Advertisement

Drugs

, Volume 78, Issue 13, pp 1353–1362 | Cite as

An Update on the Clinical Use of CDK4/6 Inhibitors in Breast Cancer

  • Marie Robert
  • Jean-Sébastien Frenel
  • Emmanuelle Bourbouloux
  • Dominique Berton Rigaud
  • Anne Patsouris
  • Paule Augereau
  • Carole Gourmelon
  • Mario Campone
Review Article

Abstract

Deregulated cell division, resulting in aberrant cell proliferation, is one of the key hallmarks of cancer. Cyclin-dependent kinases (CDKs) play a central role in cell cycle progression in cancer, and the clinical development of the CDK4/6 inhibitors palbociclib, ribociclib, and abemaciclib has changed clinical practice in the setting of endocrine-receptor positive breast cancer. Results of pivotal phase II and III trials investigating these CDK4/6 inhibitors in patients with endocrine receptor-positive, advanced breast cancer have demonstrated a significant improvement in progression-free survival, with a safe toxicity profile. No validated biomarkers of sensitivity or resistance exist at the moment. Future development of CDK4/6 inhibitors in breast cancer should focus on the identification of predictive biomarkers, the development of drug combinations to overcome resistance, and the application of CDK4/6 inhibitors to other breast cancer subtypes.

Notes

Compliance with Ethical Standards

Funding

No external funding was used in the preparation of this manuscript.

