45.Google Scholar
  24. 24.
    Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.CrossRefGoogle Scholar
  25. 25.
    Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10(1):101–29.CrossRefGoogle Scholar
  26. 26.
    Harbord RM, Egger M, Sterne JAC. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med. 2006;25(20):3443–57.CrossRefGoogle Scholar
  27. 27.
    Sterne JAC, Sutton AJ, Ioannidis JPA, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343:d4002.CrossRefGoogle Scholar
  28. 28.
    Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37(5):360–3.Google Scholar
  29. 29.
    Kemp G, Rose P, Lurain J, Berman M, Manetta A, Roullet B, et al. Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: results of a randomized control trial in patients with advanced ovarian cancer. J Clin Oncol. 1996;14(7):2101–12.CrossRefGoogle Scholar
  30. 30.
    Planting AS, Catimel G, de Mulder PH, de Graeff A, Höppener F, Verweij J, et al. Randomized study of a short course of weekly cisplatin with or without amifostine in advanced head and neck cancer. EORTC Head and Neck Cooperative Group. Ann Oncol. 1999;10(6):693–700.Google Scholar
  31. 31.
    Hartmann JT, Knop S, Fels LM, van Vangerow A, Stolte H, Kanz L, et al. The use of reduced doses of amifostine to ameliorate nephrotoxicity of cisplatin/ifosfamide-based chemotherapy in patients with solid tumors. Anticancer Drugs. 2000;11(1):1–6.CrossRefGoogle Scholar
  32. 32.
    Hartmann JT, Fels LM, Knop S, Stolt H, Kanz L, Bokemeyer C. A randomized trial comparing the nephrotoxicity of cisplatin/ifosfamide-based combination chemotherapy with or without amifostine in patients with solid tumors. Invest New Drugs. 2000;18(3):281–9.CrossRefGoogle Scholar
  33. 33.
    Rick O, Beyer J, Schwella N, Schubart H, Schleicher J, Siegert W. Assessment of amifostine as protection from chemotherapy-induced toxicities after conventional-dose and high-dose chemotherapy in patients with germ cell tumor. Ann Oncol. 2001;12(8):1151–5.CrossRefGoogle Scholar
  34. 34.
    Benoehr P, Krueth P, Bokemeyer C, Grenz A, Osswald H, Hartmann JT. Nephroprotection by theophylline in patients with cisplatin chemotherapy: a randomized, single-blinded. Placebo-controlled trial. JASN. 2005;16(2):452–8.CrossRefGoogle Scholar
  35. 35.
    Karademir LD, Dogruel F, Kocyigit I, Yazici C, Unal A, Sipahioglu MH, et al. The efficacy of theophylline in preventing cisplatin-related nephrotoxicity in patients with cancer. Ren Fail. 2016;38(5):806–14.CrossRefGoogle Scholar
  36. 36.
    Hiura Y, Takiguchi S, Yamamoto K, Takahashi T, Kurokawa Y, Yamasaki M, et al. Effects of ghrelin administration during chemotherapy with advanced esophageal cancer patients: a prospective, randomized, placebo-controlled phase 2 study. Cancer. 2012;118(19):4785–94.CrossRefGoogle Scholar
  37. 37.
    Yanagimoto Y, Takiguchi S, Miyazaki Y, Makino T, Takahashi T, Kurokawa Y, et al. Improvement of cisplatin-related renal dysfunction by synthetic ghrelin: a prospective randomised phase II trial. Br J Cancer. 2016;114(12):1318–25.CrossRefGoogle Scholar
  38. 38.
    Offerman JJ, Mulder NH, Sleijfer DT, Meijer S, Koops HS, Donker AJ, et al. Influence of captopril on cis-diamminedichloroplatinum-induced renal toxicity. Am J Nephrol. 1985;5(6):433–6.CrossRefGoogle Scholar
  39. 39.
    Sleijfer DT, Offerman JJ, Mulder NH, Verweij M, van der Hem GK, Schraffordt Koops HS, et al. The protective potential of the combination of verapamil and cimetidine on cisplatin-induced nephrotoxicity in man. Cancer. 1987;60(11):2823–8.CrossRefGoogle Scholar
  40. 40.
