Advertisement

Drugs

pp 1–13 | Cite as

Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: Update on Molecular Epidemiology and Treatment Options

  • Gisele Peirano
  • Johann D. D. PitoutEmail author
Review Article

Abstract

Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae are a major global public health concern. Presently, Escherichia coli with CTX-Ms are the most common species associated with global ESBLs; CTX-M-15 is the most frequent CTX-M worldwide and is followed by CTX-M-14, which is often found in South-East Asia. Recent surveillance studies showed that CTX-M-27 is emerging in certain parts of the world especially in Japan and Europe. The population structure of ESBL-producing E. coli is dominated globally by an high-risk clone named ST131. Escherichia coli ST131 belongs to three clades (A, B, and C) and three different subclades (C1, C1-M27, and C2). Clade C1-M27 is associated with blaCTX-M-27, and C2 with blaCTX-M-15. Recent whole genome sequencing studies have shown that clade C has evolved from clade B in a stepwise fashion, resulting in one of the most influential global antimicrobial resistance clones that has emerged during the 2000’s. Other important E. coli clones that have been detected among ESBL producers include ST405, ST38, ST648, ST410, and ST1193. The INCREMENT project has shown that ertapenem is as effective as other carbapenems for treating serious infections due to ESBL-producing Enterobacteriaceae. The results of the MERINO open-label randomized controlled study has provided clear evidence that piperacillin-tazobactam should be avoided for targeted therapy of blood-stream infections due to ESBL-producing E. coli and K. pneumoniae, regardless of the patient population, source of infection, bacterial species, and susceptibility result of piperacillin-tazobactam. Research is still warranted to define the optimal therapy of less severe infections due to ESBL-producing Enterobactericeae.

Notes

Compliance with Ethical Standards

Funding

This work was supported in part by research Grants from the Calgary Laboratory Services (#10015169 and #10017905).

Conflict of interest

Gisele Peirano and Johann D.D. Pitout have no conflicts of interest that are directly relevant to the content of this article.

