Advertisement

Drugs

pp 1–26 | Cite as

Cardiovascular Safety of Antihyperglycemic Agents: “Do Good or Do No Harm”

  • Antonis A. Manolis
  • Theodora A. Manolis
  • Antonis S. Manolis
Review Article

Abstract

Results from recent cardiovascular outcome trials have ushered in a new era in the management of type 2 diabetes mellitus, moving from a focus on glycemic control to the cardiovascular safety of antihyperglycemic agents. Several new antihyperglycemic drugs have been shown to exert either neutral or cardioprotective effects in patients with diabetes. Among them, the sodium–glucose co-transporter-2 (SGLT-2) inhibitors (gliflozins) and selected agents from the incretin mimetics or enhancers, such as the glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins), appear to confer cardiovascular safety and/or protection in patients with underlying, or at high risk for, cardiovascular disease. Metformin remains the standard first-line drug treatment for patients with diabetes because of its established effectiveness and cardiovascular safety. However, this initial drug therapy may not prove adequate as this disease appears to be progressive with a decline in function of the pancreatic beta cells, necessitating the addition of other agents to better control rising glucose levels. With the advent of several new classes of antihyperglycemic drugs and the completion of their respective cardiovascular outcome trials, the therapeutic armamentarium against this disease pandemic appears to be greatly expanding and moving closer to the direction of the Hippocratic aphorism “Do Good or Do No Harm”. In this review, we discuss all these issues and summarize the contemporary literature on cardiovascular safety and outcomes of the available glucose-lowering agents.

Notes

Compliance with Ethical Standards

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

AAM, TAM, and ASM have no potential conflicts of interest that might be relevant to the contents of this manuscript.

References

  1. 1.
    Benjamin EJ, Virani SS, Callaway CW, Chang AR, Cheng S, Chiuve SE, et al. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67–492.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Professional Practice Committee. Standards of medical care in diabetes—2018. Diabetes Care. 2018;41(Suppl 1):S3.Google Scholar
  3. 3.
    Di Angelantonio E, Kaptoge S, Wormser D, Willeit P, Butterworth AS, Bansal N, et al. Association of cardiometabolic multimorbidity with mortality. JAMA. 2015;314(1):52–60.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bennett WL, Maruthur NM, Singh S, Segal JB, Wilson LM, Chatterjee R, et al. Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann Intern Med. 2011;154(9):602–13.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Phung OJ, Scholle JM, Talwar M, Coleman CI. Effect of noninsulin antidiabetic drugs added to metformin therapy on glycemic control, weight gain, and hypoglycemia in type 2 diabetes. JAMA. 2010;303(14):1410–8.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.PubMedCrossRefGoogle Scholar
  7. 7.
    US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Guidance for industry. Diabetes mellitus—evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. Silver Spring: US FDA; 2008. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071627.pdf. Accessed 3 June 2018
  8. 8.
    Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Paneni F, Luscher TF. Cardiovascular protection in the treatment of type 2 diabetes: a review of clinical trial results across drug classes. Am J Cardiol. 2017;120(1s):S17–27.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Holman RR, Coleman RL, Chan JCN, Chiasson JL, Feng H, Ge J, et al. Effects of acarbose on cardiovascular and diabetes outcomes in patients with coronary heart disease and impaired glucose tolerance (ACE): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(11):877–86.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Kober LV, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–57.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–26.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327–35.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373(3):232–42.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Birkeland KI, Jorgensen ME, Carstensen B, Persson F, Gulseth HL, Thuresson M, et al. Cardiovascular mortality and morbidity in patients with type 2 diabetes following initiation of sodium-glucose co-transporter-2 inhibitors versus other glucose-lowering drugs (CVD-REAL Nordic): a multinational observational analysis. Lancet Diabetes Endocrinol. 2017;5(9):709–17.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837–53.CrossRefGoogle Scholar
  21. 21.
    Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gerstein HC, Miller ME, Genuth S, Ismail-Beigi F, Buse JB, Goff DC Jr, et al. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 2011;364(9):818–28.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    ACCORD Study Group. Nine-year effects of 3.7 years of intensive glycemic control on cardiovascular outcomes. Diabetes Care. 2016;39(5):701–8.CrossRefGoogle Scholar
  27. 27.