    Dorner GT, Pehamberger H, Kornek G, Steger G, Müller M, Wolzt M, et al. Cisplatin-induced renal effects and thromboxane A2 receptor blockade. Eur J Clin Invest. 1997;27(10):836–9.CrossRefGoogle Scholar
  41. 41.
    Lin C-L, Chien R-N, Yeh C, Hsu C-W, Chang M-L, Chen Y-C, et al. Significant renoprotective effect of telbivudine during preemptive antiviral therapy in advanced liver cancer patients receiving cisplatin-based chemotherapy: a case-control study. Scand J Gastroenterol. 2014;49(12):1456–64.CrossRefGoogle Scholar
  42. 42.
    Hu YJ, Chen Y, Zhang YQ, Zhou MZ, Song XM, Zhang BZ, et al. The protective role of selenium on the toxicity of cisplatin-contained chemotherapy regimen in cancer patients. Biol Trace Elem Res. 1997;56(3):331–41.CrossRefGoogle Scholar
  43. 43.
    Weijl NI, Elsendoorn TJ, Lentjes EGWM, Hopman GD, Wipkink-Bakker A, Zwinderman AH, et al. Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind, placebo-controlled study. Eur J Cancer. 2004;40(11):1713–23.CrossRefGoogle Scholar
  44. 44.
    Hemati S, Jolfaie NA, Gookizadeh A, Rafienia M, Ghavamnasiri MR. The effects of vitamin E and selenium on cisplatininduced nephrotoxicity in cancer patients treated with cisplatin-based chemotherapy: a randomized, placebo-controlled study.Google Scholar
  45. 45.
    Momeni A, Hajigholami A, Geshnizjani S, Kheiri S. Effect of Silymarin in the Prevention of Cisplatin Nephrotoxicity, a Clinical Trial Study. J Clin Diagn Res. 2015;9(4):OC11–3.Google Scholar
  46. 46.
    Shahbazi F, Sadighi S, Dashti-Khavidaki S, Shahi F, Mirzania M, Abdollahi A, et al. Effect of silymarin administration on cisplatin nephrotoxicity: report from a pilot, randomized, double-blinded. Placebo-controlled clinical trial. Phytother Res. 2015;29(7):1046–53.CrossRefGoogle Scholar
  47. 47.
    Plaxe S, Freddo J, Kim S, Kirmani S, McClay E, Christen R, et al. Phase I trial of cisplatin in combination with glutathione. Gynecol Oncol. 1994;55(1):82–6.CrossRefGoogle Scholar
  48. 48.
    Smyth JF, Bowman A, Perren T, Wilkinson P, Prescott RJ, Quinn KJ, et al. Glutathione reduces the toxicity and improves quality of life of women diagnosed with ovarian cancer treated with cisplatin: results of a double-blind, randomised trial. Ann Oncol. 1997;8(6):569–73.CrossRefGoogle Scholar
  49. 49.
    Mahmoodnia L, Mohammadi K, Masumi R. Ameliorative effect of lycopene effect on cisplatin-induced nephropathy in patient. J Nephropathol. 2017;6(3):144–9.CrossRefGoogle Scholar
  50. 50.
    Saadat A, Shariat Maghani SS, Rostami Z, Davoudi A, Davoudi F, Shafie A, et al. Normobaric hyperoxia preconditioning ameliorates cisplatin nephrotoxicity. Ren Fail. 2014;36(1):5–8.CrossRefGoogle Scholar
  51. 51.
    Osama H, Abdullah A, Gamal B, Emad D, Sayed D, Hussein E, et al. Effect of honey and royal jelly against cisplatin-induced nephrotoxicity in patients with cancer. J Am Coll Nutr. 2017;36(5):342–6.CrossRefGoogle Scholar
  52. 52.
    El-Ghiaty MA, Ibrahim OMH, Abdou SM, Hussein FZ. Evaluation of the protective effect of Cystone® against cisplatin-induced nephrotoxicity in cancer patients, and its influence on cisplatin antitumor activity. Int Urol Nephrol. 2014;46(7):1367–73.CrossRefGoogle Scholar
  53. 53.
    Uozumi J, Koikawa Y, Yasumasu T, Tokuda N, Kumazawa J. The protective effect of methylprednisolone against cisplatin-induced nephrotoxicity in patients with urothelial tumors. Int J Urol. 1996;3(5):343–7.CrossRefGoogle Scholar
  54. 54.
