pp 1–11 | Cite as

Are All Dopamine Agonists Essentially the Same?

  • Margherita Torti
  • Daniele Bravi
  • Laura Vacca
  • Fabrizio StocchiEmail author
Current Opinion


Dopamine agonists (DAs) represent an excellent treatment option for patients with Parkinson’s disease, in both the early and advanced stages of the disease, improving motor symptoms, lowering the incidence of motor complications, and addressing several non-motor symptoms. Indeed, each of these compounds have different pharmacokinetic and pharmacodynamic properties, resulting in a unique efficacy and safety profile. Comorbidities, prominent non-motor symptoms and individual subjects’ clinical characteristics should guide the choice of a specific DA, allowing better management of the patient by optimizing the DA benefit/risk ratio. In this article we discuss brain distribution of dopamine receptors and their role in each of the dopaminergic pathways, the pharmacological profile of non-ergoline DAs and class-related adverse effects, as reported from post-marketing studies.


Compliance with Ethical Standards


No specific funding was received for this work by the authors.

Conflicts of interest

F. Stocchi has received honoraria as a consultant for Zambon, UCB, Chiesi Pharma, Lundbeck, Sunovion, Bial, SynAgile, Biogen, Kiowa. D. Bravi is an employee of Lundbeck, Research and Development department. M. Torti and L. Vacca have received honoraria from Chiesi Pharma, UCB and Zambon.


  1. 1.
    Quinn N. Drug treatment of Parkinson’s disease. Br Med J. 1995;310:575–9.Google Scholar
  2. 2.
    Calne DB, Teychenne PF, Leigh PN, Bamji AN, Greenacre JK. Treatment of parkinsonism with bromocriptine. Lancet. 1974;2(7893):1355–6.Google Scholar
  3. 3.
    Hoehn MM, Elton RL. Low dosages of bromocriptine added to levodopa in Parkinson’s disease. Neurology. 1985;35(2):199–206.Google Scholar
  4. 4.
    Stocchi F. Continuous dopaminergic stimulation and novel formulation of dopamine agonists. J Neurol. 2011;258(2):S316–22.Google Scholar
  5. 5.
    Nutt JG, Obeso JA, Stocchi F. Continuous dopamine receptor stimulation in advanced Parkinson’s disease. Trends Neurosci. 2000;23:109–15.Google Scholar
  6. 6.
    Antonini A, Poewe W. Fibrotic heart-valve reactions to dopamine-agonist treatment in Parkinson’s disease. Lancet Neurol. 2007;6(9):826–9.Google Scholar
  7. 7.
    Goetz CG, Diederich NJ. Dopaminergic agonists in the treatment of Parkinson’s disease. Neurol Clin. 1992;10(2):527–40.Google Scholar
  8. 8.
    Uitti RJ, Ahlskog JE. Comparative review of dopamine receptor agonists in Parkinson’s disease. CNS Drugs. 1996;5(5):369–88.Google Scholar
  9. 9.
    Fox SH, Katzenschlager R, Lim SY, Ravina B, Seppi K, Coelho M, et al. The movement disorder society evidence-based medicine review update: treatments for the motor symptoms of Parkinson’s disease. Mov Disord. 2011;26(Suppl 3):S2–41.Google Scholar
  10. 10.
    Yamamoto M, Schapira AH. Dopamine agonist in Parkinson’s disease. Expert Rev Neurother. 2008;8(4):671–7.Google Scholar
  11. 11.
    Kvernmo T, Hartter S, Burger E. A review of the receptor binding and pharmacokinetic properties of dopamine agonists. Clin Ther. 2006;28(8):1065–78.Google Scholar
  12. 12.
    Jenner P. Pharmacology of dopamine agonists in the treatment of Parkinson’s disease. Neurology. 2002;58(1):S1–8.Google Scholar
  13. 13.
    Beninger RJ. The role of dopamine in locomotor activity and learning. Brain Res. 1983;287(2):173–96.Google Scholar
  14. 14.
    Pignatelli M, Bonci A. Role of dopamine neurons in reward and aversion: a synaptic plasticity perspective. Neuron. 2015;86(5):1145–57.Google Scholar
  15. 15.
    Nestler EJ, Carlezon WA. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 2006;59:1151–9.Google Scholar
  16. 16.