References

  1. 1.
    Seale AC, Gordon NC, Islam J, Peacock SJ, Scott JAG. AMR Surveillance in low and middle-income settings: a roadmap for participation in the Global Antimicrobial Surveillance System (GLASS). Wellcome Open Res. 2017;2:92.  https://doi.org/10.12688/wellcomeopenres.12527.1.CrossRefGoogle Scholar
  2. 2.
    Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis. 2003;36(1):53–9.  https://doi.org/10.1086/345476.CrossRefGoogle Scholar
  3. 3.
    Marchaim D, Gottesman T, Schwartz O, Korem M, Maor Y, Rahav G, et al. National multicenter study of predictors and outcomes of bacteremia upon hospital admission caused by Enterobacteriaceae producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 2010;54(12):5099–104.  https://doi.org/10.1128/AAC.00565-10.CrossRefGoogle Scholar
  4. 4.
    Bush K, Bradford PA. Beta-lactams and beta-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 2016.  https://doi.org/10.1101/cshperspect.a025247.Google Scholar
  5. 5.
    Bonomo RA. Beta-lactamases: a focus on current challenges. Cold Spring Harb Perspect Med. 2017.  https://doi.org/10.1101/cshperspect.a025239.Google Scholar
  6. 6.
    Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010;23(1):160–201.  https://doi.org/10.1128/CMR.00037-09.CrossRefGoogle Scholar
  7. 7.
    Bush K. Proliferation and significance of clinically relevant beta-lactamases. Ann N Y Acad Sci. 2013;1277:84–90.  https://doi.org/10.1111/nyas.12023.CrossRefGoogle Scholar
  8. 8.
    Ambler RP, Coulson AF, Frere JM, Ghuysen JM, Joris B, Forsman M, et al. A standard numbering scheme for the class A beta-lactamases. Biochem J. 1991;276(Pt 1):269–70.CrossRefGoogle Scholar
  9. 9.
    Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–76.  https://doi.org/10.1128/AAC.01009-09.CrossRefGoogle Scholar
  10. 10.
    Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008;8(3):159–66.  https://doi.org/10.1016/S1473-3099(08)70041-0.CrossRefGoogle Scholar
  11. 11.
    Pitout JD, Nordmann P, Laupland KB, Poirel L. Emergence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the community. J Antimicrob Chemother. 2005;56(1):52–9.  https://doi.org/10.1093/jac/dki166.CrossRefGoogle Scholar
  12. 12.
    Pitout JD. Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front Microbiol. 2012;3:9.  https://doi.org/10.3389/fmicb.2012.00009.CrossRefGoogle Scholar
  13. 13.
    World Health Organization. Antimicrobial resistance: global report on surveillance. 2014. http://www.who.int/drugresistance/documents/surveillancereport/en/. Accessed Jun 2014.
  14. 14.
    Lowe M, Kock MM, Coetzee J, Hoosien E, Peirano G, Strydom KA, et al. Klebsiella pneumoniae ST307 with blaOXA-181, South Africa, 2014–2016. Emerg Infect Dis. 2019;25(4):739–47.  https://doi.org/10.3201/eid2504.181482.CrossRefGoogle Scholar
  15. 15.
    Pitout JD, Nordmann P, Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015;59(10):5873–84.  https://doi.org/10.1128/AAC.01019-15.CrossRefGoogle Scholar
  16. 16.
    Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L, et al. Beta-lactamase database (BLDB): structure and function. J Enzyme Inhib Med Chem. 2017;32(1):917–9.  https://doi.org/10.1080/14756366.2017.1344235.CrossRefGoogle Scholar
  17. 17.
    Poirel L, Gniadkowski M, Nordmann P. Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum beta-lactamase CTX-M-15 and of its structurally related beta-lactamase CTX-M-3. J Antimicrob Chemother. 2002;50(6):1031–4.CrossRefGoogle Scholar
  18. 18.
    Karim A, Poirel L, Nagarajan S, Nordmann P. Plasmid-mediated extended-spectrum beta-lactamase (CTX-M-3 like) from India and gene association with insertion sequence ISEcp1. FEMS Microbiol Lett. 2001;201(2):237–41.  https://doi.org/10.1111/j.1574-6968.2001.tb10762.x.Google Scholar
  19. 19.
