Advertisement

Drugs

, Volume 78, Issue 15, pp 1549–1566 | Cite as

Therapeutic Advances and Challenges in the Treatment of Progressive Multiple Sclerosis

  • Laura E. Baldassari
  • Robert J. Fox
Review Article

Abstract

Despite the fact that majority of patients with multiple sclerosis (MS) have relapsing-remitting disease, many transition to secondary progressive disease (SPMS) over time. This transition is thought to be related to neurodegenerative processes increasingly predominating over inflammatory processes as the driving forces of disability. However, some patients initially present with primary progressive disease (PPMS) that is characterized by a gradual accumulation of neurological symptoms and subsequent disability accumulation. The treatment of both PPMS and SPMS, collectively referred to as progressive MS, has proven quite challenging due to the multifactorial and poorly understood pathophysiology of multiple sclerosis in general, specifically that of progressive disease. The purpose of this article is to discuss important clinical and pathophysiologic differences between relapsing and progressive forms of MS, review previous notable trials of drugs in progressive MS, examine current literature regarding recent and promising progressive MS treatments, and discuss future considerations for progressive MS therapeutics and management. Specifically, the current evidence regarding treatment of progressive MS with ocrelizumab, simvastatin, ibudilast, alpha-lipoic acid, high-dose biotin, siponimod, and cell-based therapies are discussed.

Notes

Compliance with Ethical Standards

Funding

No funding was received for the publication of this review.

Conflict of interest

Fox has received personal consultancy fees from Actelion, Biogen, EMD Serono, Genentech, Novartis, and Teva, and has served on advisory committees for Actelion, Biogen, and Novartis, and received clinical trial contract and research grant funding from Biogen and Novartis. Dr. Baldassari has received personal fees for serving on a scientific advisory board for Teva, and receives funding via a Sylvia Lawry Physician Fellowship Grant through the National Multiple Sclerosis Society (#FP-1606-24540).