    Steketee JD, Kalivas PW. Drug wanting: behavioral sensitization and relapse to drug-seeking behavior. Pharmacol Rev. 2011;63:348–65.Google Scholar
  17. 17.
    Seeman P. Parkinson’s Disease treatment may cause impulse–control disorder via dopamine D3 receptors. Synapse. 2015;69:183–9.Google Scholar
  18. 18.
    Manku MS, Horrobin DF, Zinner H, Karmazyn M, Morgan RO, Ally AI, et al. Dopamine enhances the action of prolactin on rat blood vessels. Implication for dopamine effects on plasma prolactin. Endocrinology. 1977;101:1343–5.Google Scholar
  19. 19.
    Jose PA, Raymond JR, Bates MD, Aperia A, Felder RA, Carey RM. The renal dopamine receptors. J Am Soc Nephrol. 1992;2(8):1265–78.Google Scholar
  20. 20.
    Contreras F, Fouillioux C, Bolívar A, Simonovis N, Hernández-Hernández R, Armas-Hernandez MJ, et al. Dopamine, hypertension and obesity. J Hum Hypertens. 2002;16(Suppl 1):S13–7.Google Scholar
  21. 21.
    Yeh TL, Yang YK, Chiu NT, Yao WJ, Yeh SJ, Wu JS, et al. Correlation between striatal dopamine D2/D3 receptor binding and cardiovascular activity in healthy subjects. Am J Hypertens. 2006;19:964–9.Google Scholar
  22. 22.
    Goldberg LI. Cardiovascular and renal actions of dopamine: potential clinical applications. Pharmacol Rev. 1972;24(1):1–29.Google Scholar
  23. 23.
    Pendleton RG, Setler PE. Peripheral cardiovascular dopamine receptors. Gen Pharmacol. 1977;8(1):1–5.Google Scholar
  24. 24.
    Lokhandwala MF, Jandhyala BS. The role of sympathetic nervous system in the vascular actions of dopamine. J Pharmacol Exp Ther. 1979;210(1):120–6.Google Scholar
  25. 25.
    Polakoski JS, Segreti JA, Cox BF, Hsieh GC, Kolasa T, Moreland RB, et al. Effects of selective dopamine receptors subtype agonists on cardiac contractility and regional hemodynamics in rats. Clin Exp Pharmacol Phisiol. 2004;31:837–41.Google Scholar
  26. 26.
    Tonini M, Cipollina L, Poluzzi E, Crema F, Corazza GR, De Ponti F. Review article: clinical implications of enteric and central D2 receptor blockade by antidopaminergic gastrointestinal prokinetics. Aliment Pharmacol Ther. 2004;19:379–90.Google Scholar
  27. 27.
    Menon R, Stacy M. Apomorphine in the treatment of Parkinson’s disease. Expert Opin. Phamachother. 2007;8(12):1941–50.Google Scholar
  28. 28.
    Boyle A, Ondo W. Role of apomorphine in the treatment of Parkinson’s disease. CNS Drugs. 2015;29:83–9.Google Scholar
  29. 29.
    Deleu D, Hanssens Y, Northway MG. Subcutaneous apomorphine: an evidence-based review of its use in Parkinson’s disease. Drugs Aging. 2004;21:687–709.Google Scholar
  30. 30.
    Trenkwalder C, Ray Chadury K, Garcia Riuz PJ, LeWitt P, Katzenschlager R, Sixel-Döring F, et al. Expert consensus group report on the use of apomorphine in the treatment of Parkinson’s disease—clinical practice recommendations. Parkinson Relat Disord. 2015;21(9):1023–30.Google Scholar
  31. 31.
    Hauser RA, Olanow CW, Dzyngel B, Bilbault T, Shill H, Isaacson S, et al. Sublingual apomorphine (APL-130277) for the acute conversion of OFF to ON in Parkinson’s disease. Mov Disord. 2016;31(9):1366–72.Google Scholar
  32. 32.
    Hughes AJ, Bishop S, Kleedorfer B, Turjanski N, Fernandez W, Lees AJ, et al. Subcutaneous apomorphine in Parkinson’s disease: response to chronic administration for up to five years. Mov Disord. 1993;8(2):165–70.Google Scholar
  33. 33.