    Pai H, Choi EH, Lee HJ, Hong JY, Jacoby GA. Identification of CTX-M-14 extended-spectrum beta-lactamase in clinical isolates of Shigella sonnei, Escherichia coli, and Klebsiella pneumoniae in Korea. J Clin Microbiol. 2001;39(10):3747–9.  https://doi.org/10.1128/JCM.39.10.3747-3749.2001.CrossRefGoogle Scholar
  20. 20.
    Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M beta-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother. 2017;72(8):2145–55.  https://doi.org/10.1093/jac/dkx146.CrossRefGoogle Scholar
  21. 21.
    Pitout JD. Infections with extended-spectrum beta-lactamase-producing Enterobacteriaceae: changing epidemiology and drug treatment choices. Drugs. 2010;70(3):313–33.  https://doi.org/10.2165/11533040-000000000-00000.CrossRefGoogle Scholar
  22. 22.
    Ladner JT, Grubaugh ND, Pybus OG, Andersen KG. Precision epidemiology for infectious disease control. Nat Med. 2019;25(2):206–11.  https://doi.org/10.1038/s41591-019-0345-2.CrossRefGoogle Scholar
  23. 23.
    Baker S, Thomson N, Weill FX, Holt KE. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science. 2018;360(6390):733–8.  https://doi.org/10.1126/science.aar3777.CrossRefGoogle Scholar
  24. 24.
    Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev. 2015;28(3):565–91.  https://doi.org/10.1128/CMR.00116-14.CrossRefGoogle Scholar
  25. 25.
    Baquero F, Tedim AP, Coque TM. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol. 2013;4:15.  https://doi.org/10.3389/fmicb.2013.00015.CrossRefGoogle Scholar
  26. 26.
    Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018.  https://doi.org/10.1128/cmr.00088-17.Google Scholar
  27. 27.
    Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev. 2014;38(5):865–91.  https://doi.org/10.1111/1574-6976.12067.CrossRefGoogle Scholar
  28. 28.
    Poirel L, Lartigue MF, Decousser JW, Nordmann P. ISEcp1B-mediated transposition of blaCTX-M in Escherichia coli. Antimicrob Agents Chemother. 2005;49(1):447–50.  https://doi.org/10.1128/AAC.49.1.447-450.2005.CrossRefGoogle Scholar
  29. 29.
    Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol. 2013;303(6–7):298–304.  https://doi.org/10.1016/j.ijmm.2013.02.001.CrossRefGoogle Scholar
  30. 30.
    Zhao WH, Hu ZQ. Epidemiology and genetics of CTX-M extended-spectrum beta-lactamases in Gram-negative bacteria. Crit Rev Microbiol. 2013;39(1):79–101.  https://doi.org/10.3109/1040841X.2012.691460.CrossRefGoogle Scholar
  31. 31.
    Lartigue MF, Poirel L, Aubert D, Nordmann P. In vitro analysis of ISEcp1B-mediated mobilization of naturally occurring beta-lactamase gene blaCTX-M of Kluyvera ascorbata. Antimicrob Agents Chemother. 2006;50(4):1282–6.  https://doi.org/10.1128/AAC.50.4.1282-1286.2006.CrossRefGoogle Scholar
  32. 32.
    Poirel L, Decousser JW, Nordmann P. Insertion sequence ISEcp1B is involved in expression and mobilization of a bla(CTX-M) beta-lactamase gene. Antimicrob Agents Chemother. 2003;47(9):2938–45.  https://doi.org/10.1128/aac.47.9.2938-2945.2003.CrossRefGoogle Scholar
  33. 33.
    Canton R, Gonzalez-Alba JM, Galan JC. CTX-M enzymes: origin and diffusion. Front Microbiol. 2012;3:110.  https://doi.org/10.3389/fmicb.2012.00110.CrossRefGoogle Scholar
  34. 34.
    Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother. 2009;53(6):2227–38.  https://doi.org/10.1128/AAC.01707-08.CrossRefGoogle Scholar
  35. 35.
    Shin J, Choi MJ, Ko KS. Replicon sequence typing of IncF plasmids and the genetic environments of blaCTX-M-15 indicate multiple acquisitions of blaCTX-M-15 in Escherichia coli and Klebsiella pneumoniae isolates from South Korea. J Antimicrob Chemother. 2012;67(8):1853–7.  https://doi.org/10.1093/jac/dks143.CrossRefGoogle Scholar
  36. 36.
    Zong Z. Complete sequence of pJIE186-2, a plasmid carrying multiple virulence factors from a sequence type 131 Escherichia coli O25 strain. Antimicrob Agents Chemother. 2013;57(1):597–600.  https://doi.org/10.1128/AAC.01081-12.CrossRefGoogle Scholar