References

  1. 1.
    National Multiple Sclerosis Society. Frequently asked questions; 2018. https://www.nationalmssociety.org/What-is-MS/Who-Gets-MS. Accessed 18 Mar 2018.
  2. 2.
    Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–86.  https://doi.org/10.1212/wnl.0000000000000560.Google Scholar
  3. 3.
    Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73.  https://doi.org/10.1016/s1474-4422(17)30470-2.Google Scholar
  4. 4.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302.  https://doi.org/10.1002/ana.22366.Google Scholar
  5. 5.
    Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338(5):278–85.  https://doi.org/10.1056/nejm199801293380502.Google Scholar
  6. 6.
    Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14(2):183–93.  https://doi.org/10.1016/s1474-4422(14)70256-x.Google Scholar
  7. 7.
    Trapp BD, Stys PK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 2009;8(3):280–91.  https://doi.org/10.1016/s1474-4422(09)70043-2.Google Scholar
  8. 8.
    Hametner S, Wimmer I, Haider L, Pfeifenbring S, Bruck W, Lassmann H. Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol. 2013;74(6):848–61.  https://doi.org/10.1002/ana.23974.Google Scholar
  9. 9.
    Heidker RM, Emerson MR, LeVine SM. Metabolic pathways as possible therapeutic targets for progressive multiple sclerosis. Neural Regen Res. 2017;12(8):1262–7.  https://doi.org/10.4103/1673-5374.213542.Google Scholar
  10. 10.
    Calabrese M, Poretto V, Favaretto A, Alessio S, Bernardi V, Romualdi C, et al. Cortical lesion load associates with progression of disability in multiple sclerosis. Brain. 2012;135(Pt 10):2952–61.  https://doi.org/10.1093/brain/aws246.Google Scholar
  11. 11.
    Peterson JW, Bo L, Mork S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol. 2001;50(3):389–400.Google Scholar
  12. 12.
    Howell OW, Reeves CA, Nicholas R, Carassiti D, Radotra B, Gentleman SM, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain. 2011;134(Pt 9):2755–71.  https://doi.org/10.1093/brain/awr182.Google Scholar
  13. 13.
    Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol (Zurich, Switzerland). 2004;14(2):164–74.Google Scholar
  14. 14.
    Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007;130(Pt 4):1089–104.  https://doi.org/10.1093/brain/awm038.Google Scholar
  15. 15.
    Weinstock-Guttman B, Ransohoff RM, Kinkel RP, Rudick RA. The interferons: biological effects, mechanisms of action, and use in multiple sclerosis. Ann Neurol. 1995;37(1):7–15.  https://doi.org/10.1002/ana.410370105.Google Scholar
  16. 16.
    Kieseier BC. The mechanism of action of interferon-beta in relapsing multiple sclerosis. CNS Drugs. 2011;25(6):491–502.  https://doi.org/10.2165/11591110-000000000-00000.Google Scholar
  17. 17.
    IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology. 1993;43(4):655–61.Google Scholar
  18. 18.
    IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology. 1993;43(4):662–7.Google Scholar
  19. 19.
    Bermel RA, Rudick RA. Interferon-beta treatment for multiple sclerosis. Neurotherapeutics. 2007;4(4):633–46.  https://doi.org/10.1016/j.nurt.2007.07.001.Google Scholar
  20. 20.
    Stone L, Frank J, Albert P, Bash C, Calabresi P, Maloni H, et al. Characterization of MRI response to treatment with interferon beta-1b: contrast-enhancing MRI lesion frequency as a primary outcome measure. Neurology. 1997;49(3):862–9.Google Scholar
  21. 21.
    Kappos L, Polman C, Pozzilli C, Thompson A, Beckmann K, Dahlke F. Final analysis of the European multicenter trial on IFNbeta-1b in secondary-progressive MS. Neurology. 2001;57(11):1969–75.Google Scholar
  22. 22.
    Panitch H, Miller A, Paty D, Weinshenker B. Interferon beta-1b in secondary progressive MS: results from a 3-year controlled study. Neurology. 2004;63(10):1788–95.Google Scholar
  23. 23.
    Kappos L, Weinshenker B, Pozzilli C, Thompson AJ, Dahlke F, Beckmann K, et al. Interferon beta-1b in secondary progressive MS: a combined analysis of the two trials. Neurology. 2004;63(10):1779–87.Google Scholar
  24. 24.
    Secondary Progressive Efficacy Clinical Trial of Recombinant Interferon-Beta-1a in MS (SPECTRIMS) Study Group. Randomized controlled trial of interferon- beta-1a in secondary progressive MS: Clinical results. Neurology. 2001;56(11):1496–504.Google Scholar
  25. 25.
    Andersen O. Multicentre, randomised, double blind, placebo controlled, phase III study of weekly, low dose, subcutaneous interferon beta-1a in secondary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry. 2004;75(5):706–10.Google Scholar
  26. 26.
    Cohen JA, Cutter GR, Fischer JS, Goodman AD, Heidenreich FR, Kooijmans MF, et al. Benefit of interferon beta-1a on MSFC progression in secondary progressive MS. Neurology. 2002;59(5):679–87.Google Scholar
  27. 27.
    Leary SM, Miller DH, Stevenson VL, Brex PA, Chard DT, Thompson AJ. Interferon beta-1a in primary progressive MS: an exploratory, randomized, controlled trial. Neurology. 2003;60(1):44–51.Google Scholar
  28. 28.
    Montalban X. Overview of European pilot study of interferon beta-Ib in primary progressive multiple sclerosis. Mult Scler. 2004;10(Suppl 1):S62 (discussion 62-4).Google Scholar
  29. 29.
    Wolinsky JS, Narayana PA, O’Connor P, Coyle PK, Ford C, Johnson K, et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann Neurol. 2007;61(1):14–24.  https://doi.org/10.1002/ana.21079.Google Scholar
  30. 30.
    Wolinsky JS, PROMiSe Trial Study Group. The PROMiSe trial: baseline data review and progress report. Mult Scler. 2004;10(Suppl 1):S65–71 (discussion S-2).Google Scholar
  31. 31.
    Wolinsky JS, Shochat T, Weiss S, Ladkani D. Glatiramer acetate treatment in PPMS: why males appear to respond favorably. J Neurol Sci. 2009;286(1–2):92–8.  https://doi.org/10.1016/j.jns.2009.04.019.Google Scholar
  32. 32.
    Fidler JM, DeJoy SQ, Gibbons JJ Jr. Selective immunomodulation by the antineoplastic agent mitoxantrone. I. Suppression of B lymphocyte function. J Immunol. 1986;137(2):727–32.Google Scholar
