Advertisement

Drugs

pp 1–15 | Cite as

Immune Checkpoint Inhibitors: Toward New Paradigms in Renal Cell Carcinoma

  • Ronan Flippot
  • Bernard Escudier
  • Laurence Albiges
Review Article
Part of the following topical collections:
  1. Topical Collection on Immuno-Oncology

Abstract

Immune modulatory treatment regimens, led by immune checkpoint inhibitors, have transformed the treatment of clear-cell renal cell carcinoma. First-in-class, the PD-1 inhibitor nivolumab improved overall survival in advanced renal cell carcinoma following prior anti-angiogenic therapy, an important shift in the management of clear-cell renal cell carcinoma. Further improvements of long-term outcomes will be driven by combinations in the first-line setting, including PD-1/PD-L1 associated with antiangiogenic therapies, or PD1/PD-L1 inhibitors with other immune checkpoint inhibitors such as anti-CTLA-4, anti-LAG-3 or TIM-3 targeted therapies. The first two randomized Phase 3 trials assessing these combinations have now challenged sunitinib in first-line setting. First, the CheckMate 214 trial demonstrated an objective response rate and overall survival benefit for the combination of nivolumab plus ipilimumab in the intermediate- and poor-risk patients. Second, the IMMotion 151 study demonstrated a progression-free survival benefit for the atezolizumab plus bevacizumab combination by investigator assessment. Further Phase 3 trials are awaited with tyrosine kinase and immune checkpoint inhibitor combinations. Clinical trials of immune checkpoint inhibitors are also actively investigated in the localized adjuvant or neoadjuvant setting. Nevertheless, the search for biomarkers along with new clinical trial designs will be crucial to better select the patients that may derive the greatest benefit from these advances. The continuing improvement of antitumor immunity comprehension and the emergence of new immune modulatory treatments will deeply change the management of renal cell carcinoma for the years to come.

Notes

Compliance with Ethical Standards

Funding

No funding was received for this work.

Conflict of interest

RF declares no conflicts of interest related to this work. BE: consulting and advisory role for BMS, Roche, Novartis, Pfizer, Ipsen. LA: consulting and advisory role for Novartis, Pfizer, Sanofi, BMS.