  37. 37.
    Stoesser N, Sheppard AE, Pankhurst L, De Maio N, Moore CE, Sebra R, et al. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. MBio. 2016;7(2):e02162.  https://doi.org/10.1128/mBio.02162-15.CrossRefGoogle Scholar
  38. 38.
    Nicolas-Chanoine MH, Bertrand X, Madec JY. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev. 2014;27(3):543–74.  https://doi.org/10.1128/CMR.00125-13.CrossRefGoogle Scholar
  39. 39.
    Pitout JD, DeVinney R. Escherichia coli ST131: a multidrug-resistant clone primed for global domination. F1000Res. 2017.  https://doi.org/10.12688/f1000research.10609.1.Google Scholar
  40. 40.
    Peirano G, van der Bij AK, Gregson DB, Pitout JD. Molecular epidemiology over an 11-year period (2000–2010) of extended-spectrum beta-lactamase-producing Escherichia coli causing bacteremia in a centralized Canadian region. J Clin Microbiol. 2012;50(2):294–9.  https://doi.org/10.1128/JCM.06025-11.CrossRefGoogle Scholar
  41. 41.
    Petty NK, Ben Zakour NL, Stanton-Cook M, Skippington E, Totsika M, Forde BM, et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci USA. 2014;111(15):5694–9.  https://doi.org/10.1073/pnas.1322678111.CrossRefGoogle Scholar
  42. 42.
    Price LB, Johnson JR, Aziz M, Clabots C, Johnston B, Tchesnokova V, et al. The epidemic of extended-spectrum-beta-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. MBio. 2013;4(6):e00377.  https://doi.org/10.1128/mBio.00377-13.CrossRefGoogle Scholar
  43. 43.
    Peirano G, Pitout JD. Fluoroquinolone-resistant Escherichia coli sequence type 131 isolates causing bloodstream infections in a Canadian region with a centralized laboratory system: rapid emergence of the H30-Rx sublineage. Antimicrob Agents Chemother. 2014;58(5):2699–703.  https://doi.org/10.1128/AAC.00119-14.CrossRefGoogle Scholar
  44. 44.
    Ben Zakour NL, Alsheikh-Hussain AS, Ashcroft MM, Khanh Nhu NT, Roberts LW, Stanton-Cook M, et al. Sequential acquisition of virulence and fluoroquinolone resistance has shaped the evolution of Escherichia coli ST131. MBio. 2016;7(2):e00347.  https://doi.org/10.1128/mBio.00347-16.CrossRefGoogle Scholar
  45. 45.
    Johnson TJ, Danzeisen JD, Youmans B, Case K, Llop K, Munoz-Aguayo J, et al. Separate F-type plasmids have shaped the evolution of the H30 subclone of Escherichia coli sequence type 131. mSphere. 2016.  https://doi.org/10.1128/msphere.00121-16.Google Scholar
  46. 46.
    Matsumura Y, Pitout JD, Gomi R, Matsuda T, Noguchi T, Yamamoto M, et al. Global Escherichia coli sequence type 131 clade with blaCTX-M-27 gene. Emerg Infect Dis. 2016;22(11):1900–7.  https://doi.org/10.3201/eid2211.160519.CrossRefGoogle Scholar
  47. 47.
    Matsumura Y, Johnson JR, Yamamoto M, Nagao M, Tanaka M, Takakura S, et al. CTX-M-27- and CTX-M-14-producing, ciprofloxacin-resistant Escherichia coli of the H30 subclonal group within ST131 drive a Japanese regional ESBL epidemic. J Antimicrob Chemother. 2015;70(6):1639–49.  https://doi.org/10.1093/jac/dkv017.Google Scholar
  48. 48.
    Ghosh H, Doijad S, Falgenhauer L, Fritzenwanker M, Imirzalioglu C, Chakraborty T. blaCTX-M-27-encoding Escherichia coli sequence type 131 lineage C1-M27 clone in clinical isolates, Germany. Emerg Infect Dis. 2017;23(10):1754–6.  https://doi.org/10.3201/eid2310.170938.CrossRefGoogle Scholar
  49. 49.
    Birgy A, Bidet P, Levy C, Sobral E, Cohen R, Bonacorsi S. CTX-M-27-producing Escherichia coli of sequence type 131 and clade C1-M27, France. Emerg Infect Dis. 2017;23(5):885.  https://doi.org/10.3201/eid2305.161865.CrossRefGoogle Scholar
  50. 50.
    Merino I, Hernandez-Garcia M, Turrientes MC, Perez-Viso B, Lopez-Fresnena N, Diaz-Agero C, et al. Emergence of ESBL-producing Escherichia coli ST131-C1-M27 clade colonizing patients in Europe. J Antimicrob Chemother. 2018;73(11):2973–80.  https://doi.org/10.1093/jac/dky296.CrossRefGoogle Scholar