    Dewey RB, Hutton JT, LeWitt PA, Factor SA. A randomized, double-blind, placebo-controlled trial of subcutaneously injected apomorphine for parkinsonian off-state events. Arch Neurol. 2001;58:1385–92.Google Scholar
  34. 34.
    Pfeiffer RF, Gutmann L, Hull KL, Bottini PB, Sherry JH, APO302 Study Investigators. Continued efficacy and safety of subcutaneous apomorphine in patients with advanced Parkinson’s disease. Parkinsonism Relat Disord. 2007;13(2):93–100.Google Scholar
  35. 35.
    Martinez-Martin P, Reddy P, Antonini A, Henriksen T, Katzenschlager R, Odin P, et al. Chronic subcutaneous infusion therapy with apomorphine in advanced Parkinson’s disease compared to conventional therapy: a real-life study of non-motor effect. J Parkininson’s Dis. 2011;1:197–203.Google Scholar
  36. 36.
    Edwards LL, Quigley EM, Harned RK, Hofman R, Pfeiffer RF. Defecatory function in Parkinson’s disease: response to apomorphine. Ann Neurol. 1993;33:490–3.Google Scholar
  37. 37.
    Tison F, Wiart L, Guatterie M, Fouillet N, Lozano V, Henry P, et al. Effects of central dopaminergic stimulation by apomorphine on swallowing disorders in Parkinson’s disease. Mov Disord. 1996;11:729–32.Google Scholar
  38. 38.
    Christmas TJ, Kempster PA, Chapple CR, Frankel JP, Lees AJ, Stern GM, et al. Role of subcutaneous apomorphine in parkinsonian voiding dysfunction. Lancet. 1988;2:1451–3.Google Scholar
  39. 39.
    Lefaucheur R, Berthelot L, Senant J, Borden A, Maltête D. Acute genital pain during non-motor fluctuations improved by Apomorphine. Mov Disord. 2013;28:5687–8.Google Scholar
  40. 40.
    Factor SA, Brown DL, Molho ES. Subcutaneous apomorphine injections as a treatment for intractable pain in Parkinson’s disease. Mov Disord. 2000;15:167–9.Google Scholar
  41. 41.
    Frankel JP, Lees AJ, Kempster PA, Stern GM. Subcutaneous apomorphine in the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1990;53:96–101.Google Scholar
  42. 42.
    Elshoff JP, Cawello W, Andreas JO, Mathy FX, Braun M. Update on pharmacological, pharmacokinetic properties and drug-drug interactions of rotigotine transdermal system in Parkinson’s Disease and Restless Legs Syndrome. Drugs. 2015;75:487–501.Google Scholar
  43. 43.
    Zhou CQ, Li SS, Chen ZM, Li FQ, Lei P, Peng GG. Rotigotine transdermal patch in Parkinson’s disease: a systematic review and meta-analysis. PLoS One. 2013;8(7):e69738.Google Scholar
  44. 44.
    Elmer LW, Surmann E, Boroojerdi B, Jankovic J. Long-term safety and tolerability of rotigotine transdermal system in patients with early-stage idiopathic Parkinson’s disease: a prospective, open label extension study. Parkinson Relat Disord. 2012;18:488–93.Google Scholar
  45. 45.
    Giladi N, Boroojerdi B, Surmann E. The safety and tolerability of rotigotine transdermal system over a 6-year period in patients with early-stage Parkinson’s disease. J Neural Transm (Vienna). 2013;120(9):1321–9.Google Scholar
  46. 46.
    Giladi N, Ghys L, Surmann E, Boroojerdi B, Jankovic J. Effects of long-term treatment with rotigotine transdermal system on dyskinesia in patients with early-stage Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(12):1345–51.Google Scholar
  47. 47.
    Trenkwalder C, Kies B, Rudzinska M, Fine J, Nikl J, Honczarenko K, Recover Study Group, et al. Rotigotine effects on early morning motor function and sleep in Parkinson’s disease: a double-blind, randomized, placebo-controlled study (RECOVER). Mov Disord. 2011;26(1):90–9.Google Scholar
  48. 48.
    Ghys L, Surmann E, Whitesides J, Boroojerdi B. Effect of rotigotine on sleep and quality of life in Parkinson’s disease patients: post hoc analysis of RECOVER patients who were symptomatic at baseline. Expert Opin Pharmacother. 2011;12:1985–98.Google Scholar
  49. 49.