Conflicts of interest

Professor Campone reports conflicts of interest with Pfizer, Lilly, Astra Zeneca, Novartis (board member), Pierre Fabre and Sanofi (consultancy). Dr. Frenel declares conflicts of interest with Pfizer, Roche, and Astra Zeneca (board member and travel fees). Dr. Augereau declares conflicts of interest with Pfizer, Astra Zeneca and Novartis. Dr. Robert reports conflicts of interest with Amgen, Merck and Novartis (travel fees and honoraria). Dr. Patsouris declares conflicts of interest with Roche, Eisai and Pfizer (travel fees). Dr. Bourbouloux declares conflicts of interest with Amgen (travel fees). Dr. Gourmelon and Dr. Berton Rigaud declare they have no conflicts of interest that might be relevant to the contents of this manuscript.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.PubMedCentralGoogle Scholar
  2. 2.
    National Cancer Institute. SEER Cancer Statistics Factsheets: female breast cancer—cancer stat facts [Internet]. [cited 2018 Mar 29]. https://seer.cancer.gov/statfacts/html/breast.html. Accessed 29 Mar 2018.
  3. 3.
    Gong Y, Liu Y-R, Ji P, Hu X, Shao Z-M. Impact of molecular subtypes on metastatic breast cancer patients: a SEER population-based study. Sci Rep. 2017;27(7):45411.CrossRefGoogle Scholar
  4. 4.
    Zardavas D, Irrthum A, Swanton C, Piccart M. Clinical management of breast cancer heterogeneity. Nat Rev Clin Oncol. 2015;12(7):381–94.CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Duronio RJ, Xiong Y. Signaling pathways that control cell proliferation. Cold Spring Harb Perspect Biol. 2013;5(3):a008904.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Harashima H, Dissmeyer N, Schnittger A. Cell cycle control across the eukaryotic kingdom. Trends Cell Biol. 2013;23(7):345–56.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Satyanarayana A, Kaldis P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene. 2009;28(33):2925–39.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 1993;7(3):331–42.CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Meyerson M, Harlow E. Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol. 1994;14(3):2077–86.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Weintraub SJ, Chow KN, Luo RX, Zhang SH, He S, Dean DC. Mechanism of active transcriptional repression by the retinoblastoma protein. Nature. 1995;375(6534):812–5.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Coudreuse D, Nurse P. Driving the cell cycle with a minimal CDK control network. Nature. 2010;468(7327):1074–9.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell. 1999;98(6):859–69.CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Goodrich DW, Wang NP, Qian YW, Lee EY, Lee WH. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell. 1991;67(2):293–302.CrossRefPubMedCentralGoogle Scholar
  14. 14.
    O’Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016;13(7):417–30.CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Buchkovich K, Duffy LA, Harlow E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell. 1989;58(6):1097–105.CrossRefGoogle Scholar
  16. 16.
    DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Piwnica-Worms H, et al. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell. 1989;58(6):1085–95.CrossRefGoogle Scholar
  17. 17.
    Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13(12):1501–12.CrossRefGoogle Scholar
  18. 18.
    Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66.CrossRefGoogle Scholar
  19. 19.
    Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88(5):593–602.CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wieser RJ, Faust D, Dietrich C, Oesch F. p16INK4 mediates contact-inhibition of growth. Oncogene. 1999;18(1):277–81.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Zhang HS, Postigo AA, Dean DC. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFbeta, and contact inhibition. Cell. 1999;97(1):53–61.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell. 2006;127(2):265–75.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Stepanova L, Leng X, Parker SB, Harper JW. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev. 1996;10(12):1491–502.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lamphere L, Fiore F, Xu X, Brizuela L, Keezer S, Sardet C, et al. Interaction between Cdc37 and Cdk4 in human cells. Oncogene. 1997;14(16):1999–2004.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Zhao Q, Boschelli F, Caplan AJ, Arndt KT. Identification of a conserved sequence motif that promotes Cdc37 and cyclin D1 binding to Cdk4. J Biol Chem. 2004;279(13):12560–4.CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Ortiz AB, Garcia D, Vicente Y, Palka M, Bellas C, Martin P. Prognostic significance of cyclin D1 protein expression and gene amplification in invasive breast carcinoma. PLoS One. 2017;12(11):e0188068.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Network Cancer Genome Atlas. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRefGoogle Scholar