  33. 33.
    Fidler JM, DeJoy SQ, Smith FR 3rd, Gibbons JJ Jr. Selective immunomodulation by the antineoplastic agent mitoxantrone. II. Nonspecific adherent suppressor cells derived from mitoxantrone-treated mice. J Immunol. 1986;136(8):2747–54.Google Scholar
  34. 34.
    Hartung H, Gonsette R, König N, Kwiecinski H, Guseo A, Morrissey S, et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet. 2002;360(9350):2018–25.Google Scholar
  35. 35.
    Krapf H, Morrissey S, Zenker O, Zwingers T, Gonsette R, Hartung H, et al. Effect of mitoxantrone on MRI in progressive MS: results of the MIMS trial. Neurology. 2005;65(5):690–5.Google Scholar
  36. 36.
    Lublin F, Miller DH, Freedman MS, Cree BAC, Wolinsky JS, Weiner H, et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet. 2016;387(10023):1075–84.  https://doi.org/10.1016/s0140-6736(15)01314-8.Google Scholar
  37. 37.
    Kapoor R, Ho PR, Campbell N, Chang I, Deykin A, Forrestal F, et al. Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND): a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension. Lancet Neurol. 2018;17(5):405–15.  https://doi.org/10.1016/s1474-4422(18)30069-3.Google Scholar
  38. 38.
    Giovannoni G, Comi G, Cook S, Rammohan K, Rieckman P, Soelberg Sørensen P, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):416–26.Google Scholar
  39. 39.
    Sipe J, Romine J, Koziol J, McMillan R, Zyroff J, Beutler E. Cladribine in treatment of chronic progressive multiple sclerosis. Lancet. 1994;344(8914):9–13.Google Scholar
  40. 40.
    Beutler E, Koziol J, McMillan R, Sipe J, Romine J, Carrera C. Marrow suppression produced by repeated doses of cladribine. Acta Haematol. 1994;91(1):10–5.Google Scholar
  41. 41.
    Rice G, Filippi M, Comi G. Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Cladribine MRI Study Group. Neurology. 2000;54(5):1145–55.Google Scholar
  42. 42.
    Hawker K, O’Connor P, Freedman M, Calabresi P, Antel J, Simon J, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol. 2009;66(4):460–71.Google Scholar
  43. 43.
    Komori M, Lin YC, Cortese I, Blake A, Ohayon J, Cherup J, et al. Insufficient disease inhibition by intrathecal rituximab in progressive multiple sclerosis. Ann Clin Transl Neurol. 2016;3(3):166–79.  https://doi.org/10.1002/acn3.293.Google Scholar
  44. 44.
    Komori M, Blake A, Greenwood M, Lin YC, Kosa P, Ghazali D, et al. Cerebrospinal fluid markers reveal intrathecal inflammation in progressive multiple sclerosis. Ann Neurol. 2015;78(1):3–20.  https://doi.org/10.1002/ana.24408.Google Scholar
  45. 45.
    Topping J, Dobson R, Lapin S, Maslyanskiy A, Kropshofer H, Leppert D, et al. The effects of intrathecal rituximab on biomarkers in multiple sclerosis. Mult Scler Relat Disord. 2016;6:49–53.  https://doi.org/10.1016/j.msard.2016.01.001.Google Scholar
  46. 46.
    Bhargava P, Wicken C, Smith M, Cortese I, Reich D, Calabresi P, et al. Phase 1 trial of intrathecal rituximab in progressive ms patients with evidence of leptomeningeal contrast enhancement. Los Angeles: American Academy of Neurology; 2018.Google Scholar
  47. 47.
    Stankiewicz J, Kolb H, Karni A, Weiner H. Role of immunosuppressive therapy for the treatment of multiple sclerosis. Neurotherapeutics. 2013;10(1):77–88.Google Scholar
  48. 48.
    Rommer PS, Stuve O. Management of secondary progressive multiple sclerosis: prophylactic treatment-past, present, and future aspects. Curr Treat Options Neurol. 2013;15(3):241–58.  https://doi.org/10.1007/s11940-013-0233-x.Google Scholar
  49. 49.
    Brochet B, Deloire MS, Perez P, Loock T, Baschet L, Debouverie M, et al. Double-blind controlled randomized trial of cyclophosphamide versus methylprednisolone in secondary progressive multiple sclerosis. PLoS One. 2017;12(1):e0168834.  https://doi.org/10.1371/journal.pone.0168834.Google Scholar
  50. 50.
    Perini P, Calabrese M, Tiberio M, Ranzato F, Battistin L, Gallo P. Mitoxantrone versus cyclophosphamide in secondary-progressive multiple sclerosis: a comparative study. J Neurol. 2006;253(8):1034–40.  https://doi.org/10.1007/s00415-006-0154-7.Google Scholar
  51. 51.
    Perini P, Gallo P. Cyclophosphamide is effective in stabilizing rapidly deteriorating secondary progressive multiple sclerosis. J Neurol. 2003;250(7):834–8.  https://doi.org/10.1007/s00415-003-1089-x.Google Scholar
  52. 52.
    Weiner HL, Mackin GA, Orav EJ, Hafler DA, Dawson DM, LaPierre Y, et al. Intermittent cyclophosphamide pulse therapy in progressive multiple sclerosis: final report of the Northeast Cooperative Multiple Sclerosis Treatment Group. Neurology. 1993;43(5):910–8.Google Scholar
  53. 53.
    The Canadian Cooperative Multiple Sclerosis Study Group. The Canadian cooperative trial of cyclophosphamide and plasma exchange in progressive multiple sclerosis. The Canadian Cooperative Multiple Sclerosis Study Group. Lancet. 1991;337(8739):441–6.Google Scholar
  54. 54.
    Fernandez O, Guerrero M, Mayorga C, Munoz L, Lean A, Luque G, et al. Combination therapy with interferon beta-1b and azathioprine in secondary progressive multiple sclerosis. A two-year pilot study. J Neurol. 2002;249(8):1058–62.  https://doi.org/10.1007/s00415-002-0787-0.Google Scholar
  55. 55.
    Kappos L, Patzold U, Dommasch D, Poser S, Haas J, Krauseneck P, et al. Cyclosporine versus azathioprine in the long-term treatment of multiple sclerosis—results of the German multicenter study. Ann Neurol. 1988;23(1):56–63.  https://doi.org/10.1002/ana.410230110.Google Scholar
  56. 56.
    Uccelli A, Capello E, Fenoglio D, Incagliato M, Valbonesi M, Mancardi GL. Intravenous immunoglobulin, plasmalymphocytapheresis and azathioprine in chronic progressive multiple sclerosis. Ital J Neurol Sci. 1994;15(1):51–3.Google Scholar
  57. 57.
    British and Dutch Multiple Sclerosis Trial Group. Double-masked trial of azathioprine in multiple sclerosis. British and Dutch Multiple Sclerosis Azathioprine Trial Group. Lancet. 1988;2(8604):179–83.Google Scholar
  58. 58.