    Kassubek J, Ray Chadury K, Zesiewicz T, Surmann E, Boroojerdi B, Moran K, et al. Rotigotine transdermal system and evaluation of pain in patients with Parkinson’s disease: a post hoc analysis of the RECOVER study. BMC Neurol. 2014;14:42.Google Scholar
  50. 50.
    Hirano M, Isono C, Sakamaoto H, Ueno S, Kusunoki S, Nakamura Y. Rotigotine Transdermal Patch Improves Swallowing in Dysphagic Patients with Parkinson’s Disease. Dysphagia. 2015;30(4):452–6.Google Scholar
  51. 51.
    Tateno H, Sakakibara R, Shiina S, Doi H, Tateno F, Sato M, et al. Transdermal dopamine agonist ameliorates gastric emptying in Parkinson’s disease. Am Geriatr Soc. 2015;63(11):2416–8.Google Scholar
  52. 52.
    Rocchi C, Pierantozzi M, Pisani V, Marfia GA, Di Giorgio A, Stanzione P, et al. The impact of rotigotine on cardiovascular autonomic function in early Parkinson’s disease. Eur Neurol. 2012;68:187–92.Google Scholar
  53. 53.
    Piercey MF. Pharmacology of pramipexole, a dopamine D3-preferring agonist useful in treating Parkinson’s disease. Clin Neuropharmacol. 1998;21(3):141–51.Google Scholar
  54. 54.
    Hisahara S, Shimohama S. Dopamine receptors and Parkinson’s disease. Int J Med Chem. 2011;11:1–16.Google Scholar
  55. 55.
    Jenner P, Konen-Bergmann M, Schepers C, Haertter S. Pharmacokinetics of a Once-Daily extended-release formulation of pramipexole in healthy male volunteers: three studies. Clin Ther. 2009;31(11):2698–711.Google Scholar
  56. 56.
    Poewe W, Rascol O, Barone P, Hauser RA, Mizuno Y, Haaksma M, Pramipexole ER Studies Group, et al. Extended-release pramipexole in early Parkinson disease: a 33-week randomized controlled trial. Neurology. 2011;77(8):759–66.Google Scholar
  57. 57.
    Schapira AHV, Barone P, Hauser RA, Mizuno Y, Rascol O, Busse M, Pramipexole ER Studies Group, et al. Extended-release pramipexole in advanced Parkinson disease: a randomized controlled trial. Neurology. 2011;77(8):767–74.Google Scholar
  58. 58.
    European Medicines Agency. Assessment report for Mirapexin. International non-proprietary name: pramipexole. Procedure no.: EMEA/H/C/000134/X/0059, 2009. Accessed 29 Jun 2018.Google Scholar
  59. 59.
    Bergmann K. Center for Drug Evaluation and Research. Application number: 22-514. Medicalreview(s). 2010. Accessed 29 Jun 2018.
  60. 60.
    Boehringer Ingelheim Pharmaceuticals Inc. Mirapex ER (pramipexole dihydrochloride) extended-release tablets: US prescribing information. 2013. Accessed 29 Jun 2018.Google Scholar
  61. 61.
    Antonini A, Barone P, Ceravolo R, Fabbrini G, Tinazzi M, Abbruzzese G. Role of pramipexole in the management of Parkinson’s disease. CNS Drugs. 2010;24(10):829–41.Google Scholar
  62. 62.
    Barone P, Poewe W, Albrecht S, Debieuvre C, Massey D, Rascol O, et al. Pramipexole for the treatment of depressive symptoms in patients with Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9(6):573–80.Google Scholar
  63. 63.
    Seppi K, Weintraub D, Coelho M, Perez-Lloret S, Fox SH, Katzenschlager R, et al. The Movement Disorder Society evidence-based Medicine review update: treatments for the non-motor symptoms of Parkinson’s disease. Mov Disord. 2011;26(Suppl 3):S42–80.Google Scholar
  64. 64.
    Kaye CM, Nicholls B. Clinical pharmacokinetics of ropinirole. Clin Pharmacokinet. 2000;39(4):243–54.Google Scholar
  65. 65.
    Stocchi F, Hersh BP, Scott B, Nausieda PA, Giorgi L, Ease-PD Monotherapy study investigators. Ropinirole 24-hour prolonged release and ropinirole immediate release in early Parkinson disease: a randomized, double blind, non-inferiority crossover study. Curr Med Res Opin. 2008;24:2883–95.Google Scholar
  66. 66.