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer J Int Cancer. 2015;136:E359–86.CrossRefGoogle Scholar
  2. 2.
    Escudier B, Porta C, Schmidinger M, Algaba F, Patard JJ, Khoo V, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol Off J Eur Soc Med Oncol ESMO. 2014;25(Suppl 3):iii49–56.CrossRefGoogle Scholar
  3. 3.
    Clark PE. The role of VHL in clear-cell renal cell carcinoma and its relation to targeted therapy. Kidney Int. 2009;76:939–45.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9.CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind Phase III trial. The Lancet. 2007;370:2103–11.CrossRefGoogle Scholar
  6. 6.
    Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356:115–24.CrossRefPubMedGoogle Scholar
  7. 7.
    Motzer RJ, Hutson TE, Cella D, Reeves J, Hawkins R, Guo J, et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med. 2013;369:722–31.CrossRefPubMedGoogle Scholar
  8. 8.
    Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised Phase 3 trial. Lancet Lond Engl. 2011;378:1931–9.CrossRefGoogle Scholar
  9. 9.
    Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Phase 3 trial of everolimus for metastatic renal cell carcinoma. Cancer. 2010;116:4256–65.CrossRefPubMedGoogle Scholar
  10. 10.
    Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–81.CrossRefPubMedGoogle Scholar
  11. 11.
    Wang QJ, Hanada K, Robbins PF, Li YF, Yang JC. Distinctive features of the differentiated phenotype and infiltration of tumor-reactive lymphocytes in clear cell renal cell carcinoma. Cancer Res. 2012;72:6119–29.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Payne R, Glenn L, Hoen H, Richards B, Smith JW, Lufkin R, et al. Durable responses and reversible toxicity of high-dose interleukin-2 treatment of melanoma and renal cancer in a Community Hospital Biotherapy Program. J Immunother Cancer. 2014;2:13.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Becht E, Giraldo NA, Germain C, de Reyniès A, Laurent-Puig P, Zucman-Rossi J, et al. Immune contexture, immunoscore, and malignant cell molecular subgroups for prognostic and theranostic classifications of cancers. Adv Immunol. 2016;130:95–190.CrossRefPubMedGoogle Scholar
  14. 14.
    Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12:298–306.CrossRefPubMedGoogle Scholar
  15. 15.
    Giraldo NA, Becht E, Pagès F, Skliris G, Verkarre V, Vano Y, et al. Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2015;21:3031–40.CrossRefGoogle Scholar
  16. 16.
    Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33:1974–82.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:3167–75.CrossRefGoogle Scholar
  18. 18.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Motzer RJ, Rini BI, McDermott DF, Redman BG, Kuzel TM, Harrison MR, et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol. 2015;33:1430–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Choueiri TK, Fishman MN, Escudier B, McDermott DF, Drake CG, Kluger H, et al. Immunomodulatory activity of nivolumab in metastatic renal cell carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2016;22:5461–71.CrossRefGoogle Scholar
  21. 21.
    Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–13.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Motzer RJ, Bacik J, Schwartz LH, Reuter V, Russo P, Marion S, et al. Prognostic factors for survival in previously treated patients with metastatic renal cell carcinoma. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22:454–63.CrossRefGoogle Scholar
  23. 23.
    Escudier B, Sharma P, McDermott DF, George S, Hammers HJ, Srinivas S, et al. CheckMate 025 Randomized phase 3 study: outcomes by key baseline factors and prior therapy for nivolumab versus everolimus in advanced renal cell carcinoma. Eur Urol. 2017;72(6):962–71.CrossRefPubMedGoogle Scholar
  24. 24.
    Heng DYC, Xie W, Regan MM, Warren MA, Golshayan AR, Sahi C, et al. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large. Multicenter Study. J Clin Oncol. 2009;27:5794–9.CrossRefPubMedGoogle Scholar
  25. 25.
    McDermott DF, Lee J-L, Szczylik C, Donskov F, Malik J, Alekseev BY, et al. Pembrolizumab monotherapy as first-line therapy in advanced clear cell renal cell carcinoma (accRCC): results from cohort A of KEYNOTE-427. J Clin Oncol. 2018;36:4500.Google Scholar
  26. 26.