    Santoso JT, Lucci JA, Coleman RL, Schafer I, Hannigan EV. Saline, mannitol, and furosemide hydration in acute cisplatin nephrotoxicity: a randomized trial. Cancer Chemother Pharmacol. 2003;52(1):13–8.CrossRefGoogle Scholar
  55. 55.
    Leu L, Baribeault D. A comparison of the rates of cisplatin (cDDP)—induced nephrotoxicity associated with sodium loading or sodium loading with forced diuresis as a preventative measure. J Oncol Pharm Pract. 2010;16(3):167–71.CrossRefGoogle Scholar
  56. 56.
    Morgan KP, Snavely AC, Wind LS, Buie LW, Grilley-Olson J, Walko CM, et al. Rates of renal toxicity in cancer patients receiving cisplatin with and without mannitol. Ann Pharmacother. 2014;48(7):863–9.CrossRefGoogle Scholar
  57. 57.
    McKibbin T, Cheng LL, Kim S, Steuer CE, Owonikoko TK, Khuri FR, et al. Mannitol to prevent cisplatin-induced nephrotoxicity in patients with squamous cell cancer of the head and neck (SCCHN) receiving concurrent therapy. Support Care Cancer. 2016;24(4):1789–93.CrossRefGoogle Scholar
  58. 58.
    Mach CM, Kha C, Nguyen D, Shumway J, Meaders KM, Ludwig M, et al. A retrospective evaluation of furosemide and mannitol for prevention of cisplatin-induced nephrotoxicity. J Clin Pharm Ther. 2017;42(3):286–91.CrossRefGoogle Scholar
  59. 59.
    Williams RP, Ferlas BW, Morales PC, Kurtzweil AJ. Mannitol for the prevention of cisplatin-induced nephrotoxicity: a retrospective comparison of hydration plus mannitol versus hydration alone in inpatient and outpatient regimens at a large academic medical center. J Oncol Pharm Pract. 2017;23(6):422–8.CrossRefGoogle Scholar
  60. 60.
    Hirosawa A, Niitani H, Hayashibara K, Tsuboi E. Effects of sodium thiosulfate in combination therapy of cis-dichlorodiammineplatinum and vindesine. Cancer Chemother Pharmacol. 1989;23(4):255–8.CrossRefGoogle Scholar
  61. 61.
    Zhang J, Zhou W. Ameliorative effects of SLC22A2 gene polymorphism 808 G/T and cimetidine on cisplatin-induced nephrotoxicity in Chinese cancer patients. Food Chem Toxicol. 2012;50(7):2289–93.CrossRefGoogle Scholar
  62. 62.
    Rojanasthien N, Kumsorn B, Atikachai B, Leotrakul S, Thongprasert S. Protective effects of fosfomycin on cisplatin-induced nephrotoxicity in patients with lung cancer. Int J Clin Pharmacol Ther. 2001;39(3):121–5.CrossRefGoogle Scholar
  63. 63.
    Ikemura K, Oshima K, Enokiya T, Okamoto A, Oda H, Mizuno T, et al. Co-administration of proton pump inhibitors ameliorates nephrotoxicity in patients receiving chemotherapy with cisplatin and fluorouracil: a retrospective cohort study. Cancer Chemother Pharmacol. 2017;79(5):943–9.CrossRefGoogle Scholar
  64. 64.
    Hirai S, Kaida S, Ito T, Hasebe S, Ueno M, Udagawa H, et al. Magnesium premedication prevents Cisplatin-induced nephrotoxicity in patients with esophageal and hypopharyngeal cancer. Gan To Kagaku Ryoho. 2013;40(6):743–7.Google Scholar
  65. 65.
    Konishi H, Fujiwara H, Itoh H, Shiozaki A, Arita T, Kosuga T, et al. Influence of magnesium and parathyroid hormone on cisplatin-induced nephrotoxicity in esophageal squamous cell carcinoma. Oncol Lett. 2018;15(1):658–64.Google Scholar
  66. 66.
    Muraki K, Koyama R, Honma Y, Yagishita S, Shukuya T, Ohashi R, et al. Hydration with magnesium and mannitol without furosemide prevents the nephrotoxicity induced by cisplatin and pemetrexed in patients with advanced non-small cell lung cancer. J Thorac Dis. 2012;4(6):562–8.Google Scholar
  67. 67.