    Cook SD, Troiano R, Rohowsky-Kochan C, Jotkowitz A, Bielory L, Mehta PD, et al. Intravenous gamma globulin in progressive MS. Acta Neurol Scand. 1992;86(2):171–5.Google Scholar
  59. 59.
    Hommes OR, Sorensen PS, Fazekas F, Enriquez MM, Koelmel HW, Fernandez O, et al. Intravenous immunoglobulin in secondary progressive multiple sclerosis: randomised placebo-controlled trial. Lancet. 2004;364(9440):1149–56.  https://doi.org/10.1016/s0140-6736(04)17101-8.Google Scholar
  60. 60.
    Pohlau D, Przuntek H, Sailer M, Bethke F, Koehler J, Konig N, et al. Intravenous immunoglobulin in primary and secondary chronic progressive multiple sclerosis: a randomized placebo controlled multicentre study. Mult Scler. 2007;13(9):1107–17.  https://doi.org/10.1177/1352458507078400.Google Scholar
  61. 61.
    The Multiple Sclerosis Study Group. Efficacy and toxicity of cyclosporine in chronic progressive multiple sclerosis: a randomized, double-blinded, placebo-controlled clinical trial. The Multiple Sclerosis Study Group. Ann Neurol. 1990;27(6):591–605.  https://doi.org/10.1002/ana.410270603.Google Scholar
  62. 62.
    Noseworthy JH, O’Brien P, Erickson BJ, Lee D, Sneve D, Ebers GC, et al. The Mayo Clinic-Canadian Cooperative trial of sulfasalazine in active multiple sclerosis. Neurology. 1998;51(5):1342–52.Google Scholar
  63. 63.
    Goodkin DE, Rudick RA, VanderBrug Medendorp S, Daughtry MM, Schwetz KM, Fischer J, et al. Low-dose (7.5 mg) oral methotrexate reduces the rate of progression in chronic progressive multiple sclerosis. Ann Neurol. 1995;37(1):30–40.  https://doi.org/10.1002/ana.410370108.Google Scholar
  64. 64.
    Goodkin DE, Rudick RA, VanderBrug Medendorp S, Daughtry MM, Van Dyke C. Low-dose oral methotrexate in chronic progressive multiple sclerosis: analyses of serial MRIs. Neurology. 1996;47(5):1153–7.Google Scholar
  65. 65.
    Gray O, McDonnell GV, Forbes RB. Methotrexate for multiple sclerosis. Cochrane Database Syst Rev. 2004;2:CD003208.  https://doi.org/10.1002/14651858.cd003208.pub2.Google Scholar
  66. 66.
    Lugaresi A, Caporale C, Farina D, Marzoli F, Bonanni L, Muraro PA, et al. Low-dose oral methotrexate treatment in chronic progressive multiple sclerosis. Neurol Sci. 2001;22(2):209–10.Google Scholar
  67. 67.
    Zajicek J, Ball S, Wright D, Vickery J, Nunn A, Miller D, et al. Effect of dronabinol on progression in progressive multiple sclerosis (CUPID): a randomised, placebo-controlled trial. Lancet Neurol. 2013;12(9):857–65.  https://doi.org/10.1016/s1474-4422(13)70159-5.Google Scholar
  68. 68.
    Karussis DM, Meiner Z, Lehmann D, Gomori JM, Schwarz A, Linde A, et al. Treatment of secondary progressive multiple sclerosis with the immunomodulator linomide: a double-blind, placebo-controlled pilot study with monthly magnetic resonance imaging evaluation. Neurology. 1996;47(2):341–6.Google Scholar
  69. 69.
    Noseworthy JH, Wolinsky JS, Lublin FD, Whitaker JN, Linde A, Gjorstrup P, et al. Linomide in relapsing and secondary progressive MS: part I: trial design and clinical results. North American Linomide Investigators. Neurology. 2000;54(9):1726–33.Google Scholar
  70. 70.
    Wolinsky JS, Narayana PA, Noseworthy JH, Lublin FD, Whitaker JN, Linde A, et al. Linomide in relapsing and secondary progressive MS: part II: MRI results. MRI Analysis Center of the University of Texas-Houston, Health Science Center, and the North American Linomide Investigators. Neurology. 2000;54(9):1734–41.Google Scholar
  71. 71.
    Kapoor R, Furby J, Hayton T, Smith KJ, Altmann DR, Brenner R, et al. Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol. 2010;9(7):681–8.  https://doi.org/10.1016/s1474-4422(10)70131-9.Google Scholar
  72. 72.
    Schreiber K, Magyari M, Sellebjerg F, Iversen P, Garde E, Madsen CG, et al. High-dose erythropoietin in patients with progressive multiple sclerosis: a randomized, placebo-controlled, phase 2 trial. Mult Scler. 2017;23(5):675–85.  https://doi.org/10.1177/1352458516661048.Google Scholar
  73. 73.
    Freedman MS, Bar-Or A, Oger J, Traboulsee A, Patry D, Young C, et al. A phase III study evaluating the efficacy and safety of MBP8298 in secondary progressive MS. Neurology. 2011;77(16):1551–60.  https://doi.org/10.1212/WNL.0b013e318233b240.Google Scholar
  74. 74.
    Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci. 2005;8(6):745–51.  https://doi.org/10.1038/nn1460.Google Scholar
  75. 75.
    Zhang Y, Zhang YP, Pepinsky B, Huang G, Shields LB, Shields CB, et al. Inhibition of LINGO-1 promotes functional recovery after experimental spinal cord demyelination. Exp Neurol. 2015;266:68–73.  https://doi.org/10.1016/j.expneurol.2015.02.006.Google Scholar
  76. 76.
    Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med. 2007;13(10):1228–33.  https://doi.org/10.1038/nm1664.Google Scholar
  77. 77.
    Cadavid D, Balcer L, Galetta S, Aktas O, Ziemssen T, Vanopdenbosch L, et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2017;16(3):189–99.  https://doi.org/10.1016/s1474-4422(16)30377-5.Google Scholar
  78. 78.
    McCroskery P, Selmaj K, O F, Grimaldi L, Silber E, Pardo G et al. Safety and tolerability of opicinumab in relapsing multiple sclerosis: the Phase 2b SYNERGY Trial (P5.369). Neurology. 2017;88(16 Suppl).Google Scholar
  79. 79.
    Mellion M, Edwards K, Hupperts R, Drulovic J, Montalban X, Hartung H, et al. Efficacy results from the Phase 2b SYNERGY Study: treatment of disabling multiple sclerosis with the anti-LINGO-1 monoclonal antibody opicinumab (S33.004). Boston: American Academy of Neurology; 2017.Google Scholar
  80. 80.
    Jaber S, Polster BM. Idebenone and neuroprotection: antioxidant, pro-oxidant, or electron carrier? J Bioenerg Biomembr. 2015;47(1–2):111–8.  https://doi.org/10.1007/s10863-014-9571-y.Google Scholar
  81. 81.
    National Multiple Sclerosis Society. Results announced from clinical trial of idebenone in primary progressive MS; 2018. http://www.nationalmssociety.org/About-the-Society/News/Results-Announced-from-Clinical-Trial-of-Idebenone. Accessed 24 July 2018.