    Zhang X, Liu Y, Zhang F, Li J, Tong N. Legacy effect of intensive blood glucose control on cardiovascular outcomes in patients with type 2 diabetes and very high risk or secondary prevention of cardiovascular disease: a meta-analysis of randomized controlled trials. Clin Ther. 2018;40(5):776–88.e3.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Turnbull FM, Abraira C, Anderson RJ, Byington RP, Chalmers JP, Duckworth WC, et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia. 2009;52(11):2288–98.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Cryer PE. Death during intensive glycemic therapy of diabetes: mechanisms and implications. Am J Med. 2011;124(11):993–6.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, et al. Consensus statement by the american association of clinical endocrinologists and american college of endocrinology on the comprehensive type 2 diabetes management algorithm—2018 executive summary. Endocr Pract. 2018;24(1):91–120.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348(5):383–93.PubMedCrossRefGoogle Scholar
  32. 32.
    Kinaan M, Ding H, Triggle CR. Metformin: an old drug for the treatment of diabetes but a new drug for the protection of the endothelium. Med Princ Pract. 2015;24(5):401–15.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854–65.CrossRefGoogle Scholar
  34. 34.
    Bolen S, Feldman L, Vassy J, Wilson L, Yeh HC, Marinopoulos S, et al. Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med. 2007;147(6):386–99.PubMedCrossRefGoogle Scholar
  35. 35.
    Johnson JA, Majumdar SR, Simpson SH, Toth EL. Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care. 2002;25(12):2244–8.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Morgan CL, Mukherjee J, Jenkins-Jones S, Holden SE, Currie CJ. Association between first-line monotherapy with sulphonylurea versus metformin and risk of all-cause mortality and cardiovascular events: a retrospective, observational study. Diabetes Obes Metab. 2014;16(10):957–62.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ghotbi AA, Kober L, Finer N, James WP, Sharma AM, Caterson I, et al. Association of hypoglycemic treatment regimens with cardiovascular outcomes in overweight and obese subjects with type 2 diabetes: a substudy of the SCOUT trial. Diabetes Care. 2013;36(11):3746–53.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Masoudi FA, Inzucchi SE, Wang Y, Havranek EP, Foody JM, Krumholz HM. Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation. 2005;111(5):583–90.PubMedCrossRefGoogle Scholar
  39. 39.
    Eurich DT, Majumdar SR, McAlister FA, Tsuyuki RT, Johnson JA. Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care. 2005;28(10):2345–51.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Morgan CL, Mukherjee J, Jenkins-Jones S, Holden SE, Currie CJ. Combination therapy with metformin plus sulphonylureas versus metformin plus DPP-4 inhibitors: association with major adverse cardiovascular events and all-cause mortality. Diabetes Obes Metab. 2014;16(10):977–83.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Vaccaro O, Masulli M, Nicolucci A, Bonora E, Del Prato S, Maggioni AP, et al. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial. Lancet Diabetes Endocrinol. 2017;5(11):887–97.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Pop LM, Lingvay I. The infamous, famous sulfonylureas and cardiovascular safety: much ado about nothing? Curr Diabetes Rep. 2017;17(12):124.CrossRefGoogle Scholar
  43. 43.
    Meinert CL, Knatterud GL, Prout TE, Klimt CR. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. Diabetes. 1970;19(Suppl):789–830.Google Scholar
  44. 44.
    Seltzer HS. A summary of criticisms of the findings and conclusions of the University Group Diabetes Program (UGDP). Diabetes. 1972;21(9):976–9.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Riveline JP, Danchin N, Ledru F, Varroud-Vial M, Charpentier G. Sulfonylureas and cardiovascular effects: from experimental data to clinical use. Available data in humans and clinical applications. Diabetes Metab. 2003;29(3):207–22.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Abdelmoneim AS, Eurich DT, Light PE, Senior PA, Seubert JM, Makowsky MJ, et al. Cardiovascular safety of sulphonylureas: over 40 years of continuous controversy without an answer. Diabetes Obes Metab. 2015;17(6):523–32.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Monami M, Genovese S, Mannucci E. Cardiovascular safety of sulfonylureas: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2013;15(10):938–53.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Varvaki Rados D, Catani Pinto L, Reck Remonti L, Bauermann Leitao C, Gross JL. The association between sulfonylurea use and all-cause and cardiovascular mortality: a meta-analysis with trial sequential analysis of randomized clinical trials. PLoS Med. 2016;13(4):e1001992.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Simpson SH, Lee J, Choi S, Vandermeer B, Abdelmoneim AS, Featherstone TR. Mortality risk among sulfonylureas: a systematic review and network meta-analysis. Lancet Diabetes Endocrinol. 2015;3(1):43–51.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Campanelli CM, American Geriatrics Society 2012 Beers Criteria Update Expert Panel. American geriatrics society updated beers criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2012;60(4):616–31.PubMedCentralCrossRefGoogle Scholar
  51. 51.