    Ohhara Y, Isobe H, Ito K, Fuke S, Kojima T, Saito H, et al. Feasibility of short volume hydration in patients with lung cancer treated with Cisplatin-containing chemotherapy. Gan To Kagaku Ryoho. 2015;42(1):57–61.Google Scholar
  68. 68.
    Oka T, Kimura T, Suzumura T, Yoshimoto N, Nakai T, Yamamoto N, et al. Magnesium supplementation and high volume hydration reduce the renal toxicity caused by cisplatin-based chemotherapy in patients with lung cancer: a toxicity study. BMC Pharmacol Toxicol [Internet]. 2014 Dec 4 [cited 2018 Jul 25];15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4272804/. Accessed 6 Aug 2018.
  69. 69.
    Saito Y, Kobayashi M, Yamada T, Kasashi K, Honma R, Takeuchi S, et al. Premedication with intravenous magnesium has a protective effect against cisplatin-induced nephrotoxicity. Support Care Cancer. 2017;25(2):481–7.CrossRefGoogle Scholar
  70. 70.
    Sylvester RK, LaPorte K, Thompson PA, Leitch JM. Effect of mannitol and magnesium on cisplatin-induced nephrotoxicity: a retrospective evaluation. JCO. 2015;33(15_suppl):e20706–e20706. .Google Scholar
  71. 71.
    Yamaguchi T, Uozu S, Isogai S, Hayashi M, Goto Y, Nakanishi T, et al. Short hydration regimen with magnesium supplementation prevents cisplatin-induced nephrotoxicity in lung cancer: a retrospective analysis. Support Care Cancer. 2017;25(4):1215–20.CrossRefGoogle Scholar
  72. 72.
    Yamamoto Y, Watanabe K, Tsukiyama I, Matsushita H, Yabushita H, Matsuura K, et al. Nephroprotective effects of hydration with magnesium in patients with cervical cancer receiving cisplatin. Anticancer Res. 2015;35(4):2199–204.Google Scholar
  73. 73.
    Yamamoto Y, Watanabe K, Tsukiyama I, Yabushita H, Matsuura K, Wakatsuki A. Hydration with 15 mEq magnesium is effective at reducing the risk for cisplatin-induced nephrotoxicity in patients receiving cisplatin (≥ 50 mg/m2) combination chemotherapy. Anticancer Res. 2016;36(4):1873–7.Google Scholar
  74. 74.
    Yamashita K, Yoshino M, Sasaki N, Tanaka Y, Tanaka K, Abe M, et al. Associations between clinical factors and acute renal failure due to cisplatin combination chemotherapy for lung cancer. Gan To Kagaku Ryoho. 2015;42(11):1379–83.Google Scholar
  75. 75.
    Yoshida T, Niho S, Toda M, Goto K, Yoh K, Umemura S, et al. Protective effect of magnesium preloading on cisplatin-induced nephrotoxicity: a retrospective study. Jpn J Clin Oncol. 2014;44(4):346–54.CrossRefGoogle Scholar
  76. 76.
    Ouchi A, Asano M, Aono K, Watanabe T, Kato T. Comparison of Short and Continuous Hydration Regimen in Chemotherapy Containing Intermediate- to High-Dose Cisplatin. J Oncol [Internet]. 2014 [cited 2018 Jul 25];2014. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190919/. Accessed 6 Aug 2018.
  77. 77.
    Kidera Y, Kawakami H, Sakiyama T, Okamoto K, Tanaka K, Takeda M, et al. Risk factors for cisplatin-induced nephrotoxicity and potential of magnesium supplementation for renal protection. PLoS One. 2014;9(7):e101902.CrossRefGoogle Scholar
  78. 78.
    Goldstein RS, Mayor GH. Minireview. The nephrotoxicity of cisplatin. Life Sci. 1983;32(7):685–90.CrossRefGoogle Scholar
  79. 79.
    de Broe ME, Porter GA, Bennett WM. Verpooten GA. Clin Nephrotox: renal injury from drugs and chemicals. springer science & business media; 2007. p. 719.Google Scholar
  80. 80.
    Madias NE, Harrington JT. Platinum nephrotoxicity. Am J Med. 1978;65(2):307–14.CrossRefGoogle Scholar
  81. 81.