  82. 82.
    Bruck W, Wegner C. Insight into the mechanism of laquinimod action. J Neurol Sci. 2011;306(1–2):173–9.  https://doi.org/10.1016/j.jns.2011.02.019.Google Scholar
  83. 83.
    Bruck W, Pfortner R, Pham T, Zhang J, Hayardeny L, Piryatinsky V, et al. Reduced astrocytic NF-kappaB activation by laquinimod protects from cuprizone-induced demyelination. Acta Neuropathol. 2012;124(3):411–24.  https://doi.org/10.1007/s00401-012-1009-1.Google Scholar
  84. 84.
    Sorensen PS, Comi G, Vollmer TL, Montalban X, Kappos L, Dadon Y, et al. Laquinimod safety profile: pooled analyses from the ALLEGRO and BRAVO trials. Int J MS Care. 2017;19(1):16–24.  https://doi.org/10.7224/1537-2073.2015-024.Google Scholar
  85. 85.
    Vollmer TL, Sorensen PS, Selmaj K, Zipp F, Havrdova E, Cohen JA, et al. A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J Neurol. 2014;261(4):773–83.  https://doi.org/10.1007/s00415-014-7264-4.Google Scholar
  86. 86.
    Cutter GR, Knappertz V, Sasson N, Ladkani D. Laquinimod efficacy in relapsing-remitting multiple sclerosis: how to understand why and if studies disagree. BMC Neurol. 2016;16:176.  https://doi.org/10.1186/s12883-016-0702-4.Google Scholar
  87. 87.
    Barkhof F, Giovannoni G, Hartung H, Cree B, Uccelli A, Sormani M et al. ARPEGGIO: a randomized, placebo-controlled study to evaluate oral laquinimod in patients with primary progressive multiple sclerosis (PPMS) (P7.210). Neurology. 2015;84(14 Suppl).Google Scholar
  88. 88.
    Giovannoni G, Barkhof F, Hartung H, Cree B, Krieger S, Montalban X, et al. ARPEGGIO: a placebo-controlled trial of oral laquinimod in primary progressive multiple sclerosis (S3 Platform Presentation). Los Angeles: American Academy of Neurology; 2018.Google Scholar
  89. 89.
    Kappos L, Li D, Calabresi PA, O’Connor P, Bar-Or A, Barkhof F, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet. 2011;378(9805):1779–87.  https://doi.org/10.1016/s0140-6736(11)61649-8.Google Scholar
  90. 90.
    Greenfield AL, Hauser SL. B-cell therapy for multiple sclerosis: entering an era. Ann Neurol. 2018;83(1):13–26.  https://doi.org/10.1002/ana.25119.Google Scholar
  91. 91.
    Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–88.  https://doi.org/10.1056/NEJMoa0706383.Google Scholar
  92. 92.
    Montalban X, Hauser S, Kappos L, Arnold D, Bar-Or A, Comi G, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209–20.Google Scholar
  93. 93.
    European Medicines Agency. Ocrevus: EPAR—product information; 2018. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/004043/human_med_002187.jsp&mid=WC0b01ac058001d124. Accessed 7 May 2018.
  94. 94.
    Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–34.  https://doi.org/10.1056/NEJMoa1601277.Google Scholar
  95. 95.
    Gentile A, Musella A, Bullitta S, Fresegna D, De Vito F, Fantozzi R, et al. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J Neuroinflammation. 2016;13(1):207.  https://doi.org/10.1186/s12974-016-0686-4.Google Scholar
  96. 96.
    Jackson SJ, Giovannoni G, Baker D. Fingolimod modulates microglial activation to augment markers of remyelination. J Neuroinflammation. 2011;8:76.  https://doi.org/10.1186/1742-2094-8-76.Google Scholar
  97. 97.
    Kappos L, Bar-Or A, Cree B, Fox R, Giovannoni G, Gold R, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet. 2018;391(10127):1263–73.Google Scholar
  98. 98.
    Sedel F, Bernard D, Mock DM, Tourbah A. Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis. Neuropharmacology. 2016;110(Pt B):644–53.  https://doi.org/10.1016/j.neuropharm.2015.08.028.Google Scholar
  99. 99.
    Tourbah A, Lebrun-Frenay C, Edan G, Clanet M, Papeix C, Vukusic S, et al. MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: a randomised, double-blind, placebo-controlled study. Mult Scler. 2016;22(13):1719–31.  https://doi.org/10.1177/1352458516667568.Google Scholar
  100. 100.
    Heidker RM, Emerson MR, LeVine SM. Intersections of pathways involving biotin and iron relative to therapeutic mechanisms for progressive multiple sclerosis. Discov Med. 2016;22(123):381–7.Google Scholar
  101. 101.
    National Institutes of Health Office of Dietary Supplements. Biotin: fact sheet for health professionals; 2018. https://ods.od.nih.gov/factsheets/Biotin-HealthProfessional/. Accessed May 2018.
  102. 102.
    Sedel F, Papeix C, Bellanger A, Touitou V, Lebrun-Frenay C, Galanaud D, et al. High doses of biotin in chronic progressive multiple sclerosis: a pilot study. Mult Scler Relat Disord. 2015;4(2):159–69.  https://doi.org/10.1016/j.msard.2015.01.005.Google Scholar
  103. 103.
    Birnbaum G, Stulc J. High dose biotin as treatment for progressive multiple sclerosis. Mult Scler Relat Disord. 2017;18:141–3.  https://doi.org/10.1016/j.msard.2017.09.030.Google Scholar
  104. 104.
    Li D, Radulescu A, Shrestha RT, Root M, Karger AB, Killeen AA, et al. Association of biotin ingestion with performance of hormone and nonhormone assays in healthy adults. JAMA. 2017;318(12):1150–60.  https://doi.org/10.1001/jama.2017.13705.Google Scholar
  105. 105.
    Willeman T, Casez O, Faure P, Gauchez AS. Evaluation of biotin interference on immunoassays: new data for troponin I, digoxin, NT-Pro-BNP, and progesterone. Clin Chem Lab Med. 2017;55(10):e226–9.  https://doi.org/10.1515/cclm-2016-0980.Google Scholar
  106. 106.
    Gibson L, Hastings S, McPhee I, Clayton R, Darroch C, Mackenzie A, et al. The inhibitory profile of Ibudilast against the human phosphodiesterase enzyme family. Eur J Pharmacol. 2006;538(1–3):39–42.Google Scholar
  107. 107.
    Cho Y, Crichlow G, Vermeire J, Leng L, Du X, Hodsdon M, et al. Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast. Proc Natl Acad Sci USA. 2010;107(25):11313–8.Google Scholar
  108. 108.
    Mizuno T, Kurotani T, Komatsu Y, Kawanokuchi J, Kato H, Mitsuma N, et al. Neuroprotective role of phosphodiesterase inhibitor ibudilast on neuronal cell death induced by activated microglia. Neuropharmacology. 2004;46(3):404–11.Google Scholar