    Joshi SR, Standl E, Tong N, Shah P, Kalra S, Rathod R. Therapeutic potential of alpha-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opin Pharmacother. 2015;16(13):1959–81.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    DiNicolantonio JJ, Bhutani J, O’Keefe JH. Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Heart. 2015;2(1):e000327.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Gu S, Shi J, Tang Z, Sawhney M, Hu H, Shi L, et al. Comparison of glucose lowering effect of metformin and acarbose in type 2 diabetes mellitus: a meta-analysis. PLoS One. 2015;10(5):e0126704.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002;359(9323):2072–7.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290(4):486–94.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M. Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J. 2004;25(1):10–6.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Asakura M, Kim J, Asanuma H, Hamasaki T, Tsukahara K, Higashino Y, et al. Does treatment of impaired glucose tolerance improve cardiovascular outcomes in patients with previous myocardial infarction? Cardiovasc Drugs Ther. 2017;31(4):401–11.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Black C, Donnelly P, McIntyre L, Royle PL, Shepherd JP, Thomas S. Meglitinide analogues for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2007;2:Cd004654.Google Scholar
  59. 59.
    Dornhorst A. Insulinotropic meglitinide analogues. Lancet. 2001;358(9294):1709–16.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Holman RR, Haffner SM, McMurray JJ, Bethel MA, Holzhauer B, Hua TA, et al. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1463–76.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Thiazolidinediones Yki-Jarvinen H. N Engl J Med. 2004;351(11):1106–18.CrossRefGoogle Scholar
  62. 62.
    Kaul S, Bolger AF, Herrington D, Giugliano RP, Eckel RH. Thiazolidinedione drugs and cardiovascular risks: a science advisory from the American Heart Association and American College of Cardiology Foundation. Circulation. 2010;121(16):1868–77.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Home PD, Pocock SJ, Beck-Nielsen H, Gomis R, Hanefeld M, Jones NP, et al. Rosiglitazone evaluated for cardiovascular outcomes–an interim analysis. N Engl J Med. 2007;357(1):28–38.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125–35.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. Jama. 2007;298(10):1189–95.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Mahaffey KW, Hafley G, Dickerson S, Burns S, Tourt-Uhlig S, White J, et al. Results of a reevaluation of cardiovascular outcomes in the RECORD trial. Am Heart J. 2013;166(2):240.e1–249.e1.CrossRefGoogle Scholar
  67. 67.
    US Food and Drug Administration. FDA Drug Safety Communication: FDA requires removal of some prescribing and dispensing restrictions for rosiglitazone-containing diabetes medicines. Silver Spring: US FDA; 2013. http://www.fda.gov/Drugs/DrugSafety/ucm376389.htm. Accessed 3 June 2018.
  68. 68.
    US Food and Drug Administration. FDA drug safety communication: FDA eliminates the risk evaluation and mitigation strategy (REMS) for rosiglitazone-containing diabetes medicines. Silver Spring: US FDA; 2015. http://www.fda.gov/Drugs/DrugSafety/ucm476466.htm. Accessed 3 June 2018.
  69. 69.
    Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. Jama. 2007;298(10):1180–8.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Strongman H, Christopher S, Majak M, Williams R, Bahmanyar S, Linder M, et al. Pioglitazone and cause-specific risk of mortality in patients with type 2 diabetes: extended analysis from a European multidatabase cohort study. BMJ Open Diabetes Res Care. 2018;6(1):e000481.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Goldberg RB, Kendall DM, Deeg MA, Buse JB, Zagar AJ, Pinaire JA, et al. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2005;28(7):1547–54.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Nesto RW, Bell D, Bonow RO, Fonseca V, Grundy SM, Horton ES, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Circulation. 2003;108(23):2941–8.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Delea TE, Edelsberg JS, Hagiwara M, Oster G, Phillips LS. Use of thiazolidinediones and risk of heart failure in people with type 2 diabetes: a retrospective cohort study. Diabetes Care. 2003;26(11):2983–9.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Zhou X, Chen S, Zhu M, Hua J, Dai J, Xu X, et al. Different effects of thiazolidinediones on in-stent restenosis and target lesion revascularization after PCI: a meta-analysis of randomized controlled trials. Sci Rep. 2017;7(1):14464.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kernan WN, Viscoli CM, Furie KL, Young LH, Inzucchi SE, Gorman M, et al. Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med. 2016;374(14):1321–31.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Lee M, Saver JL, Liao HW, Lin CH, Ovbiagele B. Pioglitazone for secondary stroke prevention: a systematic review and meta-analysis. Stroke. 2017;48(2):388–93.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Lovshin JA. Glucagon-like peptide-1 receptor agonists: a class update for treating type 2 diabetes. Can J Diabetes. 2017;41(5):524–35.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Aroda VR. A review of GLP-1 receptor agonists: evolution and advancement, through the lens of randomised controlled trials. Diabetes Obes Metab. 2018;20(Suppl 1):22–33.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Deacon CF. Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review. Diabetes Obes Metab. 2011;13(1):7–18.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368(9548):1696–705.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Rotz ME, Ganetsky VS, Sen S, Thomas TF. Implications of incretin-based therapies on cardiovascular disease. Int J Clin Pract. 2015;69(5):531–49.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8(12):728–42.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Pratley RE, Aroda VR, Lingvay I, Ludemann J, Andreassen C, Navarria A, et al. Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): a randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol. 2018;6(4):275–86.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Bergenstal RM, Wysham C, Macconell L, Malloy J, Walsh B, Yan P, et al. Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjunct to metformin for treatment of type 2 diabetes (DURATION-2): a randomised trial. Lancet. 2010;376(9739):431–9.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Sun F, Wu S, Guo S, Yu K, Yang Z, Li L, et al. Impact of GLP-1 receptor agonists on blood pressure, heart rate and hypertension among patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetes Res Clin Pract. 2015;110(1):26–37.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Margulies KB, Hernandez AF, Redfield MM, Givertz MM, Oliveira GH, Cole R, et al. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA. 2016;316(5):500–8.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Jorsal A, Kistorp C, Holmager P, Tougaard RS, Nielsen R, Hanselmann A, et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)—a multicentre, double-blind, randomised, placebo-controlled trial. Eur J Heart Fail. 2017;19(1):69–77.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Bethel MA, Patel RA, Merrill P, Lokhnygina Y, Buse JB, Mentz RJ, et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol. 2018;6(2):105–13.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Brunton S. GLP-1 receptor agonists vs. DPP-4 inhibitors for type 2 diabetes: is one approach more successful or preferable than the other? Int J Clin Pract. 2014;68(5):557–67.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Pratley R, Nauck M, Bailey T, Montanya E, Cuddihy R, Filetti S, et al. One year of liraglutide treatment offers sustained and more effective glycaemic control and weight reduction compared with sitagliptin, both in combination with metformin, in patients with type 2 diabetes: a randomised, parallel-group, open-label trial. Int J Clin Pract. 2011;65(4):397–407.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Zannad F, Cannon CP, Cushman WC, Bakris GL, Menon V, Perez AT, et al. Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet. 2015;385(9982):2067–76.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    US Food and Drug Administration. FDA drug safety communication: FDA adds warnings about heart failure risk to labels of type 2 diabetes medicines containing saxagliptin and alogliptin. Silver Spring: US FDA; 2016. http://www.fda.gov/Drugs/DrugSafety/ucm486096.htm. Accessed 3 June 2018.
  94. 94.