  51. 51.
    Schaufler K, Semmler T, Wieler LH, Trott DJ, Pitout J, Peirano G, et al. Genomic and functional analysis of emerging virulent and multi-drug resistant E. coli lineage ST648. Antimicrob Agents Chemother. 2019;78:89.  https://doi.org/10.1128/aac.00243-19.Google Scholar
  52. 52.
    Karfunkel D, Carmeli Y, Chmelnitsky I, Kotlovsky T, Navon-Venezia S. The emergence and dissemination of CTX-M-producing Escherichia coli sequence type 131 causing community-onset bacteremia in Israel. Eur J Clin Microbiol Infect Dis. 2013;32(4):513–21.  https://doi.org/10.1007/s10096-012-1765-9.CrossRefGoogle Scholar
  53. 53.
    Manges AR, Mende K, Murray CK, Johnston BD, Sokurenko EV, Tchesnokova V, et al. Clonal distribution and associated characteristics of Escherichia coli clinical and surveillance isolates from a military medical center. Diagn Microbiol Infect Dis. 2017;87(4):382–5.  https://doi.org/10.1016/j.diagmicrobio.2017.01.007.CrossRefGoogle Scholar
  54. 54.
    Matsumura Y, Noguchi T, Tanaka M, Kanahashi T, Yamamoto M, Nagao M, et al. Population structure of Japanese extraintestinal pathogenic Escherichia coli and its relationship with antimicrobial resistance. J Antimicrob Chemother. 2017;72(4):1040–9.  https://doi.org/10.1093/jac/dkw530.Google Scholar
  55. 55.
    Wang S, Zhao SY, Xiao SZ, Gu FF, Liu QZ, Tang J, et al. Antimicrobial resistance and molecular epidemiology of Escherichia coli causing bloodstream infections in three hospitals in Shanghai, China. PLoS One. 2016;11(1):e0147740.  https://doi.org/10.1371/journal.pone.0147740.CrossRefGoogle Scholar
  56. 56.
    Bubpamala J, Khuntayaporn P, Thirapanmethee K, Montakantikul P, Santanirand P, Chomnawang MT. Phenotypic and genotypic characterizations of extended-spectrum beta-lactamase-producing Escherichia coli in Thailand. Infect Drug Resist. 2018;11:2151–7.  https://doi.org/10.2147/IDR.S174506.CrossRefGoogle Scholar
  57. 57.
    Shaik S, Ranjan A, Tiwari SK, Hussain A, Nandanwar N, Kumar N, et al. Comparative genomic analysis of globally dominant ST131 clone with other epidemiologically successful extraintestinal pathogenic Escherichia coli (ExPEC) lineages. MBio. 2017.  https://doi.org/10.1128/mbio.01596-17.Google Scholar
  58. 58.
    Valenza G, Werner M, Eisenberger D, Nickel S, Lehner-Reindl V, Holler C, et al. First report of the new emerging global clone ST1193 among clinical isolates of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli from Germany. J Glob Antimicrob Resist. 2019.  https://doi.org/10.1016/j.jgar.2019.01.014.Google Scholar
  59. 59.
    Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin Microbiol Rev. 2019.  https://doi.org/10.1128/cmr.00135-18.Google Scholar
  60. 60.
    Peirano G, Pitout JD. Molecular epidemiology of Escherichia coli producing CTX-M beta-lactamases: the worldwide emergence of clone ST131 O25:H4. Int J Antimicrob Agents. 2010;35(4):316–21.  https://doi.org/10.1016/j.ijantimicag.2009.11.003.CrossRefGoogle Scholar
  61. 61.
    Talaminos A, Lopez-Cerero L, Calvillo J, Pascual A, Roa LM, Rodriguez-Bano J. Modelling the epidemiology of Escherichia coli ST131 and the impact of interventions on the community and healthcare centres. Epidemiol Infect. 2016;144(9):1974–82.  https://doi.org/10.1017/S0950268816000030.CrossRefGoogle Scholar
  62. 62.
    Rodriguez-Bano J, Gutierrez-Gutierrez B, Machuca I, Pascual A. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin Microbiol Rev. 2018.  https://doi.org/10.1128/cmr.00079-17.Google Scholar
  63. 63.
    Harris PN, Tambyah PA, Paterson DL. Beta-lactam and beta-lactamase inhibitor combinations in the treatment of extended-spectrum beta-lactamase producing Enterobacteriaceae: time for a reappraisal in the era of few antibiotic options? Lancet Infect Dis. 2015;15(4):475–85.  https://doi.org/10.1016/S1473-3099(14)70950-8.CrossRefGoogle Scholar