  109. 109.
    Feng J, Misu T, Fujihara K, Sakoda S, Nakatsuji Y, Fukaura H, et al. Ibudilast, a nonselective phosphodiesterase inhibitor, regulates Th1/Th2 balance and NKT cell subset in multiple sclerosis. Mult Scler. 2004;10(5):494–8.Google Scholar
  110. 110.
    Barkhof F, Hulst HE, Drulovic J, Uitdehaag BM, Matsuda K, Landin R. Ibudilast in relapsing-remitting multiple sclerosis: a neuroprotectant? Neurology. 2010;74(13):1033–40.  https://doi.org/10.1212/WNL.0b013e3181d7d651.Google Scholar
  111. 111.
    Fox RJ, Coffey CS, Cudkowicz ME, Gleason T, Goodman A, Klawiter EC, et al. Design, rationale, and baseline characteristics of the randomized double-blind phase II clinical trial of ibudilast in progressive multiple sclerosis. Contemp Clin Trials. 2016;50:166–77.  https://doi.org/10.1016/j.cct.2016.08.009.Google Scholar
  112. 112.
    Rocamonde B, Paradells S, Barcia JM, Barcia C, Garcia Verdugo JM, Miranda M, et al. Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury. Neuroscience. 2012;224:102–15.  https://doi.org/10.1016/j.neuroscience.2012.08.028.Google Scholar
  113. 113.
    Rochette L, Ghibu S, Richard C, Zeller M, Cottin Y, Vergely C. Direct and indirect antioxidant properties of alpha-lipoic acid and therapeutic potential. Mol Nutr Food Res. 2013;57(1):114–25.  https://doi.org/10.1002/mnfr.201200608.Google Scholar
  114. 114.
    Salinthone S, Schillace RV, Marracci GH, Bourdette DN, Carr DW. Lipoic acid stimulates cAMP production via the EP2 and EP4 prostanoid receptors and inhibits IFN gamma synthesis and cellular cytotoxicity in NK cells. J Neuroimmunol. 2008;199(1–2):46–55.  https://doi.org/10.1016/j.jneuroim.2008.05.003.Google Scholar
  115. 115.
    Schreibelt G, Musters RJ, Reijerkerk A, de Groot LR, van der Pol SM, Hendrikx EM, et al. Lipoic acid affects cellular migration into the central nervous system and stabilizes blood–brain barrier integrity. J Immunol. 2006;177(4):2630–7.Google Scholar
  116. 116.
    Chaudhary P, Marracci GH, Bourdette DN. Lipoic acid inhibits expression of ICAM-1 and VCAM-1 by CNS endothelial cells and T cell migration into the spinal cord in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2006;175(1–2):87–96.  https://doi.org/10.1016/j.jneuroim.2006.03.007.Google Scholar
  117. 117.
    Chaudhary P, Marracci G, Yu X, Galipeau D, Morris B, Bourdette D. Lipoic acid decreases inflammation and confers neuroprotection in experimental autoimmune optic neuritis. J Neuroimmunol. 2011;233(1–2):90–6.  https://doi.org/10.1016/j.jneuroim.2010.12.002.Google Scholar
  118. 118.
    Chaudhary P, Marracci G, Galipeau D, Pocius E, Morris B, Bourdette D. Lipoic acid reduces inflammation in a mouse focal cortical experimental autoimmune encephalomyelitis model. J Neuroimmunol. 2015;289:68–74.  https://doi.org/10.1016/j.jneuroim.2015.10.011.Google Scholar
  119. 119.
    Marracci GH, Jones RE, McKeon GP, Bourdette DN. Alpha lipoic acid inhibits T cell migration into the spinal cord and suppresses and treats experimental autoimmune encephalomyelitis. J Neuroimmunol. 2002;131(1–2):104–14.Google Scholar
  120. 120.
    Morini M, Roccatagliata L, Dell’Eva R, Pedemonte E, Furlan R, Minghelli S, et al. Alpha-lipoic acid is effective in prevention and treatment of experimental autoimmune encephalomyelitis. J Neuroimmunol. 2004;148(1–2):146–53.  https://doi.org/10.1016/j.jneuroim.2003.11.021.Google Scholar
  121. 121.
    Reljanovic M, Reichel G, Rett K, Lobisch M, Schuette K, Moller W, et al. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (alpha-lipoic acid): a two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Alpha Lipoic Acid in Diabetic Neuropathy. Free Radic Res. 1999;31(3):171–9.Google Scholar
  122. 122.
    Yadav V, Marracci G, Lovera J, Woodward W, Bogardus K, Marquardt W, et al. Lipoic acid in multiple sclerosis: a pilot study. Mult Scler. 2005;11(2):159–65.Google Scholar
  123. 123.
    Khalili M, Azimi A, Izadi V, Eghtesadi S, Mirshafiey A, Sahraian MA, et al. Does lipoic acid consumption affect the cytokine profile in multiple sclerosis patients: a double-blind, placebo-controlled, randomized clinical trial. Neuroimmunomodulation. 2014;21(6):291–6.  https://doi.org/10.1159/000356145.Google Scholar
  124. 124.
    Khalili M, Eghtesadi S, Mirshafiey A, Eskandari G, Sanoobar M, Sahraian MA, et al. Effect of lipoic acid consumption on oxidative stress among multiple sclerosis patients: a randomized controlled clinical trial. Nutr Neurosci. 2014;17(1):16–20.  https://doi.org/10.1179/1476830513y.0000000060.Google Scholar
  125. 125.
    Spain R, Powers K, Murchison C, Heriza E, Winges K, Yadav V, et al. Lipoic acid in secondary progressive MS: a randomized controlled pilot trial. Neurol Neuroimmunol Neuroinflamm. 2017;4(5):e374.  https://doi.org/10.1212/nxi.0000000000000374.Google Scholar
  126. 126.
    Greenwood J, Steinman L, Zamvil SS. Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol. 2006;6(5):358–70.  https://doi.org/10.1038/nri1839.Google Scholar
  127. 127.
    Greenwood J, Walters CE, Pryce G, Kanuga N, Beraud E, Baker D, et al. Lovastatin inhibits brain endothelial cell Rho-mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB J. 2003;17(8):905–7.  https://doi.org/10.1096/fj.02-1014fje.Google Scholar
  128. 128.
    van der Most PJ, Dolga AM, Nijholt IM, Luiten PG, Eisel UL. Statins: mechanisms of neuroprotection. Prog Neurobiol. 2009;88(1):64–75.  https://doi.org/10.1016/j.pneurobio.2009.02.002.Google Scholar
  129. 129.
    Sorensen PS, Lycke J, Eralinna JP, Edland A, Wu X, Frederiksen JL, et al. Simvastatin as add-on therapy to interferon beta-1a for relapsing-remitting multiple sclerosis (SIMCOMBIN study): a placebo-controlled randomised phase 4 trial. Lancet Neurol. 2011;10(8):691–701.  https://doi.org/10.1016/s1474-4422(11)70144-2.Google Scholar
  130. 130.
    Togha M, Karvigh SA, Nabavi M, Moghadam NB, Harirchian MH, Sahraian MA, et al. Simvastatin treatment in patients with relapsing-remitting multiple sclerosis receiving interferon beta 1a: a double-blind randomized controlled trial. Mult Scler. 2010;16(7):848–54.  https://doi.org/10.1177/1352458510369147.Google Scholar