  28. 28.
    Arima Y, Hayashi N, Hayashi H, Sasaki M, Kai K, Sugihara E, et al. Loss of p16 expression is associated with the stem cell characteristics of surface markers and therapeutic resistance in estrogen receptor-negative breast cancer. Int J Cancer. 2012;130(11):2568–79.CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Miller TW, Balko JM, Fox EM, Ghazoui Z, Dunbier A, Anderson H, et al. ERα-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer. Cancer Discov. 2011;1(4):338–51.CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ertel A, Dean JL, Rui H, Liu C, Witkiewicz AK, Knudsen KE, et al. RB-pathway disruption in breast cancer: differential association with disease subtypes, disease-specific prognosis and therapeutic response. Cell Cycle Georget Tex. 2010;9(20):4153–63.CrossRefGoogle Scholar
  31. 31.
    Bosco EE, Knudsen ES. RB in breast cancer: at the crossroads of tumorigenesis and treatment. Cell Cycle Georget Tex. 2007;6(6):667–71.CrossRefGoogle Scholar
  32. 32.
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100(14):8418–23.CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res BCR. 2009;11(5):R77.CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(11):1770–83.CrossRefGoogle Scholar
  35. 35.
    Benson C, White J, De Bono J, O’Donnell A, Raynaud F, Cruickshank C, et al. A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days. Br J Cancer. 2007;96(1):29–37.CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Le Tourneau C, Faivre S, Laurence V, Delbaldo C, Vera K, Girre V, et al. Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies. Eur J Cancer Oxf Engl 1990. 2010;46(18):3243–50.Google Scholar
  37. 37.
    Gelbert LM, Cai S, Lin X, Sanchez-Martinez C, Del Prado M, Lallena MJ, et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Invest New Drugs. 2014;32(5):825–37.CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Tate SC, Cai S, Ajamie RT, Burke T, Beckmann RP, Chan EM, et al. Semi-mechanistic pharmacokinetic/pharmacodynamic modeling of the antitumor activity of LY2835219, a new cyclin-dependent kinase 4/6 inhibitor, in mice bearing human tumor xenografts. Clin Cancer Res Off J Am Assoc Cancer Res. 2014;20(14):3763–74.CrossRefGoogle Scholar
  39. 39.
    Torres-Guzmán R, Calsina B, Hermoso A, Baquero C, Alvarez B, Amat J, et al. Preclinical characterization of abemaciclib in hormone receptor positive breast cancer. Oncotarget. 2017;8(41):69493–507.CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Raub TJ, Wishart GN, Kulanthaivel P, Staton BA, Ajamie RT, Sawada GA, et al. Brain exposure of two selective dual CDK4 and CDK6 inhibitors and the antitumor activity of CDK4 and CDK6 inhibition in combination with temozolomide in an intracranial glioblastoma xenograft. Drug Metab Dispos Biol Fate Chem. 2015;43(9):1360–71.CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Sanchez-Martinez C, Gelbert LM, Shannon H, Dios AD, Staton BA, Ajamie RT, et al. Abstract B234: LY2835219, a potent oral inhibitor of the cyclin-dependent kinases 4 and 6 (CDK4/6) that crosses the blood-brain barrier and demonstrates in vivo activity against intracranial human brain tumor xenografts. Mol Cancer Ther. 2011;10(11 Supplement):B234.CrossRefGoogle Scholar
  42. 42.
    Parrish KE, Pokorny J, Mittapalli RK, Bakken K, Sarkaria JN, Elmquist WF. Efflux transporters at the blood-brain barrier limit delivery and efficacy of cyclin-dependent kinase 4/6 inhibitor palbociclib (PD-0332991) in an orthotopic brain tumor model. J Pharmacol Exp Ther. 2015;355(2):264–71.CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 2016;6(7):740–53.CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3(11):1427–38.PubMedGoogle Scholar
  45. 45.
    Yu Q, Sicinska E, Geng Y, Ahnström M, Zagozdzon A, Kong Y, et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell. 2006;9(1):23–32.CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Lee RJ, Albanese C, Fu M, D’Amico M, Lin B, Watanabe G, et al. Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol Cell Biol. 2000;20(2):672–83.CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Herrera-Abreu MT, Asghar US, Elliot R, Pearson A, Nannini MA, Young A, et al. 86OPI3 kinase/mTOR inhibition increases sensitivity of ER positive breast cancers to CDK4/6 inhibition by blocking cell cycle re-entry driven by cyclinD1 and inducing apoptosis. Ann Oncol. 2015;26(suppl_3):iii29–iii29.CrossRefGoogle Scholar