    Kalra S. Sodium glucose co-transporter-2 (SGLT2) inhibitors: a review of their basic and clinical pharmacology. Diabetes Ther. 2014;5(2):355–66.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Vivian EM. Sodium-glucose co-transporter 2 (SGLT2) inhibitors: a growing class of antidiabetic agents. Drugs Context. 2014;3:212264.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Liu J, Li L, Li S, Jia P, Deng K, Chen W, et al. Effects of SGLT2 inhibitors on UTIs and genital infections in type 2 diabetes mellitus: a systematic review and meta-analysis. Sci Rep. 2017;7(1):2824.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Handelsman Y, Henry RR, Bloomgarden ZT, Dagogo-Jack S, DeFronzo RA, Einhorn D, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Position Statement on the Association of SGLT-2 inhibitors and diabetic ketoacidosis. Endocr Pract. 2016;22(6):753–62.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    European Medicines Agency. SGLT2 inhibitors: PRAC makes recommendations to minimise risk of diabetic ketoacidosis. London: EMA; 2016. http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2016/02/WC500201890.pdf. Accessed 3 June 2018.
  99. 99.
    Cherney DZI, Zinman B, Inzucchi SE, Koitka-Weber A, Mattheus M, von Eynatten M, et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(8):610–21.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Raz I, Mosenzon O, Bonaca MP, Cahn A, Kato ET, Silverman MG, et al. DECLARE-TIMI 58: Participants’ baseline characteristics. Diabetes Obes Metab. 2018;20(5):1102–10.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Kosiborod M, Cavender MA, Fu AZ, Wilding JP, Khunti K, Holl RW, et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-real study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors). Circulation. 2017;136(3):249–59.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Kosiborod M, Lam CSP, Kohsaka S, Kim DJ, Karasik A, Shaw J, et al. Lower cardiovascular risk associated with SGLT-2i in > 400,000 patients: the CVD-REAL 2 study. J Am Coll Cardiol. 2018;71(23):2628–39.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Lee G, Oh SW, Hwang SS, Yoon JW, Kang S, Joh HK, et al. Comparative effectiveness of oral antidiabetic drugs in preventing cardiovascular mortality and morbidity: a network meta-analysis. PLoS One. 2017;12(5):e0177646.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Usman MS, Siddiqi TJ, Memon MM, Khan MS, Rawasia WF, Talha Ayub M, et al. Sodium-glucose co-transporter 2 inhibitors and cardiovascular outcomes: a systematic review and meta-analysis. Eur J Prev Cardiol. 2018;25(5):495–502.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Baker WL, Buckley LF, Kelly MS, Bucheit JD, Parod ED, Brown R, et al. Effects of sodium-glucose cotransporter 2 inhibitors on 24-hour ambulatory blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2017;6(5):e005686.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Ingelfinger JR, Rosen CJ. Cardiovascular risk and sodium-glucose cotransporter 2 inhibition in type 2 diabetes. N Engl J Med. 2015;373(22):2178–9.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Erondu N, Shaw W, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018;6(9):691–704.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Tang H, Li D, Zhang J, Li Y, Wang T, Zhai S, et al. Sodium-glucose co-transporter-2 inhibitors and risk of adverse renal outcomes among patients with type 2 diabetes: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2017;19(8):1106–15.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Mahaffey KW, Neal B, Perkovic V, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin for primary and secondary prevention of cardiovascular events: results from the CANVAS program (canagliflozin cardiovascular assessment study). Circulation. 2018;137(4):323–34.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Rosenstock J, Dailey G, Massi-Benedetti M, Fritsche A, Lin Z, Salzman A. Reduced hypoglycemia risk with insulin glargine: a meta-analysis comparing insulin glargine with human NPH insulin in type 2 diabetes. Diabetes Care. 2005;28(4):950–5.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Home PD, Fritsche A, Schinzel S, Massi-Benedetti M. Meta-analysis of individual patient data to assess the risk of hypoglycaemia in people with type 2 diabetes using NPH insulin or insulin glargine. Diabetes Obes Metab. 2010;12(9):772–9.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Heise T, Norskov M, Nosek L, Kaplan K, Famulla S, Haahr HL. Insulin degludec: lower day-to-day and within-day variability in pharmacodynamic response compared with insulin glargine 300 U/mL in type 1 diabetes. Diabetes Obes Metab. 2017;19(7):1032–9.