    Hayes DM, Cvitkovic E, Golbey RB, Scheiner E, Helson L, Krakoff IH. High dose cis-platinum diammine dichloride: amelioration of renal toxicity by mannitol diuresis. Cancer. 1977;39(4):1372–81.CrossRefGoogle Scholar
  82. 82.
    Frick GA, Ballentine R, Driever CW, Kramer WG. Renal excretion kinetics of high-dose cis-dichlorodiammineplatinum(II) administered with hydration and mannitol diuresis. Cancer Treat Rep. 1979;63(1):13–6.Google Scholar
  83. 83.
    Daugaard G, Abildgaard U. Cisplatin nephrotoxicity. A review. Cancer Chemother Pharmacol. 1989;25(1):1–9.CrossRefGoogle Scholar
  84. 84.
    Lippman AJ, Helson C, Helson L, Krakoff IH. Clinical trials of cis-diamminedichloroplatinum (NSC-119875). Cancer Chemother Rep. 1973;57(2):191–200.Google Scholar
  85. 85.
    Higby DJ, Wallace HJ, Holland JF. Cis-diamminedichloroplatinum (NSC-119875): a phase I study. Cancer Chemother Rep. 1973;57(4):459–63.Google Scholar
  86. 86.
    Crona DJ, Faso A, Nishijima TF, McGraw KA, Galsky MD, Milowsky MI. A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist. 2017;22(5):609–19.CrossRefGoogle Scholar
  87. 87.
    Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58:295–300.Google Scholar
  88. 88.
    Iwata K, Aizawa K, Kamitsu S, Jingami S, Fukunaga E, Yoshida M, et al. Effects of genetic variants in SLC22A2 organic cation transporter 2 and SLC47A1 multidrug and toxin extrusion 1 transporter on cisplatin-induced adverse events. Clin Exp Nephrol. 2012;16(6):843–51.CrossRefGoogle Scholar
  89. 89.
    Qian C-Y, Zheng Y, Wang Y, Chen J, Liu J-Y, Zhou H-H, et al. Associations of genetic polymorphisms of the transporters organic cation transporter 2 (OCT2), multidrug and toxin extrusion 1 (MATE1), and ATP-binding cassette subfamily C member 2 (ABCC2) with platinum-based chemotherapy response and toxicity in non-small cell lung cancer patients. Chin J Cancer. 2016;35(1):85.CrossRefGoogle Scholar
  90. 90.
    Solanki MH, Chatterjee PK, Gupta M, Xue X, Plagov A, Metz MH, et al. Magnesium protects against cisplatin-induced acute kidney injury by regulating platinum accumulation. Am J Physiol Renal Physiol. 2014;307(4):F369–84.CrossRefGoogle Scholar
  91. 91.
    Yokoo K, Murakami R, Matsuzaki T, Yoshitome K, Hamada A, Saito H. Enhanced renal accumulation of cisplatin via renal organic cation transporter deteriorates acute kidney injury in hypomagnesemic rats. Clin Exp Nephrol. 2009;13(6):578–84.CrossRefGoogle Scholar
  92. 92.
    Bodnar L, Wcislo G, Gasowska-Bodnar A, Synowiec A, Szarlej-Wcisło K, Szczylik C. Renal protection with magnesium subcarbonate and magnesium sulphate in patients with epithelial ovarian cancer after cisplatin and paclitaxel chemotherapy: a randomised phase II study. Eur J Cancer. 2008;44(17):2608–14.CrossRefGoogle Scholar
  93. 93.
    Abstracts. J Oncol Pharm Pract. 2018;24(4_suppl):1–17.Google Scholar
  94. 94.
    Arai H, Ouchi Y, Toba K, Endo T, Shimokado K, Tsubota K, et al. Japan as the front-runner of super-aged societies: perspectives from medicine and medical care in Japan. Geriatr Gerontol Int. 2015;15(6):673–87.CrossRefGoogle Scholar
  95. 95.
    Gersten O, Wilmoth JR. The cancer transition in Japan since 1951. DemRes. 2002;7:271–306.CrossRefGoogle Scholar
  96. 96.
    Tominaga S. Trends in cancer mortality, incidence and survival in Japan. Gan To Kagaku Ryoho. 1992;19(8 Suppl):1113–20.Google Scholar
  97. 97.