  48. 48.
    Kim S, Loo A, Chopra R, Caponigro G, Huang A, Vora S, et al. Abstract PR02: LEE011: an orally bioavailable, selective small molecule inhibitor of CDK4/6– reactivating Rb in cancer. Mol Cancer Ther. 2013;12(11 Supplement):PR02–PR02.CrossRefGoogle Scholar
  49. 49.
    Barroso-Sousa R, Shapiro GI, Tolaney SM. Clinical development of the CDK4/6 inhibitors ribociclib and abemaciclib in breast cancer. Breast Care. 2016;11(3):167–73.CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Infante JR, Cassier PA, Gerecitano JF, Witteveen PO, Chugh R, Ribrag V, et al. A phase I study of the cyclin-dependent kinase 4/6 inhibitor ribociclib (LEE011) in patients with advanced solid tumors and lymphomas. Clin Cancer Res Off J Am Assoc Cancer Res. 2016;22(23):5696–705.CrossRefGoogle Scholar
  51. 51.
    DiPippo AJ, Patel NK, Barnett CM. Cyclin-dependent kinase inhibitors for the treatment of breast cancer: past, present, and future. Pharmacotherapy. 2016;36(6):652–67.CrossRefPubMedCentralGoogle Scholar
  52. 52.
    O’Brien NA, Tomaso ED, Ayala R, Tong L, Issakhanian S, Linnartz R, et al. Abstract 4756: In vivo efficacy of combined targeting of CDK4/6, ER and PI3K signaling in ER + breast cancer. Cancer Res. 2014;74(19 Supplement):4756.CrossRefGoogle Scholar
  53. 53.
    Flaherty KT, Lorusso PM, Demichele A, Abramson VG, Courtney R, Randolph SS, et al. Phase I, dose-escalation trial of the oral cyclin-dependent kinase 4/6 inhibitor PD 0332991, administered using a 21-day schedule in patients with advanced cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18(2):568–76.CrossRefGoogle Scholar
  54. 54.
    DeMichele A, Clark AS, Tan KS, Heitjan DF, Gramlich K, Gallagher M, et al. CDK 4/6 inhibitor palbociclib (PD0332991) in Rb + advanced breast cancer: phase II activity, safety, and predictive biomarker assessment. Clin Cancer Res Off J Am Assoc Cancer Res. 2015;21(5):995–1001.CrossRefGoogle Scholar
  55. 55.
    Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015;16(1):25–35.CrossRefPubMedCentralGoogle Scholar
  56. 56.
    Finn RS, Crown J, Lang I, Boer K, Bondarenko I, Kulyk SO, et al. Overall survival results from the randomized phase II study of palbociclib (P) in combination with letrozole (L) vs letrozole alone for frontline treatment of ER +/HER2—advanced breast cancer (PALOMA-1; TRIO-18). J Clin Oncol. 2017;35(15_suppl):1001–1001.CrossRefGoogle Scholar
  57. 57.
    Finn RS, Martin M, Rugo HS, Jones S, Im S-A, Gelmon K, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375(20):1925–36.CrossRefPubMedCentralGoogle Scholar
  58. 58.
    Rugo HS, Diéras V, Gelmon KA, Finn RS, Slamon DJ, Martin M, et al. Impact of palbociclib plus letrozole on patient-reported health-related quality of life: results from the PALOMA-2 trial. Ann Oncol. 2018;29(4):888–94.CrossRefPubMedCentralGoogle Scholar
  59. 59.
    Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im S-A, Masuda N, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016;17(4):425–39.CrossRefPubMedCentralGoogle Scholar
  60. 60.
    Shapiro G, Rosen LS, Tolcher AW, Goldman JW, Gandhi L, Papadopoulos KP, et al. A first-in-human phase I study of the CDK4/6 inhibitor, LY2835219, for patients with advanced cancer. J Clin Oncol. 2013;31(15_suppl):2500–2500.Google Scholar
  61. 61.
    Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, et al. Abstract CT232: clinical activity of LY2835219, a novel cell cycle inhibitor selective for CDK4 and CDK6, in patients with metastatic breast cancer. Cancer Res. 2014;74(19 Supplement):CT232–CT232.CrossRefGoogle Scholar
  62. 62.
    Dickler MN, Tolaney SM, Rugo HS, Cortés J, Diéras V, Patt D, et al. MONARCH 1, a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR +/HER2- metastatic breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2017;23(17):5218–24.CrossRefGoogle Scholar
  63. 63.
    Sledge GW, Toi M, Neven P, Sohn J, Inoue K, Pivot X, et al. Monarch 2: abemaciclib in combination with fulvestrant in women with HR +/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(25):2875–84.CrossRefGoogle Scholar
  64. 64.
    Goetz MP, Toi M, Campone M, Sohn J, Paluch-Shimon S, Huober J, et al. MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(32):3638–46.CrossRefGoogle Scholar
  65. 65.
    Juric D, Munster PN, Campone M, Ismail-Khan R, García-Estevez L, Hamilton EP, et al. Ribociclib (LEE011) and letrozole in estrogen receptor-positive (ER +), HER2-negative (HER2−) advanced breast cancer (aBC): Phase Ib safety, preliminary efficacy and molecular analysis. J Clin Oncol. 2016;34(15_suppl):568–568.CrossRefGoogle Scholar
  66. 66.