  131. 131.
    Vollmer T, Key L, Durkalski V, Tyor W, Corboy J, Markovic-Plese S, et al. Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet. 2004;363(9421):1607–8.  https://doi.org/10.1016/s0140-6736(04)16205-3.Google Scholar
  132. 132.
    Bhardwaj S, Coleman CI, Sobieraj DM. Efficacy of statins in combination with interferon therapy in multiple sclerosis: a meta-analysis. Am J Health Syst Pharm. 2012;69(17):1494–9.  https://doi.org/10.2146/ajhp110675.Google Scholar
  133. 133.
    Chataway J, Schuerer N, Alsanousi A, Chan D, MacManus D, Hunter K, et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet. 2014;383(9936):2213–21.  https://doi.org/10.1016/s0140-6736(13)62242-4.Google Scholar
  134. 134.
    Scolding NJ, Pasquini M, Reingold SC, Cohen JA. Cell-based therapeutic strategies for multiple sclerosis. Brain. 2017;140(11):2776–96.  https://doi.org/10.1093/brain/awx154.Google Scholar
  135. 135.
    Nash RA, Hutton GJ, Racke MK, Popat U, Devine SM, Griffith LM, et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing-remitting multiple sclerosis (HALT-MS): a 3-year interim report. JAMA Neurol. 2015;72(2):159–69.  https://doi.org/10.1001/jamaneurol.2014.3780.Google Scholar
  136. 136.
    Nash RA, Hutton GJ, Racke MK, Popat U, Devine SM, Steinmiller KC, et al. High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS. Neurology. 2017;88(9):842–52.  https://doi.org/10.1212/wnl.0000000000003660.Google Scholar
  137. 137.
    Burt RK, Balabanov R, Voltarelli J, Barreira A, Burman J. Autologous hematopoietic stem cell transplantation for multiple sclerosis–if confused or hesitant, remember: ‘treat with standard immune suppressive drugs and if no inflammation, no response’. Mult Scler. 2012;6:772–5.Google Scholar
  138. 138.
    Sormani MP, Muraro PA, Schiavetti I, Signori A, Laroni A, Saccardi R, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a meta-analysis. Neurology. 2017;88(22):2115–22.  https://doi.org/10.1212/wnl.0000000000003987.Google Scholar
  139. 139.
    Mancardi GL, Sormani MP, Gualandi F, Saiz A, Carreras E, Merelli E, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology. 2015;84(10):981–8.  https://doi.org/10.1212/wnl.0000000000001329.Google Scholar
  140. 140.
    Cohen JA. Mesenchymal stem cell transplantation in multiple sclerosis. J Neurol Sci. 2013;333(1–2):43–9.  https://doi.org/10.1016/j.jns.2012.12.009.Google Scholar
  141. 141.
    Korbling M, Estrov Z. Adult stem cells for tissue repair - a new therapeutic concept? N Engl J Med. 2003;349(6):570–82.  https://doi.org/10.1056/NEJMra022361.Google Scholar
  142. 142.
    Cohen JA, Imrey PB, Planchon SM, Bermel RA, Fisher E, Fox RJ, et al. Pilot trial of intravenous autologous culture-expanded mesenchymal stem cell transplantation in multiple sclerosis. Mult Scler. 2017.  https://doi.org/10.1177/1352458517703802.Google Scholar
  143. 143.
    Bonab MM, Sahraian MA, Aghsaie A, Karvigh SA, Hosseinian SM, Nikbin B, et al. Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther. 2012;7(6):407–14.Google Scholar
  144. 144.
    Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol. 2012;11(2):150–6.  https://doi.org/10.1016/s1474-4422(11)70305-2.Google Scholar
  145. 145.
    Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67(10):1187–94.  https://doi.org/10.1001/archneurol.2010.248.Google Scholar
  146. 146.
    Li JF, Zhang DJ, Geng T, Chen L, Huang H, Yin HL, et al. The potential of human umbilical cord-derived mesenchymal stem cells as a novel cellular therapy for multiple sclerosis. Cell Transpl. 2014;23(Suppl 1):S113–22.  https://doi.org/10.3727/096368914x685005.Google Scholar
  147. 147.
    Harris VK, Stark J, Vyshkina T, Blackshear L, Joo G, Stefanova V, et al. Phase I trial of intrathecal mesenchymal stem cell-derived neural progenitors in progressive multiple sclerosis. EBioMedicine. 2018.  https://doi.org/10.1016/j.ebiom.2018.02.002.Google Scholar
  148. 148.
    Baldassari LE, Cohen JA. Mesenchymal stem cell-derived neural progenitor cells in progressive multiple sclerosis: great expectations. EBioMedicine. 2018;29:5–6.  https://doi.org/10.1016/j.ebiom.2018.02.021.Google Scholar
  149. 149.
    White M, Webster G, O’Sullivan D, Stone S, La Flamme AC. Targeting innate receptors with MIS416 reshapes Th responses and suppresses CNS disease in a mouse model of multiple sclerosis. PLoS One. 2014;9(1):e87712.  https://doi.org/10.1371/journal.pone.0087712.Google Scholar
  150. 150.
    Luckey AM, Anderson T, Silverman MH, Webster G. Safety, tolerability and pharmacodynamics of a novel immunomodulator, MIS416, in patients with chronic progressive multiple sclerosis. Mult Scler J. 2015;1:2055217315583385.  https://doi.org/10.1177/2055217315583385.Google Scholar
  151. 151.
    Ortega-Ramirez A, Vega R, Soto E. Acid-sensing ion channels as potential therapeutic targets in neurodegeneration and neuroinflammation. Mediat Inflamm. 2017;2017:3728096.  https://doi.org/10.1155/2017/3728096.Google Scholar
  152. 152.
    Vergo S, Craner MJ, Etzensperger R, Attfield K, Friese MA, Newcombe J, et al. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain. 2011;134(Pt 2):571–84.  https://doi.org/10.1093/brain/awq337.Google Scholar
  153. 153.
    Bhat R, Mahapatra S, Axtell RC, Steinman L. Amelioration of ongoing experimental autoimmune encephalomyelitis with fluoxetine. J Neuroimmunol. 2017;313:77–81.  https://doi.org/10.1016/j.jneuroim.2017.10.012.Google Scholar
  154. 154.
    McKee JB, Elston J, Evangelou N, Gerry S, Fugger L, Kennard C, et al. Amiloride Clinical Trial In Optic Neuritis (ACTION) protocol: a randomised, double blind, placebo controlled trial. BMJ Open. 2015;5(11):e009200.  https://doi.org/10.1136/bmjopen-2015-009200.Google Scholar
  155. 155.