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Hirsch IB. Insulin analogues. N Engl J Med. 2005;352(2):174–83.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Lipska KJ, Hirsch IB, Riddle MC. Human insulin for type 2 diabetes: an effective, less-expensive option. JAMA. 2017;318(1):23–4.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Chamberlain JJ, Herman WH, Leal S, Rhinehart AS, Shubrook JH, Skolnik N, et al. Pharmacologic therapy for type 2 diabetes: synopsis of the 2017 American Diabetes Association Standards of Medical Care in Diabetes. Ann Intern Med. 2017;166(8):572–8.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Zoungas S, Patel A, Chalmers J, de Galan BE, Li Q, Billot L, et al. Severe hypoglycemia and risks of vascular events and death. N Engl J Med. 2010;363(15):1410–8.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Gerstein HC, Bosch J, Dagenais GR, Diaz R, Jung H, Maggioni AP, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367(4):319–28.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Marso SP, McGuire DK, Zinman B, Poulter NR, Emerson SS, Pieber TR, et al. Efficacy and safety of degludec versus glargine in type 2 diabetes. N Engl J Med. 2017;377(8):723–32.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Mosleh W, Sharma A, Sidhu MS, Page B, Sharma UC, Farkouh ME. The role of SGLT-2 inhibitors as part of optimal medical therapy in improving cardiovascular outcomes in patients with diabetes and coronary artery disease. Cardiovasc Drugs Ther. 2017;31(3):311–8.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Singh AK, Singh R. SAVOR-TIMI to SUSTAIN-6: a critical comparison of cardiovascular outcome trials of antidiabetic drugs. Expert Rev Clin Pharmacol. 2017;10(4):429–42.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Filion KB, Azoulay L, Platt RW, Dahl M, Dormuth CR, Clemens KK, et al. A multicenter observational study of incretin-based drugs and heart failure. N Engl J Med. 2016;374(12):1145–54.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Seferovic PM, Petrie MC, Filippatos GS, Anker SD, Rosano G, Bauersachs J, et al. Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2018;20(5):853–72.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME(R) trial. Eur Heart J. 2016;37(19):1526–34.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Radholm K, Figtree G, Perkovic V, Solomon SD, Mahaffey KW, de Zeeuw D, et al. Canagliflozin and heart failure in type 2 diabetes mellitus: results from the CANVAS program (canagliflozin cardiovascular assessment study). Circulation. 2018.  https://doi.org/10.1161/circulationaha.118.034222 (Epub ahead of print).CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Nassif M, Kosiborod M. Effect of glucose-lowering therapies on heart failure. Nat Rev Cardiol. 2018;15(5):282–91.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Ring A, Brand T, Macha S, Breithaupt-Groegler K, Simons G, Walter B, et al. The sodium glucose cotransporter 2 inhibitor empagliflozin does not prolong QT interval in a thorough QT (TQT) study. Cardiovasc Diabetol. 2013;12:70.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Darpo B, Sager P, MacConell L, Cirincione B, Mitchell M, Han J, et al. Exenatide at therapeutic and supratherapeutic concentrations does not prolong the QTc interval in healthy subjects. Br J Clin Pharmacol. 2013;75(4):979–89.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    He YL, Zhang Y, Serra D, Wang Y, Ligueros-Saylan M, Dole WP. Thorough QT study of the effects of vildagliptin, a dipeptidyl peptidase IV inhibitor, on cardiac repolarization and conduction in healthy volunteers. Curr Med Res Opin. 2011;27(7):1453–63.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Ring A, Port A, Graefe-Mody EU, Revollo I, Iovino M, Dugi KA. The DPP-4 inhibitor linagliptin does not prolong the QT interval at therapeutic and supratherapeutic doses. Br J Clin Pharmacol. 2011;72(1):39–50.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Robinson RT, Harris ND, Ireland RH, Lee S, Newman C, Heller SR. Mechanisms of abnormal cardiac repolarization during insulin-induced hypoglycemia. Diabetes. 2003;52(6):1469–74.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Castilla-Guerra L, Fernandez-Moreno MDC, Leon-Jimenez D, Carmona-Nimo E. Antidiabetic drugs and stroke risk. Current evidence. Eur J Intern Med. 2018;48:1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Bonnet F, Scheen AJ. Impact of glucose-lowering therapies on risk of stroke in type 2 diabetes. Diabetes Metab. 2017;43(4):299–313.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Liu R, Wang H, Xu B, Chen W, Turlova E, Dong N, et al. cerebrovascular safety of sulfonylureas: the role of KATP channels in neuroprotection and the risk of stroke in patients with type 2 diabetes. Diabetes. 