, Volume 79, Issue 8, pp 823–831 | Cite as

Dacomitinib in the Management of Advanced Non-Small-Cell Lung Cancer

  • Sally C. M. Lau
  • Ullas Batra
  • Tony S. K. MokEmail author
  • Herbert H. Loong
Review Article
Part of the following topical collections:
  1. Topical Collection on Lung Cancer


The use of targeted therapy in the management of epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer is an important milestone in the management of advanced lung cancer. There are several generations of EGFR tyrosine kinase inhibitors available for clinical use. Dacomitinib is a second-generation irreversible EGFR tyrosine kinase inhibitor with early-phase clinical studies showing efficacy in non-small-cell lung cancer. In the recently published ARCHER 1050 phase III study, dacomitinib given at 45 mg/day orally was superior to gefitinib, a first-generation reversible EGFR tyrosine kinase inhibitor, in improving both progression-free survival and overall survival when given as first-line therapy. There is no prospective evidence to support the use of dacomitinib as subsequent therapy in patients previously treated with chemotherapy or a first-generation EGFR tyrosine kinase inhibitor such as gefitinib and erlotinib. Dacomitinib has not demonstrated any benefit in unselected patients with non-small-cell lung cancer, and its use should be limited to those with known EGFR-sensitizing mutations. Dacomitinib is associated with increased toxicities of diarrhea, rash, stomatitis, and paronychia compared with first-generation EGFR inhibitors. Global quality of life was maintained when assessed in phase III studies. Overall, dacomitinib is an important first- line agent in EGFR-mutated non-small-cell lung cancer in otherwise fit patients whose toxicities can be well managed.



Editorial support for styling the article as per journal specifications was provided by Brian Szente of InScience Communications, Springer Healthcare (Philadelphia, PA, USA).

Compliance with Ethical Standards


Funding for editorial support for styling the article was provided by Pfizer.

Conflict of interest

Sally C. M. Lau and Ullas Batra have no conflicts of interest that are directly relevant to the content of this article. Tony Mok has received consulting fees/honorarium from AstraZeneca, Roche/Genentech, Pfizer, Eli Lilly, BI, Merck Serono, MSD, Novartis, SFJ Pharmaceutical, ACEA Biosciences, Inc., Vertex Pharmaceuticals, BMS, OncoGenex Pharmaceuticals, Inc., Celgene, Ignyta, Inc., Fishawack Facilitate Ltd, Takeda Oncology, Janssen, Hutchison Chi-Med, OrigiMed, Hengrui Therapeutics Inc., Sanofi-Aventis, R&D, Yuhan Corporation, PrlME Oncology, Amoy Diagnostics Co., Ltd., and Loxo-Oncology. He has also received payment for lectures including speakers’ bureaus from AstraZeneca, Roche/Genentech, Pfizer, Eli Lilly, BI, MSD, Novartis, BMS, Taiho, Takeda Oncology, PrlME Oncology, and Amoy Diagnostics Co., Ltd. He has held or currently holds stock/stock options in Sanomics Ltd. and Hutchison Chi-Med. Herbert H. Loong has received research funding from MSD and Mundipharma. He has also served or is currently serving on the advisory boards of Boehringer Ingelheim, Eli Lilly, Novartis, LOXO Pharmaceuticals, and Roche/Genentech. He has received speakers’ fees from AbbVie, Bayer, Eisai Pharmaceuticals, Eli-Lilly, Guardant Health, and Novartis.