    McKee JB, Cottriall CL, Elston J, Epps S, Evangelou N, Gerry S, et al. Amiloride does not protect retinal nerve fibre layer thickness in optic neuritis in a phase 2 randomised controlled trial. Mult Scler. 2017.  https://doi.org/10.1177/1352458517742979.Google Scholar
  156. 156.
    Carbone F, De Rosa V, Carrieri PB, Montella S, Bruzzese D, Porcellini A, et al. Regulatory T cell proliferative potential is impaired in human autoimmune disease. Nat Med. 2014;20(1):69–74.  https://doi.org/10.1038/nm.3411.Google Scholar
  157. 157.
    Vandenbark AA. TCR peptide vaccination in multiple sclerosis: boosting a deficient natural regulatory network that may involve TCR-specific CD4+CD25+ Treg cells. Curr Drug Targets Inflamm Allergy. 2005;4(2):217–29.Google Scholar
  158. 158.
    Vandenbark AA, Culbertson NE, Bartholomew RM, Huan J, Agotsch M, LaTocha D, et al. Therapeutic vaccination with a trivalent T-cell receptor (TCR) peptide vaccine restores deficient FoxP3 expression and TCR recognition in subjects with multiple sclerosis. Immunology. 2008;123(1):66–78.  https://doi.org/10.1111/j.1365-2567.2007.02703.x.Google Scholar
  159. 159.
    Aktas O, Prozorovski T, Smorodchenko A, Savaskan NE, Lauster R, Kloetzel PM, et al. Green tea epigallocatechin-3-gallate mediates T cellular NF-kappa B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J Immunol. 2004;173(9):5794–800.Google Scholar
  160. 160.
    Plemel JR, Juzwik CA, Benson CA, Monks M, Harris C, Ploughman M. Over-the-counter anti-oxidant therapies for use in multiple sclerosis: a systematic review. Mult Scler. 2015;21(12):1485–95.  https://doi.org/10.1177/1352458515601513.Google Scholar
  161. 161.
    Sun Q, Zheng Y, Zhang X, Hu X, Wang Y, Zhang S, et al. Novel immunoregulatory properties of EGCG on reducing inflammation in EAE. Front Biosci. 2013;18:332–42.Google Scholar
  162. 162.
    Vermersch P, Benrabah R, Schmidt N, Zephir H, Clavelou P, Vongsouthi C, et al. Masitinib treatment in patients with progressive multiple sclerosis: a randomized pilot study. BMC Neurol. 2012;12:36.  https://doi.org/10.1186/1471-2377-12-36.Google Scholar
  163. 163.
    Vesterinen HM, Connick P, Irvine CM, Sena ES, Egan KJ, Carmichael GG, et al. Drug repurposing: a systematic approach to evaluate candidate oral neuroprotective interventions for secondary progressive multiple sclerosis. PLoS One. 2015;10(4):e0117705.  https://doi.org/10.1371/journal.pone.0117705.Google Scholar
  164. 164.
    Najm FJ, Madhavan M, Zaremba A, Shick E, Karl RT, Factor DC, et al. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature. 2015;522(7555):216–20.  https://doi.org/10.1038/nature14335.Google Scholar
  165. 165.
    Madhavan M, Nevin ZS, Shick HE, Garrison E, Clarkson-Paredes C, Karl M, et al. Induction of myelinating oligodendrocytes in human cortical spheroids. Nat Methods. 2018.  https://doi.org/10.1038/s41592-018-0081-4.Google Scholar
  166. 166.
    Hubler Z, Allimuthu D, Bederman I, Elitt MS, Madhavan M, Allan KC, et al. Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature. 2018.  https://doi.org/10.1038/s41586-018-0360-3.Google Scholar
  167. 167.
    Mei F, Fancy SPJ, Shen YA, Niu J, Zhao C, Presley B, et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat Med. 2014;20(8):954–60.  https://doi.org/10.1038/nm.3618.Google Scholar
  168. 168.
    Green AJ, Gelfand JM, Cree BA, Bevan C, Boscardin WJ, Mei F, et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet. 2017;390(10111):2481–9.  https://doi.org/10.1016/s0140-6736(17)32346-2.Google Scholar
  169. 169.
    Mahajan KR, Ontaneda D. The role of advanced magnetic resonance imaging techniques in multiple sclerosis clinical trials. Neurotherapeutics. 2017;14(4):905–23.  https://doi.org/10.1007/s13311-017-0561-8.Google Scholar
  170. 170.
    Zivadinov R, Sepcic J, Nasuelli D, De Masi R, Bragadin LM, Tommasi MA, et al. A longitudinal study of brain atrophy and cognitive disturbances in the early phase of relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry. 2001;70(6):773–80.Google Scholar
  171. 171.
    Disanto G, Barro C, Benkert P, Naegelin Y, Schadelin S, Giardiello A, et al. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann Neurol. 2017;81(6):857–70.  https://doi.org/10.1002/ana.24954.Google Scholar
  172. 172.
    Cohen JA, Reingold SC, Polman CH, Wolinsky JS. Disability outcome measures in multiple sclerosis clinical trials: current status and future prospects. Lancet Neurol. 2012;11(5):467–76.  https://doi.org/10.1016/s1474-4422(12)70059-5.Google Scholar
  173. 173.
    Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009;132(Pt 5):1175–89.  https://doi.org/10.1093/brain/awp070.Google Scholar
  174. 174.
    Bruck W, Stadelmann C. Inflammation and degeneration in multiple sclerosis. Neurol Sci. 2003;24(Suppl 5):S265–7.  https://doi.org/10.1007/s10072-003-0170-7.Google Scholar
  175. 175.
    McKay KA, Marrie RA, Fisk JD, Patten SB, Tremlett H. Comorbidities are associated with altered health services use in multiple sclerosis: a prospective cohort study. Neuroepidemiology. 2018;51(1–2):1–10.  https://doi.org/10.1159/000488799.Google Scholar
  176. 176.
    McKay KA, Tremlett H, Fisk JD, Zhang T, Patten SB, Kastrukoff L, et al. Psychiatric comorbidity is associated with disability progression in multiple sclerosis. Neurology. 2018;90(15):e1316–23.  https://doi.org/10.1212/wnl.0000000000005302.Google Scholar
  177. 177.
    Zhang T, Tremlett H, Zhu F, Kingwell E, Fisk JD, Bhan V, et al. Effects of physical comorbidities on disability progression in multiple sclerosis. Neurology. 2018;90(5):e419–27.  https://doi.org/10.1212/wnl.0000000000004885.Google Scholar
  178. 178.
    Sundstrom P, Nystrom L. Smoking worsens the prognosis in multiple sclerosis. Mult Scler. 2008;14(8):1031–5.  https://doi.org/10.1177/1352458508093615.Google Scholar
  179. 179.
    Willis M, Fox R. Progressive multiple sclerosis. Continuum. 2016;22(3):785–98.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Mellen Center for Multiple Sclerosis Treatment and ResearchNeurological Institute, Cleveland ClinicClevelandUSA

Personalised recommendations