    Watts RL, Lyons KE, Pahwa R, Sethi K, Stern M, Hauser RA, 228 Study Investigators, et al. Onset of dyskinesia with adjunct ropinirole prolonged-release or additional levodopa in early Parkinson’s disease. Mov Disord. 2010;25:858–66.Google Scholar
  67. 67.
    Pahwa R, Stacy MA, Factor SA, Stocchi F, Hersh BP, Elmer LW, EASE-PD Adjunct Study Investigators, et al. Ropinirole 24-hour prolonged release: randomized, controlled study in advanced Parkinson disease. Neurology. 2007;68:1108–15.Google Scholar
  68. 68.
    Stocchi F, Giorgi L, Hunter B, Schapira AH. PREPARED: comparison of prolonged and immediate release ropinirole in advanced Parkinson’s disease. Mov Disord. 2011;26:1259–65.Google Scholar
  69. 69.
    Dusek P, Buskova J, Ruzicka E, Majerová V, Srp A, Jech R, et al. Effects of ropinirole prolonged-release on sleep disturbances and daytime sleepiness in Parkinson’s disease. Clin Neuropharmacol. 2010;33:186–90.Google Scholar
  70. 70.
    Rektorova I, Balaz M, Svatova J, Zarubova K, Honig I, Dostal V, et al. Effects of ropinirole on non motor symptoms of Parkinson’s disease: a prospective multicenter study. Clin Neuropharmacol. 2008;31:261–6.Google Scholar
  71. 71.
    Buchwald B, Angersbach D, Jost WH. Improvements in motor and non-motor symptoms in Parkinson’s patients under ropinirole therapy. Fortschr Neurol Psychiatr. 2007;75(4):236–41.Google Scholar
  72. 72.
    Dourish CT. Piribedil: behavioural, neurochemical and clinical profile of a dopamine agonist. Prog Neuropsychopharmacol Biol Psychiatry. 1983;7:3–27.Google Scholar
  73. 73.
    Servier Laboratories. Trivastal 50 mg LP Summary of Product Characteristics. Accessed 09 Feb 2019.
  74. 74.
    Perez-Lloret S, Rascol O. Piribedil for the treatment of motor and non-motor symptoms of Parkinson disease. CNS Drugs. 2016;30:703–17.Google Scholar
  75. 75.
    Weintraub D, Koester J, Potenza M, Siderowf AD, Stacy M, Voon V, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67:589–95.Google Scholar
  76. 76.
    Bastiaens J, Dorfman BJ, Christos PJ, Nirenberg MJ. Prospective cohort study of impulse control disorders in Parkinson’s disease. Mov Disord. 2013;28:327–30.Google Scholar
  77. 77.
    Lee JY, Kim JM, Kim JW, Cho J, Lee WY, Kim HJ, et al. Association between the dose of dopaminergic medication and the behavioral disturbances in Parkinson’s disease. Parkinsonism Relat Disord. 2010;16:202–7.Google Scholar
  78. 78.
    Perez-Lloret S, Rey MV, Fabre N, Ory F, Spampinato U, Brefel-Courbon C, et al. Prevalence and pharmacological factors associated with impulse-control disorder symptoms in patients with Parkinson disease. Clin Neuropharmacol. 2012;35:261–5.Google Scholar
  79. 79.
    Ondo WG, Lai D. Predictors of impulsivity and reward seeking behavior with dopamine agonists. Parkinsonism Relat Disord. 2008;14:28–32.Google Scholar
  80. 80.
    Rizos A, Sauerbier A, Antonini A, Weintraub D, Martinez-Martin P, Kessel B, et al. A European multicentre survey of impulse control behaviours in Parkinson’s disease patients treated with short- and long-acting dopamine agonists. Eur J Neurol. 2016;23(8):1255–61.Google Scholar
  81. 81.
    Garcia-Ruiz PJ, Martinez Castrillo JC, Alonso-Canovas A, Herranz Barcenas A, Vela L, Sanchez Alonso P, et al. Impulse control disorder in patients with Parkinson’s disease under dopamine agonist therapy: a multicentre study. J Neurol Neurosurg Psychiatry. 2014;85(8):840–4.Google Scholar
  82. 82.