2016;65(9):2795–809.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Griffin SJ, Leaver JK, Irving GJ. Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes. Diabetologia. 2017;60(9):1620–9.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Zinman B, Inzucchi SE, Lachin JM, Wanner C, Fitchett D, Kohler S, et al. Empagliflozin and cerebrovascular events in patients with type 2 diabetes mellitus at high cardiovascular risk. Stroke. 2017;48(5):1218–25.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Darsalia V, Klein T, Nystrom T, Patrone C. Glucagon-like receptor 1 agonists and DPP-4 inhibitors: anti-diabetic drugs with anti-stroke potential. Neuropharmacology. 2018;136(Pt B):280–86.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Ryden L, Grant PJ, Anker SD, Berne C, Cosentino F, Danchin N, et al. ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the task force on diabetes, pre-diabetes, and cardiovascular diseases of the ESC and developed in collaboration with the EASD. Eur Heart J. 2013;34(39):3035–87.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Booth G, Lipscombe L, Butalia S, Dasgupta K, Eurich D, Goldenberg R, et al. Pharmacologic management of type 2 diabetes: 2016 interim update. Can J Diabetes. 2016;40(6):484–6.CrossRefGoogle Scholar
  140. 140.
    Qaseem A, Barry MJ, Humphrey LL, Forciea MA. Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline update from the American College of Physicians. Ann Intern Med. 2017;166(4):279–90.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Qaseem A, Wilt TJ, Kansagara D, Horwitch C, Barry MJ, Forciea MA. Hemoglobin A1c targets for glycemic control with pharmacologic therapy for nonpregnant adults with type 2 diabetes mellitus: a guidance statement update from the American College of Physicians. Ann Intern Med. 2018;168(8):569–76.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Conlin PR, Colburn J, Aron D, Pries RM, Tschanz MP, Pogach L. Synopsis of the 2017 U.S. Department of Veterans Affairs/U.S. Department of Defense clinical practice guideline: management of type 2 diabetes mellitus. Ann Intern Med. 2017;167(9):655–63.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Persson F, Nystrom T, Jorgensen ME, Carstensen B, Gulseth HL, Thuresson M, et al. Dapagliflozin is associated with lower risk of cardiovascular events and all-cause mortality in people with type 2 diabetes (CVD-REAL Nordic) when compared with dipeptidyl peptidase-4 inhibitor therapy: a multinational observational study. Diabetes Obes Metab. 2018;20(2):344–51.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Bundhun PK, Janoo G, Teeluck AR, Huang F. Adverse drug effects observed with vildagliptin versus pioglitazone or rosiglitazone in the treatment of patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. BMC Pharmacol Toxicol. 2017;18(1):66.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Patorno E, Goldfine AB, Schneeweiss S, Everett BM, Glynn RJ, Liu J, et al. Cardiovascular outcomes associated with canagliflozin versus other non-gliflozin antidiabetic drugs: population based cohort study. BMJ. 2018;360:k119.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Chan CW, Yu CL, Lin JC, Hsieh YC, Lin CC, Hung CY, et al. Glitazones and alpha-glucosidase inhibitors as the second-line oral anti-diabetic agents added to metformin reduce cardiovascular risk in Type 2 diabetes patients: a nationwide cohort observational study. Cardiovasc Diabetol. 2018;17(1):20.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Ekstrom N, Svensson AM, Miftaraj M, Franzen S, Zethelius B, Eliasson B, et al. Cardiovascular safety of glucose-lowering agents as add-on medication to metformin treatment in type 2 diabetes: report from the Swedish National Diabetes Register. Diabetes Obes Metab. 2016;18(10):990–8.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Balakumar P, Dhanaraj SA. Cardiovascular pleiotropic actions of DPP-4 inhibitors: a step at the cutting edge in understanding their additional therapeutic potentials. Cell Signal. 2013;25(9):1799–803.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI. Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation. 2017;136(17):1643–58.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Avogaro A, de Kreutzenberg S, Fadini G. Dipeptidyl-peptidase 4 inhibition: linking metabolic control to cardiovascular protection. Curr Pharm Des. 2014;20(14):2387–94.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Giblett JP, Clarke SJ, Dutka DP, Hoole SP. Glucagon-like peptide-1: a promising agent for cardioprotection during myocardial ischemia. J Am Coll Cardiol Basic Trans Sci. 2016;1(4):267–76.Google Scholar
  152. 152.