    Atkins MB, McDermott DF, Powles T, Motzer RJ, Rini BI, Fong L, et al. IMmotion150: a Phase II trial in untreated metastatic renal cell carcinoma (mRCC) patients (pts) of atezolizumab (atezo) and bevacizumab (bev) vs and following atezo or sunitinib (sun). J Clin Oncol. 2017;35:4505.Google Scholar
  27. 27.
    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF, Lewis LD, et al. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the CheckMate 016 Study. J Clin Oncol. 2017;35:3851–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Escudier B, Tannir NM, McDermott DF, Frontera OA, Melichar B, Plimack ER, et al. LBA5CheckMate 214: Efficacy and safety of nivolumab + ipilimumab (N + I) v sunitinib (S) for treatment-naïve advanced or metastatic renal cell carcinoma (mRCC), including IMDC risk and PD-L1 expression subgroups. Ann Oncol [Internet]. 2017 [cited 2017 Oct 23];28. https://academic.oup.com/annonc/article/28/suppl_5/mdx440.029/4109941/LBA5CheckMate-214-Efficacy-and-safety-of-nivolumab. Accessed 28 Mar 2018.
  30. 30.
    Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, Choueiri TK, et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N Engl J Med. 2018;378:1277–90.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang Z, Peng S, Xie H, Guo L, Cai Q, Shang Z, et al. Prognostic and clinicopathological significance of PD-L1 in patients with renal cell carcinoma: a meta-analysis based on 1863 individuals. Clin Exp Med. 2018;18:165–75.CrossRefPubMedGoogle Scholar
  32. 32.
    Wallin JJ, Bendell JC, Funke R, Sznol M, Korski K, Jones S, et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun. 2016;7:12624.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Motzer RJ, Powles T, Atkins MB, Escudier B, McDermott DF, Suarez C, et al. IMmotion151: a randomized phase III Study of atezolizumab plus bevacizumab vs sunitinib in untreated metastatic renal cell carcinoma (mRCC). J Clin Oncol. 2018;36:578.CrossRefGoogle Scholar
  34. 34.
    Atkins MB, Plimack ER, Puzanov I, Fishman MN, McDermott DF, Cho DC, et al. Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: a non-randomised, open-label, dose-finding, and dose-expansion Phase 1b trial. Lancet Oncol. 2018;19(3):405–15.  https://doi.org/10.1016/S1470-2045(18)30081-0.CrossRefPubMedGoogle Scholar
  35. 35.
    Choueiri TK, Larkin J, Oya M, Thistlethwaite F, Martignoni M, Nathan P, et al. Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): an open-label, dose-finding and dose-expansion, Phase 1b trial. Lancet Oncol. 2018;19:451–60.CrossRefPubMedGoogle Scholar
  36. 36.
    Amin A, Plimack ER, Infante JR, Ernstoff MS, Rini BI, McDermott DF, et al. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with sunitinib or pazopanib in patients (pts) with metastatic renal cell carcinoma (mRCC). J Clin Oncol [Internet]. 2014 [cited 2016 Nov 26];32:5s. http://meetinglibrary.asco.org/content/125881-144.
  37. 37.
    Apolo AB, Mortazavi A, Stein M, Pal SK, Davarpanah N, Parnes HL, et al. A Phase I study of cabozantinib plus nivolumab (CaboNivo) in patients (pts) refractory metastatic urothelial carcinoma (mUC) and other genitourinary (GU) tumors. Ann Oncol. 2016;27:774.CrossRefGoogle Scholar
  38. 38.
    Nadal R, Mortazavi A, Stein M, Pal SK, Davarpanah N, Parnes HL, et al. 846OFinal results of a Phase I study of cabozantinib (cabo) plus nivolumab (nivo) and cabonivo plus ipilimumab (Ipi) in patients (pts) with metastatic urothelial carcinoma (mUC) and other genitourinary (GU) malignancies. Ann Oncol [Internet]. 2017 [cited 2017 Oct 23]; 28. https://academic.oup.com/annonc/article/28/suppl_5/mdx371.001/4108932/846OFinal-results-of-a-Phase-I-study-of. Accessed 28 Mar 2018.
  39. 39.
    Taylor M, Dutcus CE, Schmidt E, Bagulho T, Li D, Shumaker R, et al. A Phase 1b trial of lenvatinib (LEN) plus pembrolizumab (PEM) in patients with selected solid tumors. Ann Oncol. 2016;27:776PD.CrossRefGoogle Scholar
  40. 40.
    Lee C-H, Makker V, Rasco DW, Taylor MH, Stepan DE, Shumaker RC, et al. Lenvatinib + pembrolizumab in patients with renal cell carcinoma: updated results. J Clin Oncol. 2018;36:4560.Google Scholar
  41. 41.
    Messing EM, Manola J, Wilding G, Propert K, Fleischmann J, Crawford ED, et al. Phase III study of interferon alfa-NL as adjuvant treatment for resectable renal cell carcinoma: an Eastern Cooperative Oncology Group/Intergroup trial. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21:1214–22.CrossRefGoogle Scholar
  42. 42.