    Garcia Ruiz PJ, Sesar Ignacio A, Ares Pensado B, Castro García A, Alonso Frech F, Alvarez López M, et al. Efficacy of long term continuous subcutaneous apomorphine infusion in advanced Parkinson’s disease with motor fluctuations: a multicenter study. Mov Disord. 2008;23:1130–6.Google Scholar
  83. 83.
    Micheli F, Giugni J, De Arco Espinosa M, Calvo DS, Raina GB. Piribedil and pathological gambling in six parkinsonian patients. Arq Neuropsiquiatr. 2015;73(2):115–8.Google Scholar
  84. 84.
    Samuel M, Rodriguez-Oroz M, Antonini A, Brotchie JM, Ray Chaudhuri K, Brown RG, et al. Management of impulse control disorders in Parkinson’s disease: controversies and future approaches. Mov Disord. 2015;30(2):150–9.Google Scholar
  85. 85.
    Rabinak AC, Niremberg JM. Dopamine agonist withdrawal syndrome in Parkinson’s disease. Arch Neurol. 2010;67(1):58–63.Google Scholar
  86. 86.
    Niremberg MJ. Dopamine agonist withdrawal syndrome: implications for patient care. Drugs Aging. 2013;30:587–92.Google Scholar
  87. 87.
    Yu XX, Fernandez HH. Dopamine agonist withdrawal syndrome: a comprehensive review. J Neurol Sci. 2017;374:53–5.Google Scholar
  88. 88.
    Apraxine M, Pasuqet A, Jeanjean A. Pramipexole-induced reversible heart failure. Mov Disord Clin Pract. 2014;1(4):381–2.Google Scholar
  89. 89.
    Perez-Lloret S, Rey MV, Crispo J, Krewski D, Lapeyre-Mestre M, Montastruc JL, et al. Risk of heart failure following treatment with dopamine agonists in Parkinson’s disease patients. Expert Opin Drug Saf. 2014;13(3):351–60.Google Scholar
  90. 90.
    Szymanski C, Boey S, Hermida JS. Ropinirole-induced symptomatic sinus node dysfunction. Pacing Clin Electrophysiol. 2008;31(8):1079–82.Google Scholar
  91. 91.
    Product Information. Neupro (rotigotine). Schwarz Pharma, Mequon.Google Scholar
  92. 92.
    Food and Drug Administration, FDA Approved Labeling Text forNDA 021264. Accessed on 15 Sept 2018.
  93. 93.
  94. 94.
    Watanabe Y, Nakamura Y, Cao X, Ohara H, Yamazaki Y, Murayama N, et al. Intravenous administration of apomorphine does NOT induce long QT syndrome: experimental evidence from in vivo canine models. Basic Clin Pharmacol Toxicol. 2015;116(6):468–75.Google Scholar
  95. 95.
    Stocchi F, Vacca L, Berardelli A, Onofrj M, Manfredi M, Ruggieri S. Dual dopamine agonist treatment in Parkinson’s disease. J Neurol. 2003;250(7):822–6.Google Scholar
  96. 96.
    Latt MD, Lewis S, Zekry O, Fung VSC. Factors to consider in the selection of dopamine agonists for older persons with Parkinson’s disease. Drugs Aging. 2019;36(3):189–202.Google Scholar
  97. 97.
    Elshoff JP, Bauer L, Goldammer N, Oortgiesen M, Pesch H, Timmermann L. Randomized, double-blind, crossover study of the adhesiveness of two formulations of rotigotine transdermal patch in patients with Parkinson’s disease. Curr Med Res Opin. 2018;34(7):1293–9.Google Scholar
  98. 98.
    Seppi K, Ray Chaudhuri K, Coelho M, Fox SH, Katzenschlager R, Perez Lloret S, et al. Update on treatments for nonmotor symptoms of Parkinson’s disease-an evidence-based medicine review. Mov Disord. 2019;34(2):180–98.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IRCCS San Raffaele Pisana, Center for Parkinson DiseaseRomeItaly
  2. 2.San Raffaele CassinoRomeItaly
  3. 3.Lundbeck, Research and Development DepartmentCopenhagenDenmark
  4. 4.Casa di Cura privata Policlinico (CCPP)MilanItaly
  5. 5.San Raffaele UniversityRomeItaly

Personalised recommendations