    Matsuda T, Saika K. Cancer burden in Japan based on the latest cancer statistics: need for evidence-based cancer control programs. Ann Cancer Epidemiol [Internet]. 2018 Sep 5 [cited 2019 Jul 26];2(0). http://ace.amegroups.com/article/view/4609.
  98. 98.
    Cisplatin Industry 2019 Global Market Size, Share, Growth, Sales and Drivers Analysis Research Report 2026 [Internet]. MarketWatch. [cited 2019 Jul 26]. Available from: https://www.marketwatch.com/press-release/cisplatin-industry-2019-global-market-size-share-growth-sales-and-drivers-analysis-research-report-2026-2019-05-06. Accessed 29 July 2019.
  99. 99.
    Chen Y, Teranishi K, Li S, Yee SW, Hesselson S, Stryke D, et al. Genetic variants in multidrug and toxic compound extrusion 1, hMATE1. Alter transport function. Pharmacogenom J. 2009;9(2):127–36.CrossRefGoogle Scholar
  100. 100.
    Song IS, Shin HJ, Shim EJ, Jung IS, Kim WY, Shon JH, et al. Genetic variants of the organic cation transporter 2 influence the disposition of metformin [Internet]. Clinical Pharmacology & Therapeutics. 2008 [cited 2019 Aug 1]. https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1038/clpt.2008.61. Accessed 29 July 2019.
  101. 101.
    Kajiwara M, Terada T, Ogasawara K, Iwano J, Katsura T, Fukatsu A, et al. Identification of multidrug and toxin extrusion (MATE1 and MATE2-K) variants with complete loss of transport activity. J Hum Genet. 2009;54(1):40–6.CrossRefGoogle Scholar
  102. 102.
    Seitz T, Stalmann R, Dalila N, Chen J, Pojar S, Dos Santos Pereira JN, et al. Global genetic analyses reveal strong inter-ethnic variability in the loss of activity of the organic cation transporter OCT1. Genome Medicine. 2015;7(1):56.CrossRefGoogle Scholar
  103. 103.
    Rosanoff A, Weaver CM, Rude RK. Suboptimal magnesium status in the United States: are the health consequences underestimated? Nutr Rev. 2012;70(3):153–64.CrossRefGoogle Scholar
  104. 104.
    Vaquero MP. Magnesium and trace elements in the elderly: intake, status and recommendations. J Nutr Health Aging. 2002;6(2):147–53.Google Scholar
  105. 105.
    Li F, Livingston MJ, Dong Z. Protection of kidneys by magnesium in cisplatin chemotherapy: a fight between two metals. Am J Physiol Renal Physiol. 2017;313(4):F955–6.CrossRefGoogle Scholar
  106. 106.
    Kumar G, Solanki MH, Xue X, Mintz R, Madankumar S, Chatterjee PK, et al. Magnesium improves cisplatin-mediated tumor killing while protecting against cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol. 2017;313(2):F339–50.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aghilès Hamroun
    • 1
    Email author
  • Rémi Lenain
    • 1
  • Jean Joel Bigna
    • 2
  • Elodie Speyer
    • 3
  • Linh Bui
    • 4
  • Paul Chamley
    • 1
  • Nicolas Pottier
    • 5
  • Christelle Cauffiez
    • 6
  • Edmone Dewaeles
    • 6
  • Xavier Dhalluin
    • 7
  • Arnaud Scherpereel
    • 7
  • Marc Hazzan
    • 1
    • 8
  • Mehdi Maanaoui
    • 1
  • François Glowacki
    • 1
    • 6
  1. 1.Nephrology DepartmentCHRU Lille, University of LilleLilleFrance
  2. 2.Faculty of MedicineUniversity of Paris SaclayParisFrance
  3. 3.Centre for Research in Epidemiology and Population Health (CESP)Paris Saclay University, Paris Sud University, Versailles Saint Quentin University, INSERM UMRS 1018VillejuifFrance
  4. 4.Nephrology DepartmentCH BeuvryBéthuneFrance
  5. 5.Department of Toxicology and Genetic PathologiesCHRU LilleLilleFrance
  6. 6.EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Medicine Faculty, Research DepartmentUniversity of LilleLilleFrance
  7. 7.Pulmonary and Thoracic Oncology DepartmentUniversity of Lille, INSERM U1189 OncoThAILilleFrance
  8. 8.INSERM, UMR995LilleFrance

Personalised recommendations