    Liu J, Blake SJ, Yong MCR, Harjunpää H, Ngiow SF, Takeda K, et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 2016;6:1382–99.CrossRefPubMedGoogle Scholar
  43. 43.
    Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD, et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl J Med. 2018;378:1976–86.CrossRefPubMedGoogle Scholar
  44. 44.
    Eggermont AMM, Chiarion-Sileni V, Grob J-J, Dummer R, Wolchok JD, Schmidt H, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, Phase 3 trial. Lancet Oncol. 2015;16:522–30.CrossRefPubMedGoogle Scholar
  45. 45.
    Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3—potential mechanisms of action. Nat Rev Immunol. 2015;15:45–56.CrossRefPubMedGoogle Scholar
  46. 46.
    Woo S-R, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T cell function to promote tumoral immune escape. Cancer Res. 2012;72:917–27.CrossRefPubMedGoogle Scholar
  47. 47.
    Granier C, Dariane C, Combe P, Verkarre V, Urien S, Badoual C, et al. Tim-3 expression on tumor-infiltrating PD-1 + CD8 + T cells correlates with poor clinical outcome in renal cell carcinoma. Cancer Res. 2017;77(5):1075–82.CrossRefPubMedGoogle Scholar
  48. 48.
    Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016;7:10501.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44:989–1004.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Brignone C, Escudier B, Grygar C, Marcu M, Triebel F. A Phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15:6225–31.CrossRefGoogle Scholar
  51. 51.
    Xiao X, Kroemer A, Gao W, Ishii N, Demirci G, Li XC. OX40/OX40L costimulation affects induction of Foxp3 + regulatory T cells in part by expanding memory T cells in vivo. J Immunol Baltim Md. 1950;2008(181):3193–201.Google Scholar
  52. 52.
    Chen S, Lee L-F, Fisher TS, Jessen B, Elliott M, Evering W, et al. Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res. 2015;3:149–60.CrossRefPubMedGoogle Scholar
  53. 53.
    Diab A, El-Khoueiry A, Eskens FA, Ros W, Thompson JA, Konto C, et al. A first-in-human (FIH) study of PF-04518600 (PF-8600) OX40 agonist in adult patients (pts) with select advanced malignancies. Ann Oncol. 2016;27:1053PD.CrossRefGoogle Scholar
  54. 54.
    Glisson BS, Leidner R, Ferris RL, Powderly J, Rizvi N, Norton JD, et al. Phase 1 study of MEDI0562, a humanized OX40 agonist monoclonal antibody (mAb), in adult patients (pts) with advanced solid tumors. Ann Oncol. 2016;27:1052PD.CrossRefGoogle Scholar
  55. 55.
    Tolcher AW, Sznol M, Hu-Lieskovan S, Papadopoulos KP, Patnaik A, Rasco DW, et al. Phase Ib Study of Utomilumab (PF-05082566), a 4-1BB/CD137 Agonist, in Combination with Pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin Cancer Res Off J Am Assoc Cancer Res. 2017;23:5349–57.CrossRefGoogle Scholar
  56. 56.
    Infante JR, Ahlers CM, Hodi FS, Postel-Vinay S, Schellens JHM, Heymach J, et al. ENGAGE-1: A first in human study of the OX40 agonist GSK3174998 alone and in combination with pembrolizumab in patients with advanced solid tumors. J Clin Oncol [Internet]. 2016 [cited 2016 Nov 26];34. http://meetinglibrary.asco.org/content/166861-176. Accessed 28 Mar 2018.
  57. 57.
    Gangadhar TC, Hamid O, Smith DC, Bauer TM, Wasser JS, Olszanski AJ, et al. Epacadostat plus pembrolizumab in patients with advanced melanoma and select solid tumors: Updated Phase 1 results from ECHO-202/KEYNOTE-037. Ann Oncol [Internet]. 2016 [cited 2018 Feb 23];27. https://academic.oup.com/annonc/article/27/suppl_6/1110PD/2799921. Accessed 28 Mar 2018.
  58. 58.
    Hong D, Falchook G, Cook CE, Harb W, Lyne P, McCoon P, et al. A Phase 1b study (SCORES) assessing safety, tolerability, pharmacokinetics, and preliminary anti-tumor activity of durvalumab combined with AZD9150 or AZD5069 in patients with advanced solid malignancies and SCCHN. Ann Oncol. 2016;27:1049PD.Google Scholar
  59. 59.
    Ribas A, Chow LQ, Boyd JK, Long GV, Gorczyca M, Davis C, et al. Avelumab (MSB0010718C; anti-PD-L1) in combination with other cancer immunotherapies in patients with advanced malignancies: the phase 1b/2 JAVELIN Medley study. J Clin Oncol. 2016;34:TPS3106.Google Scholar
  60. 60.
    Garnett CT, Palena C, Chakraborty M, Chakarborty M, Tsang K-Y, Schlom J, et al. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 2004;64:7985–94.CrossRefPubMedGoogle Scholar
  61. 61.