  1. 1.
    Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends: an update. Cancer Epidemiol Biomark Prev. 2016;25(1):16–27.CrossRefGoogle Scholar
  2. 2.
    Han JY, Park K, Kim SW, Lee DH, Kim HY, Kim HT, et al. First-SIGNAL: first-line single-agent iressa versus gemcitabine and cisplatin trial in never-smokers with adenocarcinoma of the lung. J Clin Oncol. 2012;30(10):1122–8.CrossRefGoogle Scholar
  3. 3.
    Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362(25):2380–8.CrossRefGoogle Scholar
  4. 4.
    Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11(2):121–8.CrossRefGoogle Scholar
  5. 5.
    Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57.CrossRefGoogle Scholar
  6. 6.
    Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239–46.CrossRefGoogle Scholar
  7. 7.
    Sequist LV, Yang JC, Yamamoto N, O’Byrne K, Hirsh V, Mok T, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013;31(27):3327–34.CrossRefGoogle Scholar
  8. 8.
    Wu YL, Zhou C, Hu CP, Feng J, Lu S, Huang Y, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 2014;15(2):213–22.CrossRefGoogle Scholar
  9. 9.
    Yang JC, Wu YL, Schuler M, Sebastian M, Popat S, Yamamoto N, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015;16(2):141–51.CrossRefGoogle Scholar
  10. 10.
    Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12(8):735–42.CrossRefGoogle Scholar
  11. 11.
    Nguyen KS, Kobayashi S, Costa DB. Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancers dependent on the epidermal growth factor receptor pathway. Clin Lung Cancer. 2009;10(4):281–9.CrossRefGoogle Scholar
  12. 12.
    Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19(8):2240–7.CrossRefGoogle Scholar
  13. 13.
    Gonzales AJ, Hook KE, Althaus IW, Ellis PA, Trachet E, Delaney AM, et al. Antitumor activity and pharmacokinetic properties of PF-00299804, a second-generation irreversible pan-erbB receptor tyrosine kinase inhibitor. Mol Cancer Ther. 2008;7(7):1880–9.CrossRefGoogle Scholar
  14. 14.
    Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR, et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008;27(34):4702–11.CrossRefGoogle Scholar
  15. 15.
    Park K, Tan EH, O’Byrne K, Zhang L, Boyer M, Mok T, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016;17(5):577–89.CrossRefGoogle Scholar
  16. 16.
    Mok TS, Cheng Y, Zhou X, Lee KH, Nakagawa K, Niho S, et al. Improvement in overall survival in a randomized study that compared dacomitinib with gefitinib in patients with advanced non-small-cell lung cancer and EGFR-activating mutations. J Clin Oncol. 2018;36(22):2244–50.CrossRefGoogle Scholar
  17. 17.
    Wu YL, Cheng Y, Zhou X, Lee KH, Nakagawa K, Niho S, et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol. 2017;18(11):1454–66.CrossRefGoogle Scholar
  18. 18.
    Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378(2):113–25.CrossRefGoogle Scholar
  19. 19.
    Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37.CrossRefGoogle Scholar
  20. 20.
    Engelman JA, Zejnullahu K, Gale CM, Lifshits E, Gonzales AJ, Shimamura T, et al. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res. 2007;67(24):11924–32.CrossRefGoogle Scholar
  21. 21.
    Janne PA, Boss DS, Camidge DR, Britten CD, Engelman JA, Garon EB, et al. Phase I dose-escalation study of the pan-HER inhibitor, PF299804, in patients with advanced malignant solid tumors. Clin Cancer Res. 2011;17(5):1131–9.CrossRefGoogle Scholar
  22. 22.
    Ruiz-Garcia A, Masters JC, LaBadie RR, Liang Y, Boutros T, Mendes da Costa L. Effect of food and antacid treatment on bioavailability of 45 mg tablet of dacomitinib relative to dacomitinib administration under fasted conditions (abstract PII-007). Clin Pharmacol Ther. 2014;95:S63.Google Scholar
  23. 23.
    Park K, Cho BC, Kim DW, Ahn MJ, Lee SY, Gernhardt D, et al. Safety and efficacy of dacomitinib in Korean patients with KRAS wild-type advanced non-small-cell lung cancer refractory to chemotherapy and erlotinib or gefitinib: a phase I/II trial. J Thorac Oncol. 2014;9(10):1523–31.CrossRefGoogle Scholar
  24. 24.
    Takahashi T, Boku N, Murakami H, Naito T, Tsuya A, Nakamura Y, et al. Phase I and pharmacokinetic study of dacomitinib (PF-00299804), an oral irreversible, small molecule inhibitor of human epidermal growth factor receptor-1, -2, and -4 tyrosine kinases, in Japanese patients with advanced solid tumors. Investig New Drugs. 2012;30(6):2352–63.CrossRefGoogle Scholar
  25. 25.
    Bello CL, Smith E, Ruiz-Garcia A, Ni G, Alvey C, Loi CM. A phase I, open-label, mass balance study of [(14)C] dacomitinib (PF-00299804) in healthy male volunteers. Cancer Chemother Pharmacol. 2013;72(2):379–85.CrossRefGoogle Scholar
  26. 26.
    Ruiz-Garcia A, Giri N, LaBadie RR, Ni G, Boutros T, Richie N, et al. A phase I open-label study to investigate the potential drug-drug interaction between single-dose dacomitinib and steady-state paroxetine in healthy volunteers. J Clin Pharmacol. 2014;54(5):555–62.CrossRefGoogle Scholar
  27. 27.
    Bello CL, LaBadie RR, Ni G, Boutros T, McCormick C, Ndongo MN. The effect of dacomitinib (PF-00299804) on CYP2D6 activity in healthy volunteers who are extensive or intermediate metabolizers. Cancer Chemother Pharmacol. 2012;69(4):991–7.CrossRefGoogle Scholar
  28. 28.
    Janne PA, Ou SH, Kim DW, Oxnard GR, Martins R, Kris MG, et al. Dacomitinib as first-line treatment in patients with clinically or molecularly selected advanced non-small-cell lung cancer: a multicentre, open-label, phase 2 trial. Lancet Oncol. 2014;15(13):1433–41.CrossRefGoogle Scholar
  29. 29.
    Ramalingam SS, Blackhall F, Krzakowski M, Barrios CH, Park K, Bover I, et al. Randomized phase II study of dacomitinib (PF-00299804), an irreversible pan-human epidermal growth factor receptor inhibitor, versus erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2012;30(27):3337–44.CrossRefGoogle Scholar
  30. 30.
    Ramalingam SS, Janne PA, Mok T, O’Byrne K, Boyer MJ, Von Pawel J, et al. Dacomitinib versus erlotinib in patients with advanced-stage, previously treated non-small-cell lung cancer (ARCHER 1009): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(12):1369–78.CrossRefGoogle Scholar
  31. 31.
    Ramalingam SS, O’Byrne K, Boyer M, Mok T, Janne PA, Zhang H, et al. Dacomitinib versus erlotinib in patients with EGFR-mutated advanced nonsmall-cell lung cancer (NSCLC): pooled subset analyses from two randomized trials. Ann Oncol. 2016;27(3):423–9.CrossRefGoogle Scholar
  32. 32.
    Reckamp KL, Giaccone G, Camidge DR, Gadgeel SM, Khuri FR, Engelman JA, et al. A phase 2 trial of dacomitinib (PF-00299804), an oral, irreversible pan-HER (human epidermal growth factor receptor) inhibitor, in patients with advanced non-small cell lung cancer after failure of prior chemotherapy and erlotinib. Cancer. 2014;120(8):1145–54.CrossRefGoogle Scholar
  33. 33.
    Ellis PM, Shepherd FA, Millward M, Perrone F, Seymour L, Liu G, et al. Dacomitinib compared with placebo in pretreated patients with advanced or metastatic non-small-cell lung cancer (NCIC CTG BR.26): a double-blind, randomised, phase 3 trial. Lancet Oncol. 2014;15(12):1379–88.CrossRefGoogle Scholar
  34. 34.
    Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353(2):123–32.CrossRefGoogle Scholar
  35. 35.
    Lee JK, Hahn S, Kim DW, Suh KJ, Keam B, Kim TM, et al. Epidermal growth factor receptor tyrosine kinase inhibitors vs conventional chemotherapy in non-small cell lung cancer harboring wild-type epidermal growth factor receptor: a meta-analysis. JAMA. 2014;311(14):1430–7.CrossRefGoogle Scholar
  36. 36.
    Sheng Z, Zhang Y. The efficacy of epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer harboring wild-type epidermal growth factor receptor: a meta-analysis of 25 RCTs. Am J Clin Oncol. 2017;40(4):362–9.CrossRefGoogle Scholar
  37. 37.
    Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376(7):629–40.CrossRefGoogle Scholar
  38. 38.
    Yang JC, Sequist LV, Geater SL, Tsai CM, Mok TS, Schuler M, et al. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol. 2015;16(7):830–8.CrossRefGoogle Scholar
  39. 39.
    Park K, Tan E, O’Byrne K, Zhang L, Boyer M, Mok T, et al. P3.01-039 sequential afatinib-osimertinib therapy in EGFR mutation-positive (EGFRm+) NSCLC: analysis of time on treatment and OS. J Thorac Oncol. 2017;12(Suppl. 2):S2215–6.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sally C. M. Lau
    • 1
  • Ullas Batra
    • 2
  • Tony S. K. Mok
    • 3
    • 4
    Email author
  • Herbert H. Loong
    • 3
    • 4
    • 5
  1. 1.Department of Medical Oncology and Hematology, Princess Margaret Cancer CentreUniversity of TorontoTorontoCanada
  2. 2.Department of Medical OncologyRajiv Gandhi Cancer Institute and Research CentreDelhiIndia
  3. 3.Department of Clinical OncologyThe Chinese University of Hong KongShatinHong Kong
  4. 4.State Key Laboratory of Translational OncologyThe Chinese University of Hong KongShatinHong Kong
  5. 5.Phase 1 Clinical Trial CentreThe Chinese University of Hong KongShatinHong Kong

Personalised recommendations