    Hortobagyi GN, Stemmer SM, Burris HA, Yap Y-S, Sonke GS, Paluch-Shimon S, et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med. 2016;375(18):1738–48.Google Scholar
  67. 67.
    Tripathy D, Im S-A, Colleoni M, Franke F, Bardia A, Harbeck N, et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol. 2018;19(7):904–15.CrossRefPubMedCentralGoogle Scholar
  68. 68.
    Slamon DJ, Neven P, Chia S, Fasching PA, De Laurentiis M, Im S-A, et al. Phase III randomized study of ribociclib and fulvestrant in hormone receptor–positive, human epidermal growth factor receptor 2–negative advanced breast cancer: MONALEESA-3. J Clin Oncol. 2018;JCO.2018.78.9909.Google Scholar
  69. 69.
    Shah A, Bloomquist E, Tang S, Fu W, Bi Y, Liu Q, et al. FDA approval: ribociclib for the treatment of postmenopausal women with hormone receptor-positive, HER2-negative advanced or metastatic breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2018.Google Scholar
  70. 70.
    du Rusquec P, Palpacuer C, Campion L, Patsouris A, Augereau P, Gourmelon C, et al. Efficacy of palbociclib plus fulvestrant after everolimus in hormone receptor-positive metastatic breast cancer. Breast Cancer Res Treat. 2018;168(2):559–66.CrossRefPubMedCentralGoogle Scholar
  71. 71.
    Maurer C, Ferreira AR, Martel S, Lambertini M, Pondé N, Aftimos P, et al. Endocrine therapy and palbociclib within a compassionate use program in heavily pretreated hormone receptor-positive, HER2-negative metastatic breast cancer. Breast Edinb Scotl. 2018;20(39):14–8.CrossRefGoogle Scholar
  72. 72.
    Finn R, Jiang Y, Rugo H, Moulder SL, Im S-A, Gelmon KA, et al. Biomarker analyses from the phase 3 PALOMA-2 trial of palbociclib (P) with letrozole (L) compared with placebo (PLB) plus L in postmenopausal women with ER +/HER2– advanced breast cancer (ABC). Ann Oncol [Internet]. 2016 Oct 1 [cited 2018 May 17];27(suppl_6). https://academic.oup.com/annonc/article/27/suppl_6/LBA15/2800514. Accessed 17 May 2018.
  73. 73.
    Ma CX, Gao F, Luo J, Northfelt DW, Goetz M, Forero A, et al. NeoPalAna: neoadjuvant palbociclib, a cyclin-dependent kinase 4/6 inhibitor, and anastrozole for clinical stage 2 or 3 estrogen receptor-positive breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2017;23(15):4055–65.CrossRefGoogle Scholar
  74. 74.
    Raspé E, Coulonval K, Pita JM, Paternot S, Rothé F, Twyffels L, et al. CDK4 phosphorylation status and a linked gene expression profile predict sensitivity to palbociclib. EMBO Mol Med. 2017;9(8):1052–66.CrossRefPubMedCentralGoogle Scholar
  75. 75.
    Wang H, Nicolay BN, Chick JM, Gao X, Geng Y, Ren H, et al. The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival. Nature. 2017;546(7658):426–30.CrossRefPubMedCentralGoogle Scholar
  76. 76.
    Dean JL, Thangavel C, McClendon AK, Reed CA, Knudsen ES. Therapeutic CDK4/6 inhibition in breast cancer: key mechanisms of response and failure. Oncogene. 2010;29(28):4018–32.CrossRefPubMedCentralGoogle Scholar
  77. 77.
    Dean JL, McClendon AK, Hickey TE, Butler LM, Tilley WD, Witkiewicz AK, et al. Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors. Cell Cycle Georget Tex. 2012;11(14):2756–61.CrossRefGoogle Scholar
  78. 78.
    Malorni L, Piazza S, Ciani Y, Guarducci C, Bonechi M, Biagioni C, et al. A gene expression signature of retinoblastoma loss-of-function is a predictive biomarker of resistance to palbociclib in breast cancer cell lines and is prognostic in patients with ER positive early breast cancer. Oncotarget. 2016;7(42):68012–22.Google Scholar
  79. 79.
    Vora SR, Juric D, Kim N, Mino-Kenudson M, Huynh T, Costa C, et al. CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell. 2014;26(1):136–49.CrossRefPubMedCentralGoogle Scholar
  80. 80.
    Minckwitz G von, Bear H, Bonnefoi H, Colleoni M, Gelmon K, Gnant M, et al. Abstract OT2-6-11: PENELOPE: Phase III study evaluating palbociclib (PD-0332991), a cyclin-dependent kinase (CDK) 4/6 inhibitor in patients with hormone-receptor-positive, HER2-normal primary breast cancer with high relapse risk after neoadjuvant chemotherapy (GBG-78/BIG1-13). Cancer Res. 2013;73(24 Supplement):OT2-6-11-OT2-6–11.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Marie Robert
    • 1
  • Jean-Sébastien Frenel
    • 1
  • Emmanuelle Bourbouloux
    • 1
  • Dominique Berton Rigaud
    • 1
  • Anne Patsouris
    • 2
  • Paule Augereau
    • 2
  • Carole Gourmelon
    • 1
  • Mario Campone
    • 1
    • 3
  1. 1.Institut de Cancérologie de l’Ouest, René GauducheauSt HerblainFrance
  2. 2.Institut de Cancérologie de l’OuestAngersFrance
  3. 3.Centre de Recherche en Cancérologie Nantes-Angers (CRCNA)NantesFrance

Personalised recommendations