    Ribeiro Gomes J, Schmerling RA, Haddad CK, Racy DJ, Ferrigno R, Gil E, et al. Analysis of the abscopal effect with anti-pd1 therapy in patients with metastatic solid tumors. J Immunother Hagerstown Md. 1997;2016(39):367–72.Google Scholar
  62. 62.
    Mould DR, Green B. Pharmacokinetics and pharmacodynamics of monoclonal antibodies: concepts and lessons for drug development. BioDrugs Clin Immunother Biopharm Gene Ther. 2010;24:23–39.Google Scholar
  63. 63.
    Stroh M, Winter H, Marchand M, Claret L, Eppler S, Ruppel J, et al. Clinical pharmacokinetics and pharmacodynamics of atezolizumab in metastatic urothelial carcinoma. Clin Pharmacol Ther. 2017;102:305–12.CrossRefPubMedGoogle Scholar
  64. 64.
    Bajaj G, Wang X, Agrawal S, Gupta M, Roy A, Feng Y. Model-Based Population Pharmacokinetic Analysis of Nivolumab in Patients With Solid Tumors. CPT Pharmacomet Syst Pharmacol. 2017;6:58–66.CrossRefGoogle Scholar
  65. 65.
    Feng Y, Masson E, Dai D, Parker SM, Berman D, Roy A. Model-based clinical pharmacology profiling of ipilimumab in patients with advanced melanoma. Br J Clin Pharmacol. 2014;78:106–17.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Arbour KC, Mezquita L, Long N, Rizvi H, Auclin E, Ni A, et al. Deleterious effect of baseline steroids on efficacy of PD-(L)1 blockade in patients with NSCLC. J Clin Oncol. 2018;36:9003.Google Scholar
  67. 67.
    Derosa L, Hellmann MD, Spaziano M, Halpenny D, Fidelle M, Rizvi H, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 2018;29:1437–44.CrossRefPubMedGoogle Scholar
  68. 68.
    Routy B, Chatelier EL, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2017;359(6371):91–7.  https://doi.org/10.1126/science.aan3706 CrossRefPubMedGoogle Scholar
  69. 69.
    Wang P-F, Chen Y, Song S-Y, Wang T-J, Ji W-J, Li S-W, et al. Immune-related adverse events associated with anti-PD-1/PD-L1 treatment for malignancies: a meta-analysis. Front pharmacol [Internet]. 2017 [cited 2018 Aug 1];8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651530/. Accessed 28 Mar 2018.
  70. 70.
    Albiges L, Guegan J, Le Formal A, Verkarre V, Rioux-Leclercq N, Sibony M, et al. MET is a potential target across all papillary renal cell carcinomas: result from a large molecular study of pRCC with CGH array and matching gene expression array. Clin Cancer Res Off J Am Assoc Cancer Res. 2014;20:3411–21.CrossRefGoogle Scholar
  71. 71.
    Sznol M, McDermott DF, Jones SF, Mier JW, Waterkamp D, Rossi C, et al. Phase Ib evaluation of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) in patients (pts) with metastatic renal cell carcinoma (mRCC). J Clin Oncol [Internet]. 2015 [cited 2016 Dec 31]; 33. http://meetinglibrary.asco.org/content/141896-159. Accessed 28 Mar 2018.
  72. 72.
    Puzanov I, Diab A, Abdallah K, Bingham CO, Brogdon C, Dadu R, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer [Internet]. 2017 [cited 2018 Aug 1];5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697162/. Accessed 28 Mar 2018.
  73. 73.
    Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol Off J Eur Soc Med Oncol. 2015;26:2375–91.Google Scholar
  74. 74.
    Nishino M, Sholl LM, Hatabu H, Ramaiya NH, Hodi FS. Anti–PD-1–related pneumonitis during cancer immunotherapy. N Engl J Med. 2015;373:288–90.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    De Felice KM, Gupta A, Rakshit S, Khanna S, Kottschade LA, Finnes HD, et al. Ipilimumab-induced colitis in patients with metastatic melanoma. Melanoma Res. 2015;25:321–7.CrossRefPubMedGoogle Scholar
  76. 76.
    Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2018;36:1714–68.CrossRefPubMedGoogle Scholar
  77. 77.
    Abdel-Wahab N, Shah M, Lopez-Olivo MA, Suarez-Almazor ME. Use of immune checkpoint inhibitors in the treatment of patients with cancer and preexisting autoimmune disease: a systematic review. Ann Intern Med. 2018;168:121.CrossRefPubMedGoogle Scholar
  78. 78.
    Disis ML. Underlying autoimmune disease is not a contraindication to the use of ipilimumab. JAMA Oncol. 2016;2:241.CrossRefPubMedGoogle Scholar
  79. 79.
    Champiat S, Dercle L, Ammari S, Massard C, Hollebecque A, Postel-Vinay S, et al. Hyperprogressive disease (HPD) is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res. 2017;23(8):1920–8.CrossRefPubMedGoogle Scholar
  80. 80.
    Albiges L, Flippot R, Arfi-Rouche J, Caramella C, Ruatta F, Derosa L, et al. Brain metastases (BM) from renal cell carcinoma treated with nivolumab: evidence of early brain flare? J Clin Oncol. 2017;35:520.CrossRefGoogle Scholar