  64. 64.
    Muhammed M, Flokas ME, Detsis M, Alevizakos M, Mylonakis E. Comparison between carbapenems and beta-lactam/beta-lactamase inhibitors in the treatment for bloodstream infections caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae: a systematic review and meta-analysis. Open Forum Infect Dis. 2017.  https://doi.org/10.1093/ofid/ofx099.Google Scholar
  65. 65.
    Palacios-Baena ZR, Gutierrez-Gutierrez B, De Cueto M, Viale P, Venditti M, Hernandez-Torres A, et al. Development and validation of the INCREMENT-ESBL predictive score for mortality in patients with bloodstream infections due to extended-spectrum-beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother. 2017;72(3):906–13.  https://doi.org/10.1093/jac/dkw513.Google Scholar
  66. 66.
    Harris PNA, Pezzani MD, Gutierrez-Gutierrez B, Viale P, Hsueh PR, Ruiz-Garbajosa P, et al. Geographical variation in therapy for bloodstream infections due to multidrug-resistant Enterobacteriaceae: a post-hoc analysis of the INCREMENT study. Int J Antimicrob Agents. 2017;50(5):664–72.  https://doi.org/10.1016/j.ijantimicag.2017.08.005.CrossRefGoogle Scholar
  67. 67.
    Scheuerman O, Schechner V, Carmeli Y, Gutierrez-Gutierrez B, Calbo E, Almirante B, et al. Comparison of predictors and mortality between bloodstream infections caused by ESBL-producing Escherichia coli and ESBL-producing Klebsiella pneumoniae. Infect Control Hosp Epidemiol. 2018;39(6):660–7.  https://doi.org/10.1017/ice.2018.63.CrossRefGoogle Scholar
  68. 68.
    Gutierrez-Gutierrez B, Perez-Galera S, Salamanca E, de Cueto M, Calbo E, Almirante B, et al. A multinational, preregistered cohort study of beta-lactam/beta-lactamase inhibitor combinations for treatment of bloodstream infections due to extended-spectrum-beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2016;60(7):4159–69.  https://doi.org/10.1128/AAC.00365-16.CrossRefGoogle Scholar
  69. 69.
    Palacios-Baena ZR, Gutierrez-Gutierrez B, Calbo E, Almirante B, Viale P, Oliver A, et al. Empiric therapy with carbapenem-sparing regimens for bloodstream infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae: results from the INCREMENT cohort. Clin Infect Dis. 2017;65(10):1615–23.  https://doi.org/10.1093/cid/cix606.CrossRefGoogle Scholar
  70. 70.
    Gutierrez-Gutierrez B, Bonomo RA, Carmeli Y, Paterson DL, Almirante B, Martinez-Martinez L, et al. Ertapenem for the treatment of bloodstream infections due to ESBL-producing Enterobacteriaceae: a multinational pre-registered cohort study. J Antimicrob Chemother. 2016;71(6):1672–80.  https://doi.org/10.1093/jac/dkv502.CrossRefGoogle Scholar
  71. 71.
    Harris PNA, Tambyah PA, Lye DC, Mo Y, Lee TH, Yilmaz M, et al. Effect of piperacillin–tazobactam vs meropenem on 30-day mortality for patients with E. coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: a randomized clinical trial. JAMA. 2018;320(10):984–94.  https://doi.org/10.1001/jama.2018.12163.CrossRefGoogle Scholar
  72. 72.
    Hayden MK, Won SY. Carbapenem-sparing therapy for extended-spectrum beta-lactamase-producing E. coli and Klebsiella pneumoniae bloodstream infection: the search continues. JAMA. 2018;320(10):979–81.  https://doi.org/10.1001/jama.2018.12565.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Microbiology, Alberta Public Laboratories, Cummings School of MedicineUniversity of CalgaryCalgaryCanada
  2. 2.Departments of Pathology and Laboratory Medicine, Cummings School of MedicineUniversity of CalgaryCalgaryCanada
  3. 3.Microbiology, Immunology and Infectious Diseases, Cummings School of MedicineUniversity of CalgaryCalgaryCanada
  4. 4.Department of Medical MicrobiologyUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations