Advertisement

Drugs

pp 1–13 | Cite as

Targeting EGFR and RAS/RAF Signaling in the Treatment of Metastatic Colorectal Cancer: From Current Treatment Strategies to Future Perspectives

  • Takuro Mizukami
  • Naoki Izawa
  • Takako Eguchi Nakajima
  • Yu SunakawaEmail author
Review Article
  • 114 Downloads

Abstract

The epidermal growth factor receptor (EGFR) and RAS/RAF signaling pathway plays pivotal roles in tumor progression via proliferation, survival, invasion, and immune evasion. Two anti-EGFR monoclonal antibodies, cetuximab and panitumumab, have become essential components in the treatment of patients with metastatic colorectal cancer (mCRC). Treatment with these anti-EGFR antibodies has shown definite benefits when administered in all treatment lines and is strongly recommended as the preferred regimen to prolong survival, especially when administered in the first- and third-lines. Recent efforts have revealed not only mechanisms responsible for resistance to anti-EGFR antibodies, including expanded RAS mutations as a negative predictive biomarker, but also the possibility of continuing anti-EGFR antibody treatment in combination with chemotherapy. Furthermore, the challenges associated with the pharmaceutical development of treatments for patients with mutant-type BRAF mCRC are ongoing. In this review, we provide an overview of the EGFR and RAS/RAF signaling pathway and antitumor activity, focusing on practical aspects such as established treatments including patient selection, treatment strategies, and future perspectives for drug development targeting the EGFR and RAS/RAF signaling pathway.

Notes

Compliance with Ethical Standards

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Takuro Mizukami has received consulting fees from Merck Serono and a speaker honorarium from Merck Serono and Takeda Pharmaceutical Co. Ltd. Takako Eguchi Nakajima has received research grants from Merck Serono, Taiho Pharmaceutical Co. Ltd., Chugai Pharmaceutical Co. Ltd., Takeda Pharmaceutical Co. Ltd., Eli Lilly Japan, and Sanofi KK and a speaker honorarium from Merck Serono, Takeda Pharmaceutical Co. Ltd., Taiho Pharmaceutical Co. Ltd., Chugai Pharmaceutical Co. Ltd., and Eli Lilly Japan. Yu Sunakawa has received consulting fees from Takeda Pharmaceutical Co. Ltd. and a speaker honorarium from Takeda Pharmaceutical Co. Ltd. and Merck Serono. Naoki Izawa declares that he has no conflicts of interest that might be relevant to the contents of this manuscript.

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRefGoogle Scholar
  2. 2.
    Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med. 2008;358:1160–74.CrossRefPubMedGoogle Scholar
  3. 3.
    Van Cutsem E, Kohne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360:1408–17.CrossRefPubMedGoogle Scholar
  4. 4.
    Bokemeyer C, Bondarenko I, Makhson A, et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2009;27:663–71.CrossRefPubMedGoogle Scholar
  5. 5.
    Bokemeyer C, Van Cutsem E, Rougier P, et al. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer. 2012;48:1466–75.CrossRefPubMedGoogle Scholar
  6. 6.
    Vaughn CP, Zobell SD, Furtado LV, et al. Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosomes Cancer. 2011;50:307–12.CrossRefPubMedGoogle Scholar
  7. 7.
    Allegra CJ, Jessup JM, Somerfield MR, et al. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol. 2009;27:2091–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Schwartzberg LS, Rivera F, Karthaus M, et al. PEAK: a randomized, multicenter phase II study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or bevacizumab plus mFOLFOX6 in patients with previously untreated, unresectable, wild-type KRAS exon 2 metastatic colorectal cancer. J Clin Oncol. 2014;32:2240–7.CrossRefPubMedGoogle Scholar
  9. 9.
    De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11:753–62.CrossRefPubMedGoogle Scholar
  10. 10.
    Di Nicolantonio F, Martini M, Molinari F, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26:5705–12.CrossRefPubMedGoogle Scholar
  11. 11.
    Oda K, Okada J, Timmerman L, et al. PIK3CA cooperates with other phosphatidylinositol 3′-kinase pathway mutations to effect oncogenic transformation. Cancer Res. 2008;68:8127–36.CrossRefPubMedGoogle Scholar
  12. 12.
    Sartore-Bianchi A, Martini M, Molinari F, et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res. 2009;69:1851–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Heinemann V, von Weikersthal LF, Decker T, et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:1065–75.CrossRefPubMedGoogle Scholar
  14. 14.
    Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351:337–45.CrossRefPubMedGoogle Scholar
  15. 15.
    Jonker DJ, O’Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med. 2007;357:2040–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Peeters M, Price TJ, Cervantes A, et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28:4706–13.CrossRefPubMedGoogle Scholar
  17. 17.
    Seymour MT, Brown SR, Middleton G, et al. Panitumumab and irinotecan versus irinotecan alone for patients with KRAS wild-type, fluorouracil-resistant advanced colorectal cancer (PICCOLO): a prospectively stratified randomised trial. Lancet Oncol. 2013;14:749–59.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sobrero AF, Maurel J, Fehrenbacher L, et al. EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:2311–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Shitara K, Yonesaka K, Denda T, et al. Randomized study of FOLFIRI plus either panitumumab or bevacizumab for wild-type KRAS colorectal cancer-WJOG 6210G. Cancer Sci. 2016;107:1843–50.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cascinu SLS, Rosati G, et al. A phase III multicenter trial comparing two different sequences of second/third line therapy (cetuximab/irinotecan followed by FOLFOX versus FOLFOX followed by cetuximab/irinotecan) in metastatic KRAS wt colorectal cancer (mCC) patients, refractory to FOLFIRI/bevacizumab. Eur J Cancer. 2015;51(Suppl S3):abstr 2006.Google Scholar
  21. 21.
    Maughan TS, Adams RA, Smith CG, et al. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet. 2011;377:2103–14.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tveit KM, Guren T, Glimelius B, et al. Phase III trial of cetuximab with continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (Nordic FLOX) versus FLOX alone in first-line treatment of metastatic colorectal cancer: the NORDIC-VII study. J Clin Oncol. 2012;30:1755–62.CrossRefPubMedGoogle Scholar
  23. 23.
    Douillard JY, Siena S, Cassidy J, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol. 2010;28:4697–705.CrossRefPubMedGoogle Scholar
  24. 24.
    Van Cutsem E, Kohne CH, Lang I, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011;29:2011–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Bokemeyer C, Bondarenko I, Hartmann JT, et al. Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol. 2011;22:1535–46.CrossRefPubMedGoogle Scholar
  26. 26.
    Douillard JY, Oliner KS, Siena S, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369:1023–34.CrossRefPubMedGoogle Scholar
  27. 27.
    Qin S, Li J, Wang L, et al. Efficacy and tolerability of first-line cetuximab plus leucovorin, fluorouracil, and oxaliplatin (FOLFOX-4) versus FOLFOX-4 in patients with RAS wild-type metastatic colorectal cancer: the open-label, randomized, phase III TAILOR trial. J Clin Oncol. 2018;36:3031–9 (JCO2018783183).CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Aranda E, Garcia-Alfonso P, Benavides M, et al. First-line mFOLFOX plus cetuximab followed by mFOLFOX plus cetuximab or single-agent cetuximab as maintenance therapy in patients with metastatic colorectal cancer: phase II randomised MACRO2 TTD study. Eur J Cancer. 2018;101:263–72.CrossRefPubMedGoogle Scholar
  29. 29.
    Modest DP, Rivera F, Bachet JB, et al. Panitumumab-based maintenance after oxaliplatin discontinuation in metastatic colorectal cancer: a retrospective analysis of two randomised trials. Int J Cancer. 2019.  https://doi.org/10.1002/ijc.32110.CrossRefPubMedGoogle Scholar
  30. 30.
    Pietrantonio FM, De Braud FG, et al. First-line FOLFOX plus panitumumab (Pan) followed by 5FU/LV plus Pan or single-agent Pan as maintenance therapy in patients with RAS wild-type metastatic colorectal cancer (mCRC): the VALENTINO study. J Clin Oncol. 2018;36(15_suppl):3505.CrossRefGoogle Scholar
  31. 31.
    Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37.CrossRefPubMedGoogle Scholar
  32. 32.
    Yarden Y. The EGFR family and its ligands in human cancer signalling mechanisms and therapeutic opportunities. Eur J Cancer. 2001;37(Suppl 4):S3–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Ciardiello F, Tortora G. Epidermal growth factor receptor (EGFR) as a target in cancer therapy: understanding the role of receptor expression and other molecular determinants that could influence the response to anti-EGFR drugs. Eur J Cancer. 2003;39:1348–54.CrossRefPubMedGoogle Scholar
  34. 34.
    Pietrantonio F, Vernieri C, Siravegna G, et al. Heterogeneity of acquired resistance to anti-EGFR monoclonal antibodies in patients with metastatic colorectal cancer. Clin Cancer Res. 2017;23:2414–22.CrossRefPubMedGoogle Scholar
  35. 35.
    Saltz LB, Meropol NJ, Loehrer PJ Sr, et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol. 2004;22:1201–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Van Cutsem E, Peeters M, Siena S, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 2007;25:1658–64.CrossRefPubMedGoogle Scholar
  37. 37.
    Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–34.CrossRefPubMedGoogle Scholar
  38. 38.
    Chung KY, Shia J, Kemeny NE, et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol. 2005;23:1803–10.CrossRefPubMedGoogle Scholar
  39. 39.
    Laurent-Puig P, Cayre A, Manceau G, et al. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol. 2009;27:5924–30.CrossRefPubMedGoogle Scholar
  40. 40.
    Scartozzi M, Bearzi I, Mandolesi A, et al. Epidermal growth factor receptor (EGFR) gene copy number (GCN) correlates with clinical activity of irinotecan-cetuximab in K-RAS wild-type colorectal cancer: a fluorescence in situ (FISH) and chromogenic in situ hybridization (CISH) analysis. BMC Cancer. 2009;9:303.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sickmier EA, Kurzeja RJ, Michelsen K, et al. The panitumumab EGFR complex reveals a binding mechanism that overcomes cetuximab induced resistance. PLoS One. 2016;11:e0163366.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Esposito C, Rachiglio AM, La Porta ML, et al. The S492R EGFR ectodomain mutation is never detected in KRAS wild-type colorectal carcinoma before exposure to EGFR monoclonal antibodies. Cancer Biol Ther. 2013;14:1143–6.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jacobs B, De Roock W, Piessevaux H, et al. Amphiregulin and epiregulin mRNA expression in primary tumors predicts outcome in metastatic colorectal cancer treated with cetuximab. J Clin Oncol. 2009;27:5068–74.CrossRefPubMedGoogle Scholar
  44. 44.
    Stintzing S, Jung A, Kapaun C, Reiche J, Modest DP, Giessen CA, Vehling-Kaiser U, Stauch M, Hass H, von Weikersthal LF, Kirchner T, Heinemann V. Ligand expression of the EGFR ligands amphiregulin, epiregulin, and amplification of the EGFR gene to predict for treatment efficacy in KRAS wild-type mCRC patients treated with cetuximab plus CAPIRI and CAPOX: analysis of the randomized AIO CRC-0104 trial. J Clin Oncol. 2012;30(15_suppl):3519.Google Scholar
  45. 45.
    Baker JB, Dutta D, Watson D, et al. Tumour gene expression predicts response to cetuximab in patients with KRAS wild-type metastatic colorectal cancer. Br J Cancer. 2011;104:488–95.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sunakawa Y, Yang D, Moran M, et al. Combined assessment of EGFR-related molecules to predict outcome of 1st-line cetuximab-containing chemotherapy for metastatic colorectal cancer. Cancer Biol Ther. 2016;17:751–9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Stintzing S, Ivanova B, Ricard I, et al. Amphiregulin (AREG) and epiregulin (EREG) gene expression as predictor for overall survival (OS) in oxaliplatin/fluoropyrimidine plus bevacizumab treated mCRC patients-analysis of the phase III AIO KRK-0207 trial. Front Oncol. 2018;8:474.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Cox AD, Der CJ. Ras history: the saga continues. Small GTPases. 2010;1:2–27.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Chang YY, Lin PC, Lin HH, et al. Mutation spectra of RAS gene family in colorectal cancer. Am J Surg. 2016;212(537–544):e533.Google Scholar
  50. 50.
    Marcus K, Mattos C. Direct Attack on RAS: intramolecular communication and mutation-specific effects. Clin Cancer Res. 2015;21:1810–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Yuki STK, Taniguchi H, Hamaguchi T, Akagi K, Denda T, Mizukami T, Oki E, Yamada T, Shiozawa M, Kudo T, Tamura T, Esaki T, Naruge D, Kajiwara T, Nomura S, Fujii S, Shitara K, Ohtsu A, Yoshino T. The nationwide cancer genome screening project in Japan SCRUM-Japan GI-SCREEN: efficient identification of cancer genome alterations in advanced colorectal cancer. Ann Oncol. 2017;28(suppl_5):v158–208.Google Scholar
  52. 52.
    Benson AB, Venook AP, Al-Hawary MM, et al. NCCN guidelines insights: colon cancer, version 2.2018. J Natl Compr Canc Netw. 2018;16(4):359–69.CrossRefPubMedGoogle Scholar
  53. 53.
    Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;27:1386–422.CrossRefPubMedGoogle Scholar
  54. 54.
    Yoshino T, Arnold D, Taniguchi H, et al. Pan-Asian adapted ESMO consensus guidelines for the management of patients with metastatic colorectal cancer: a JSMO-ESMO initiative endorsed by CSCO, KACO, MOS, SSO and TOS. Ann Oncol. 2018;29:44–70.CrossRefPubMedGoogle Scholar
  55. 55.
    Peeters M, Oliner KS, Price TJ, et al. Analysis of KRAS/NRAS mutations in a phase III study of panitumumab with FOLFIRI compared with FOLFIRI alone as second-line treatment for metastatic colorectal cancer. Clin Cancer Res. 2015;21:5469–79.CrossRefPubMedGoogle Scholar
  56. 56.
    Ciardiello F, Normanno N, Maiello E, et al. Clinical activity of FOLFIRI plus cetuximab according to extended gene mutation status by next-generation sequencing: findings from the CAPRI-GOIM trial. Ann Oncol. 2014;25:1756–61.CrossRefPubMedGoogle Scholar
  57. 57.
    Ciardiello F, Normanno N, Martinelli E, et al. Cetuximab continuation after first progression in metastatic colorectal cancer (CAPRI-GOIM): a randomized phase II trial of FOLFOX plus cetuximab versus FOLFOX. Ann Oncol. 2016;27:1055–61.CrossRefPubMedGoogle Scholar
  58. 58.
    Bennouna J, Hiret S, Bertaut A, et al. Continuation of bevacizumab vs cetuximab plus chemotherapy after first progression in KRAS wild-type metastatic colorectal cancer: the UNICANCER PRODIGE18 randomized clinical trial. JAMA Oncol. 2018;5(1):83–90.CrossRefGoogle Scholar
  59. 59.
    Elez E, Argiles G, Tabernero J. First-line treatment of metastatic colorectal cancer: interpreting FIRE-3, PEAK, and CALGB/SWOG 80405. Curr Treat Options Oncol. 2015;16:52.CrossRefPubMedGoogle Scholar
  60. 60.
    Fernando R, Schwartzberg LS, Karthaus M, Fasola G, Canon J-L, Hecht JR, Tian Y, Yu H, Oliner KS, Go WY. Extended RAS analysis and subsequent anti-EGFR and anti-VEGF treatment (tx) in PEAK: a first-line phase 2 study of FOLFOX6 + panitumumab (pmab) or bevacizumab (bev) in metastatic colorectal cancer (mCRC). J Clin Oncol. 2014;32(15_suppl):3629.CrossRefGoogle Scholar
  61. 61.
    Lenz HJND, Lenz HJ, et al. CALGB/SWOG 80405: phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with expanded RAS analyses untreated metastatic adenocarcinoma of the colon or rectum. Proc Am Soc Clin Oncol. 2014;32(abstr LBA3):2014.Google Scholar
  62. 62.
    Khattak MA, Martin H, Davidson A, Phillips M. Role of first-line anti-epidermal growth factor receptor therapy compared with anti-vascular endothelial growth factor therapy in advanced colorectal cancer: a meta-analysis of randomized clinical trials. Clin Colorectal Cancer. 2015;14:81–90.CrossRefPubMedGoogle Scholar
  63. 63.
    Ciliberto D, Staropoli N, Caglioti F, et al. The best strategy for RAS wild-type metastatic colorectal cancer patients in first-line treatment: a classic and Bayesian meta-analysis. Crit Rev Oncol Hematol. 2018;125:69–77.CrossRefPubMedGoogle Scholar
  64. 64.
    Lee GH, Malietzis G, Askari A, et al. Is right-sided colon cancer different to left-sided colorectal cancer?—a systematic review. Eur J Surg Oncol. 2015;41:300–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Mizukami T, Takahashi M, Sunakawa Y, Yuki S, Kagawa Y, Takashima A, Kato K, Hara H, Denda T, Moriwaki T, Shiozawa M, Oki E, Satoh T, Kawakami H, Esaki T, Nishina T, Okamoto W, Yoshino T, Nakajima TE. Identification of site-specific genome alterations in metastatic colorectal cancer: Sub-study 003 of the SCRUM-Japan GI-SCREEN. J Clin Oncol. 2019;37(suppl 4):abstr 578.CrossRefGoogle Scholar
  66. 66.
    Petrelli F, Tomasello G, Borgonovo K, et al. Prognostic survival associated with left-sided vs right-sided colon cancer: a systematic review and meta-analysis. JAMA Oncol. 2016.  https://doi.org/10.1001/jamaoncol.2016.4227.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Boisen MK, Johansen JS, Dehlendorff C, et al. Primary tumor location and bevacizumab effectiveness in patients with metastatic colorectal cancer. Ann Oncol. 2013;24:2554–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Venook AP, Ou F-S, Lenz H-J, Kabbarah O, Qu X, Niedzwiecki D, Zemla T, Goldberg RM, Hochster HS, O’Neil BH, Sanoff HK, Mayer RJ, Bertagnolli MM, Blanke CD, Innocenti F. Primary (1°) tumor location as an independent prognostic marker from molecular features for overall survival (OS) in patients (pts) with metastatic colorectal cancer (mCRC): analysis of CALGB/SWOG 80405 (Alliance). J Clin Oncol. 2017;35(15_suppl):3503.CrossRefGoogle Scholar
  69. 69.
    Brule SY, Jonker DJ, Karapetis CS, et al. Location of colon cancer (right-sided versus left-sided) as a prognostic factor and a predictor of benefit from cetuximab in NCIC CO.17. Eur J Cancer. 2015;51:1405–14.CrossRefPubMedGoogle Scholar
  70. 70.
    Moretto R, Cremolini C, Rossini D, et al. Location of primary tumor and benefit from anti-epidermal growth factor receptor monoclonal antibodies in patients with RAS and BRAF wild-type metastatic colorectal cancer. Oncologist. 2016;21:988–94.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    von Einem JC, Heinemann V, von Weikersthal LF, et al. Left-sided primary tumors are associated with favorable prognosis in patients with KRAS codon 12/13 wild-type metastatic colorectal cancer treated with cetuximab plus chemotherapy: an analysis of the AIO KRK-0104 trial. J Cancer Res Clin Oncol. 2014;140:1607–14.CrossRefGoogle Scholar
  72. 72.
    Loupakis F, Yang D, Yau L, et al. Primary tumor location as a prognostic factor in metastatic colorectal cancer. J Natl Cancer Inst. 2015.  https://doi.org/10.1093/jnci/dju427.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Modest DP, Stintzing S, von Weikersthal LF, et al. Exploring the effect of primary tumor sidedness on therapeutic efficacy across treatment lines in patients with metastatic colorectal cancer: analysis of FIRE-3 (AIOKRK0306). Oncotarget. 2017;8:105749–60.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sunakawa Y, Ichikawa W, Tsuji A, et al. Prognostic impact of primary tumor location on clinical outcomes of metastatic colorectal cancer treated with cetuximab plus oxaliplatin-based chemotherapy: a subgroup analysis of the JACCRO CC-05/06 trials. Clin Colorectal Cancer. 2017;16:e171–80.CrossRefPubMedGoogle Scholar
  75. 75.
    Arnold D, Lueza B, Douillard JY, et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann Oncol. 2017;28:1713–29.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Holch JW, Ricard I, Stintzing S, et al. The relevance of primary tumour location in patients with metastatic colorectal cancer: a meta-analysis of first-line clinical trials. Eur J Cancer. 2017;70:87–98.CrossRefPubMedGoogle Scholar
  77. 77.
    Brennan DF, Dar AC, Hertz NT, et al. A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Nature. 2011;472:366–9.CrossRefPubMedGoogle Scholar
  78. 78.
    Weinstein JN, Collisson EA, Mills GB, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45:1113–20.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Ma BB, Mo F, Tong JH, et al. Elucidating the prognostic significance of KRAS, NRAS, BRAF and PIK3CA mutations in Chinese patients with metastatic colorectal cancer. Asia Pac J Clin Oncol. 2015;11:160–9.CrossRefPubMedGoogle Scholar
  80. 80.
    Tran B, Kopetz S, Tie J, et al. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer. 2011;117:4623–32.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Kawazoe A, Shitara K, Fukuoka S, et al. A retrospective observational study of clinicopathological features of KRAS, NRAS, BRAF and PIK3CA mutations in Japanese patients with metastatic colorectal cancer. BMC Cancer. 2015;15:258.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Rajagopalan H, Bardelli A, Lengauer C, et al. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418:934.CrossRefPubMedGoogle Scholar
  83. 83.
    Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 2007;50:113–30.CrossRefPubMedGoogle Scholar
  84. 84.
    Karapetis CS, Jonker D, Daneshmand M, et al. PIK3CA, BRAF, and PTEN status and benefit from cetuximab in the treatment of advanced colorectal cancer—results from NCIC CTG/AGITG CO.17. Clin Cancer Res. 2014;20:744–53.CrossRefPubMedGoogle Scholar
  85. 85.
    Peeters M, Price TJ, Cervantes A, et al. Final results from a randomized phase 3 study of FOLFIRI +/− panitumumab for second-line treatment of metastatic colorectal cancer. Ann Oncol. 2014;25:107–16.CrossRefPubMedGoogle Scholar
  86. 86.
    Peeters M, Oliner KS, Parker A, et al. Massively parallel tumor multigene sequencing to evaluate response to panitumumab in a randomized phase III study of metastatic colorectal cancer. Clin Cancer Res. 2013;19:1902–12.CrossRefPubMedGoogle Scholar
  87. 87.
    Pietrantonio F, Petrelli F, Coinu A, et al. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur J Cancer. 2015;51:587–94.CrossRefPubMedGoogle Scholar
  88. 88.
    Rowland A, Dias MM, Wiese MD, et al. Meta-analysis of BRAF mutation as a predictive biomarker of benefit from anti-EGFR monoclonal antibody therapy for RAS wild-type metastatic colorectal cancer. Br J Cancer. 2015;112:1888–94.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Geissler M, Knorrenschield R, Greeve J, Florschuetz A, Tannapfel A, Wessendorf S, Seufferlein T, Kanzler S, Heinemann V, Held S, Reinacher-Schick A. mFOLFOXIRI + panitumumab versus FOLFOXIRI as first-line treatment in patients with RAS wild-type metastatic colorectal cancer (mCRC): a randomized phase II trial of the AIO (AIO-KRK-0109). Ann Oncol. 2017;28(suppl 5):v158–v208.  https://doi.org/10.1093/annonc/mdx393.
  90. 90.
    Shen Y, Wang J, Han X, et al. Effectors of epidermal growth factor receptor pathway: the genetic profiling of KRAS, BRAF, PIK3CA, NRAS mutations in colorectal cancer characteristics and personalized medicine. PLoS One. 2013;8:e81628.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Cremolini C, Di Bartolomeo M, Amatu A, et al. BRAF codons 594 and 596 mutations identify a new molecular subtype of metastatic colorectal cancer at favorable prognosis. Ann Oncol. 2015;26:2092–7.CrossRefPubMedGoogle Scholar
  92. 92.
    Wan PT, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116:855–67.CrossRefPubMedGoogle Scholar
  93. 93.
    Jones JC, Renfro LA, Al-Shamsi HO, et al. (Non-V600) BRAF mutations define a clinically distinct molecular subtype of metastatic colorectal cancer. J Clin Oncol. 2017;35:2624–30.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Shinozaki E, Yoshino T, Yamazaki K, et al. Clinical significance of BRAF non-V600E mutations on the therapeutic effects of anti-EGFR monoclonal antibody treatment in patients with pretreated metastatic colorectal cancer: the biomarker research for anti-EGFR monoclonal antibodies by comprehensive cancer genomics (BREAC) study. Br J Cancer. 2017;117:1450–8.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Wang Y, Jones JC, Kipp BR, Grothey A. Activity of EGFR antibody in non-V600 BRAF mutant metastatic colorectal cancer. Ann Oncol. 2019;30(1):147–9.CrossRefPubMedGoogle Scholar
  96. 96.
    Yao Z, Torres NM, Tao A, et al. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell. 2015;28:370–83.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Yao Z, Yaeger R, Rodrik-Outmezguine VS, et al. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. Nature. 2017;548:234–8.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Kotani DSM, Parikh A, Bando H, Seventer EV, Taniguchi H, Yoshino T, Corcoran RB, Yaeger R, Ebi H. Clinicopathological features, efficacy of anti-EGFR therapy, and survival outcomes in patients with BRAF non-V600 mutated metastatic colorectal cancer. J Clin Oncol. 2019;37(suppl 4):abstr 659.CrossRefGoogle Scholar
  99. 99.
    Ursem C, Atreya CE, Van Loon K. Emerging treatment options for BRAF-mutant colorectal cancer. Gastrointest Cancer. 2018;8:13–23.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Le LQ, Parada LF. Tumor microenvironment and neurofibromatosis type I: connecting the GAPs. Oncogene. 2007;26:4609–16.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Philpott C, Tovell H, Frayling IM, et al. The NF1 somatic mutational landscape in sporadic human cancers. Hum Genom. 2017;11:13.CrossRefGoogle Scholar
  102. 102.
    de Bruin EC, Cowell C, Warne PH, et al. Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer. Cancer Discov. 2014;4:606–19.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Pan Y, Yuan C, Cheng C, et al. Frequency and clinical significance of NF1 mutation in lung adenocarcinomas from East Asian patients. Int J Cancer. 2019;144:290–6.CrossRefPubMedGoogle Scholar
  104. 104.
    Mei Z, Shao YW, Lin P, et al. SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer patients. BMC Cancer. 2018;18:479.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    De Raedt T, Brems H, Wolkenstein P, et al. Elevated risk for MPNST in NF1 microdeletion patients. Am J Hum Genet. 2003;72:1288–92.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Sunakawa Y, Izawa N, Mizukami T, et al. Profile of trifluridine/tipiracil hydrochloride in the treatment of metastatic colorectal cancer: efficacy, safety, and place in therapy. Onco Targets Ther. 2017;10:4599–605.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Grothey A, Van Cutsem E, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381:303–12.CrossRefPubMedGoogle Scholar
  108. 108.
    Taly V, Pekin D, Benhaim L, et al. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem. 2013;59:1722–31.CrossRefPubMedGoogle Scholar
  109. 109.
    Danese E, Minicozzi AM, Benati M, et al. Comparison of genetic and epigenetic alterations of primary tumors and matched plasma samples in patients with colorectal cancer. PLoS One. 2015;10:e0126417.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Spindler KL, Pallisgaard N, Vogelius I, Jakobsen A. Quantitative cell-free DNA, KRAS, and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan. Clin Cancer Res. 2012;18:1177–85.CrossRefPubMedGoogle Scholar
  111. 111.
    Thierry AR, Mouliere F, El Messaoudi S, et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med. 2014;20:430–5.CrossRefPubMedGoogle Scholar
  112. 112.
    Grasselli J, Elez E, Caratu G, et al. Concordance of blood- and tumor-based detection of RAS mutations to guide anti-EGFR therapy in metastatic colorectal cancer. Ann Oncol. 2017;28:1294–301.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Siravegna G, Mussolin B, Buscarino M, et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med. 2015;21:827.CrossRefPubMedGoogle Scholar
  114. 114.
    Bouchahda M, Karaboue A, Saffroy R, et al. Acquired KRAS mutations during progression of colorectal cancer metastases: possible implications for therapy and prognosis. Cancer Chemother Pharmacol. 2010;66:605–9.CrossRefPubMedGoogle Scholar
  115. 115.
    Santini D, Vincenzi B, Addeo R, et al. Cetuximab rechallenge in metastatic colorectal cancer patients: how to come away from acquired resistance? Ann Oncol. 2012;23:2313–8.CrossRefPubMedGoogle Scholar
  116. 116.
    Tsuji A, Eto T, Masuishi T, Satake H, Segawa Y, Tanioka H, Hara H, Kotaka M, Sagawa T, Watanabe T, Nakamura M, Takahashi T, Negoro Y, Manaka D, Fujita H, Suto T, Ichikawa W, Fujii M, Takeuchi M, Nakajima T. Phase II study of third-line cetuximab rechallenge in patients with metastatic wild-type K-RAS colorectal cancer who achieved a clinical benefit in response to first-line cetuximab plus chemotherapy (JACCRO CC-08). Ann Oncol. 2016;27(suppl_6):2016.CrossRefGoogle Scholar
  117. 117.
    Tsuji AMN, Watanabe T, Manaka D, Matsuoka H, Kataoka M, Takeuchi M, Ichikawa W, Fujii M. Phase II study of third-line panitumumab rechallenge in patients with metastatic wild-type KRAS colorectal cancer who achieved a clinical benefit in response to first-line panitumumab plus chemotherapy. Ann Oncol. 2016;27(6):149–206.Google Scholar
  118. 118.
    Yuki SYK, Muranaka T, Sakata Y, et al. Phase II trial of panitumumab monotherapy for patients with KRAS exon2 wild type colorectal cancer after progression on cetuximab. HGCSG1101. Ann Oncol. 2016;27(suppl_6):497P.Google Scholar
  119. 119.
    Rossini DCC, Conca E, Santini D, et al. Liquid biopsy to predict benefit from rechallenge with cetuximab (cet) + irinotecan (iri) in RAS/BRAF wild-type metastatic colorectal cancer patients (pts) with acquired resistance to first-line cet + iri: final results and translational analyses of the CRICKET study by GONO. J Clin Oncol. 2018;36(15_suppl):12007.CrossRefGoogle Scholar
  120. 120.
    Osawa HES, Nakamura M, Yamaguchi K et al. Phase II study of cetuximab rechallenge in patients with RAS Wild-type metastatic colorectal cancer: E-Rechallenge trial. Ann Oncol. 2018;29(suppl_8):viii150–viii204.Google Scholar
  121. 121.
    Liu X, George GC, Tsimberidou AM, et al. Retreatment with anti-EGFR based therapies in metastatic colorectal cancer: impact of intervening time interval and prior anti-EGFR response. BMC Cancer. 2015;15:713.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Parseghian CM, Loree JM, Morris VK, et al. Anti-EGFR resistant clones decay exponentially after progression: implications for anti-EGFR re-challenge. Ann Oncol. 2019;30(2):243–9.CrossRefPubMedGoogle Scholar
  123. 123.
    Tie J, Gibbs P, Lipton L, et al. Optimizing targeted therapeutic development: analysis of a colorectal cancer patient population with the BRAF(V600E) mutation. Int J Cancer. 2011;128:2075–84.CrossRefPubMedGoogle Scholar
  124. 124.
    Loupakis F, Moretto R, Aprile G, et al. Clinico-pathological nomogram for predicting BRAF mutational status of metastatic colorectal cancer. Br J Cancer. 2016;114:30–6.CrossRefPubMedGoogle Scholar
  125. 125.
    Yoon HH, Shi Q, Alberts SR, et al. Racial differences in BRAF/KRAS mutation rates and survival in stage III colon cancer patients. J Natl Cancer Inst. 2015.  https://doi.org/10.1093/jnci/djv186.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Ghidini M, Petrelli F, Tomasello G. Right versus left colon cancer: resectable and metastatic disease. Curr Treat Options Oncol. 2018;19:31.CrossRefPubMedGoogle Scholar
  127. 127.
    Wang L, Cunningham JM, Winters JL, et al. BRAF mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res. 2003;63:5209–12.PubMedGoogle Scholar
  128. 128.
    Oliveira C, Pinto M, Duval A, et al. BRAF mutations characterize colon but not gastric cancer with mismatch repair deficiency. Oncogene. 2003;22:9192–6.CrossRefPubMedGoogle Scholar
  129. 129.
    French AJ, Sargent DJ, Burgart LJ, et al. Prognostic significance of defective mismatch repair and BRAF V600E in patients with colon cancer. Clin Cancer Res. 2008;14:3408–15.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Clarke CN, Kopetz ES. BRAF mutant colorectal cancer as a distinct subset of colorectal cancer: clinical characteristics, clinical behavior, and response to targeted therapies. J Gastrointest Oncol. 2015;6:660–7.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Zheng G, Tseng LH, Chen G, et al. Clinical detection and categorization of uncommon and concomitant mutations involving BRAF. BMC Cancer. 2015;15:779.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Kopetz S, Desai J, Chan E, et al. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J Clin Oncol. 2015;33:4032–8.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Prahallad A, Sun C, Huang S, et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012;483:100–3.CrossRefGoogle Scholar
  134. 134.
    Corcoran RB, Ebi H, Turke AB, et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2012;2:227–35.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Yaeger R, Cercek A, O’Reilly EM, et al. Pilot trial of combined BRAF and EGFR inhibition in BRAF-mutant metastatic colorectal cancer patients. Clin Cancer Res. 2015;21:1313–20.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14.CrossRefPubMedGoogle Scholar
  137. 137.
    Corcoran RB, Atreya CE, Falchook GS, et al. Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600-mutant colorectal cancer. J Clin Oncol. 2015;33:4023–31.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Kopetz SSM, Hochster HS, et al. Randomized trial of irinotecan and cetuximab with or without vemurafenib in BRAF-mutant metastatic colorectal cancer (SWOG 1406). J Clin Oncol. 2017;35(15_suppl):3505.CrossRefGoogle Scholar
  139. 139.
    Mao M, Tian F, Mariadason JM, et al. Resistance to BRAF inhibition in BRAF-mutant colon cancer can be overcome with PI3 K inhibition or demethylating agents. Clin Cancer Res. 2013;19:657–67.CrossRefPubMedGoogle Scholar
  140. 140.
    van Geel R, Tabernero J, Elez E, et al. A phase Ib dose-escalation study of encorafenib and cetuximab with or without alpelisib in metastatic BRAF-mutant colorectal cancer. Cancer Discov. 2017;7:610–9.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Tabernero JRVG, Guren TK, Schellens JHM, et al. Phase 2 results: encorafenib (ENCO) and cetuximab (CETUX) with or without alpelisib (ALP) in patients with advanced BRAF-mutant colorectal cancer (BRAFm CRC). J Clin Oncol. 2016;34(15_suppl):3544.CrossRefGoogle Scholar
  142. 142.
    Atreya CE, Van Cutsem E, Bendell JC, Corcoran RB, et al. Updated efficacy of the MEK inhibitor trametinib (T), BRAF inhibitor dabrafenib (D), and anti-EGFR antibody panitumumab (P) in patients (pts) with BRAF V600E mutated (BRAFm) metastatic colorectal cancer (mCRC). J Clin Oncol. 2015;33(15_suppl):103.CrossRefGoogle Scholar
  143. 143.
    Van Cutsem EPC, Huijberts S, Grothey A, et al. BEACON CRC study safety lead-in (SLI) in patients with BRAF V600E metastatic colorectal cancer (mCRC): efficacy and tumor markers. J Clin Oncol. 2018;36(4_suppl):627.CrossRefGoogle Scholar
  144. 144.
    Kotani H, Adachi Y, Kitai H, et al. Distinct dependencies on receptor tyrosine kinases in the regulation of MAPK signaling between BRAF V600E and non-V600E mutant lung cancers. Oncogene. 2018;37:1775–87.CrossRefPubMedGoogle Scholar
  145. 145.
    Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.CrossRefPubMedGoogle Scholar
  146. 146.
    Yoshimatsu K, Kato H, Ishibashi K, et al. Second-line chemotherapy with low-dose CPT-11 and cisplatin for colorectal cancer resistant to 5-FU-based chemotherapy. Cancer Chemother Pharmacol. 2003;52:465–8.CrossRefPubMedGoogle Scholar
  147. 147.
    Holubec L, Polivka J Jr, Safanda M, et al. The role of cetuximab in the induction of anticancer immune response in colorectal cancer treatment. Anticancer Res. 2016;36:4421–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Clinical OncologySt. Marianna University School of MedicineKawasakiJapan

Personalised recommendations