  81. 81.
    Escudier B, Motzer RJ, Sharma P, Wagstaff J, Plimack ER, Hammers HJ, et al. Treatment beyond progression in patients with advanced renal cell carcinoma treated with nivolumab in CheckMate 025. Eur Urol. 2017;72:368–76.CrossRefPubMedGoogle Scholar
  82. 82.
    Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18:e143–52.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, Phase 2 randomised controlled trial. The Lancet. 2016;387:1837–46.CrossRefGoogle Scholar
  84. 84.
    Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N Engl J Med. 2016;375:1823–33.CrossRefPubMedGoogle Scholar
  85. 85.
    Voss MH, Buros Novik J, Hellmann MD, Ball M, Hakimi AA, Miao D, et al. Correlation of degree of tumor immune infiltration and insertion-and-deletion (indel) burden with outcome on programmed death 1 (PD1) therapy in advanced renal cell cancer (RCC). J Clin Oncol. 2018;36:4518.CrossRefGoogle Scholar
  86. 86.
    Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B, et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med. 2018;24:749–57.CrossRefPubMedGoogle Scholar
  88. 88.
    Turajlic S, Litchfield K, Xu H, Rosenthal R, McGranahan N, Reading JL, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 2017;18:1009–21.CrossRefPubMedGoogle Scholar
  89. 89.
    Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini DJ, et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science. 2018;359:801–6.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375:819–29.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Beuselinck B, Job S, Becht E, Karadimou A, Verkarre V, Couchy G, et al. Molecular subtypes of clear cell renal cell carcinoma are associated with sunitinib response in the metastatic setting. Clin Cancer Res Off J Am Assoc Cancer Res. 2015;21:1329–39.CrossRefGoogle Scholar
  92. 92.
    Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet. 2014;46:225–33.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–9.  https://doi.org/10.1126/science.aaf1490.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Ball MW, Gorin MA, Guner G, Pierorazio PM, Netto G, Paller CJ, et al. Circulating tumor DNA as a marker of therapeutic response in patients with renal cell carcinoma: a pilot study. Clin Genitourin Cancer. 2016;14:e515–20.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 2018;118:9–16.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44:1255–69.CrossRefPubMedGoogle Scholar
  97. 97.
    Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol. 2017;14:655–68.CrossRefPubMedGoogle Scholar
  98. 98.
    Albiges L, Fay AP, Xie W, Krajewski K, McDermott DF, Heng DYC, et al. Efficacy of targeted therapies after PD-1/PD-L1 blockade in metastatic renal cell carcinoma. Eur J Cancer. 2015;51:2580–6.CrossRefPubMedGoogle Scholar
  99. 99.
    Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang T-H, et al. The immune landscape of cancer. Immunity. 2018;48(812–830):e14.Google Scholar
  100. 100.
    Chen F, Zhang Y, Bossé D, Lalani A-KA, Hakimi AA, Hsieh JJ, et al. Pan-urologic cancer genomic subtypes that transcend tissue of origin. Nat Commun. 2017;8:199.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Zappasodi R, Merghoub T, Wolchok JD. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell. 2018;33:581–98.CrossRefPubMedGoogle Scholar
  102. 102.
    McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B, et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med. 2018;24:749–57.CrossRefPubMedGoogle Scholar
  103. 103.
    Amin A, Dudek AZ, Logan TF, Lance RS, Holzbeierlein JM, Knox JJ, et al. Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): phase 2 study results. J Immunother Cancer. 2015;3:14.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, et al. Oncolytic virotherapy promotes intratumoral t cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2017;170(1109–1119):e10.Google Scholar
  105. 105.
    Cheadle EJ, Sheard V, Hombach AA, Chmielewski M, Riet T, Berrevoets C, et al. Chimeric antigen receptors for T-cell based therapy. Methods Mol Biol Clifton NJ. 2012;907:645–66.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ronan Flippot
    • 1
  • Bernard Escudier
    • 1
  • Laurence Albiges
    • 1
  1. 1.Department of Medical OncologyGustave RoussyVillejuifFrance

Personalised recommendations