    Chilton R, Wyatt J, Nandish S, Oliveros R, Lujan M. Cardiovascular comorbidities of type 2 diabetes mellitus: defining the potential of glucagonlike peptide-1-based therapies. Am J Med. 2011;124(1 Suppl):S35–53.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Chang G, Liu J, Qin S, Jiang Y, Zhang P, Yu H, et al. Cardioprotection by exenatide: a novel mechanism via improving mitochondrial function involving the GLP-1 receptor/cAMP/PKA pathway. Int J Mol Med. 2018;41(3):1693–703.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Staels B. Cardiovascular protection by sodium glucose cotransporter 2 inhibitors: potential mechanisms. Am J Cardiol. 2017;120(1s):S28–36.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Abdul-Ghani M, Del Prato S, Chilton R, DeFronzo RA. SGLT2 inhibitors and cardiovascular risk: lessons learned from the EMPA-REG OUTCOME study. Diabetes Care. 2016;39(5):717–25.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134(10):752–72.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J Cardiol. 2018;71(5):471–6.PubMedCrossRefGoogle Scholar
  158. 158.
    National Institute for Health and Care Excellence. Type 2 diabetes in adults: management. NICE guideline [NG28]. Updated May 2017. London: NICE. https://www.nice.org.uk/guidance/ng28. Accessed 15 May 2018.
  159. 159.
    Vega CP. New diabetes management guidance: a shift in focus. Medscape morning report 2018 August 1. http://www.medscape.com/viewarticle/899983. Accessed 8 Sept 2018.
  160. 160.
    Sloan J. ADA 2018: new ADA guidelines for the treatment of hyperglycemia in type 2 diabetes. Diabetes 2018 July 9. http://www.practiceupdate.com/content/ada-2018-new-ada-guidelines-for-the-treatment-of-hyperglycemia-in-type-2-diabetes/70336/7/8/3. Accessed 8 Sept 2018.
  161. 161.
    Ferdinand KC, Botros FT, Atisso CM, Sager PT. Cardiovascular safety for once-weekly dulaglutide in type 2 diabetes: a pre-specified meta-analysis of prospectively adjudicated cardiovascular events. Cardiovasc Diabetol. 2016;15:38.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Smith RJ, Goldfine AB, Hiatt WR. Evaluating the cardiovascular safety of new medications for type 2 diabetes: time to reassess? Diabetes Care. 2016;39(5):738–42.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Marx N, Rosenstock J, Kahn SE, Zinman B, Kastelein JJ, Lachin JM, et al. Design and baseline characteristics of the CARdiovascular Outcome Trial of LINAgliptin Versus Glimepiride in Type 2 Diabetes (CAROLINA(R)). Diab Vasc Dis Res. 2015;12(3):164–74.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Rosenstock J, Perkovic V, Alexander JH, Cooper ME, Marx N, Pencina MJ, et al. Rationale, design, and baseline characteristics of the CArdiovascular safety and Renal Microvascular outcomE study with LINAgliptin (CARMELINA((R))): a randomized, double-blind, placebo-controlled clinical trial in patients with type 2 diabetes and high cardio-renal risk. Cardiovasc Diabetol. 2018;17(1):39.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Tomlinson B, Hu M, Zhang Y, Chan P, Liu ZM. Effects of glucose-lowering drugs on cardiovascular outcomes in patients with type 2 diabetes. Expert Opin Drug Metab Toxicol. 2016:12 (11):1267–71.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Antonis A. Manolis
    • 1
  • Theodora A. Manolis
    • 2
  • Antonis S. Manolis
    • 3
  1. 1.Patras University School of MedicinePatrasGreece
  2. 2.Zakynthos HospitalZakynthosGreece
  3. 3.Third Department of CardiologyAthens University School of MedicineAthensGreece

Personalised recommendations