Advertisement

Drugs

pp 1–18 | Cite as

Treating Chronic Pain: An Overview of Clinical Studies Centered on the Buprenorphine Option

  • Mellar P. Davis
  • Gavril Pasternak
  • Bertrand Behm
Review Article

Abstract

The buprenorphine receptor binding profile is unique in that it binds to all three major opioid receptors (mu, kappa, delta), and also binds to the orphan-like receptor, the receptor for orphanin FQ/nociceptin, with lower affinity. Within the mu receptor group, buprenorphine analgesia in rodents is dependent on the recently discovered arylepoxamide receptor target in brain, which involves a truncated 6-transmembrane mu receptor gene protein, distinguishing itself from morphine and most other mu opioids. Although originally designed as an analgesic, buprenorphine has mainly been used for opioid maintenance therapy and only now is increasingly recognized as an effective analgesic with an improved therapeutic index relative to certain potent opioids. Albeit a second-, third-, or fourth-line analgesic, buprenorphine is a reasonable choice in certain clinical situations. Transdermal patches and buccal film formulations are now commercially available as analgesics. This review discusses buprenorphine pharmacodynamics and pharmacokinetics, use in certain populations, and provides a synopsis of systematic reviews and randomized analgesic trials. We briefly discuss postoperative management in patients receiving buprenorphine maintenance therapy, opioid equivalence to buprenorphine, rotations to buprenorphine from other opioids, and clinical relevance of buprenorphine-related QTc interval changes.

Notes

Acknowledgements

This work was supported by grants from the National Institute on Drug Abuse (DA00641, DA007242), the Peter McManus Charitable Trust and The Mayday Fund to GWP and a core grant from the National Cancer Institute to MSKCC (CA008748).

Compliance with Ethical Standards

Conficts of interest

M. P. Davis, G. Pasternak and B. Behm all declare that they have no relevant conflicts of interest.

References

  1. 1.
    Davis MP. Twelve reasons for considering buprenorphine as a frontline analgesic in the management of pain. J Support Oncol. 2012;10(6):209–19.PubMedCrossRefGoogle Scholar
  2. 2.
    Jasinski DR, Pevnick JS, Griffith JD. Human pharmacology and abuse potential of the analgesic buprenorphine: a potential agent for treating narcotic addiction. Arch Gen Psychiatry. 1978;35(4):501–16.PubMedCrossRefGoogle Scholar
  3. 3.
    Henningfield JE, Sun WZ. Concluding statement—neuropharmacological basis and clinical rationale for control of transdermal buprenorphine as a step II analgesic. Acta Anaesthesiol Taiwan. 2015;53(2):77–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Dahan A, Yassen A, Romberg R, Sarton E, Teppema L, Olofsen E, et al. Buprenorphine induces ceiling in respiratory depression but not in analgesia. Br J Anaesth. 2006;96(5):627–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Dahan A, Yassen A, Bijl H, Romberg R, Sarton E, Teppema L, et al. Comparison of the respiratory effects of intravenous buprenorphine and fentanyl in humans and rats. Br J Anaesth. 2005;94(6):825–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Pergolizzi JV Jr, Scholten W, Smith KJ, Leighton-Scott J, Willis JC, Henningfield JE. The unique role of transdermal buprenorphine in the global chronic pain epidemic. Acta Anaesthesiol Taiwan. 2015;53(2):71–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Johnson RE, Fudala PJ, Payne R. Buprenorphine: considerations for pain management. J Pain Sympt Manag. 2005;29(3):297–326.CrossRefGoogle Scholar
  8. 8.
    Ding Z, Raffa RB. Identification of an additional supraspinal component to the analgesic mechanism of action of buprenorphine. Br J Pharmacol. 2009;157(5):831–43.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Khroyan TV, Wu J, Polgar WE, Cami-Kobeci G, Fotaki N, Husbands SM, et al. BU08073 a buprenorphine analogue with partial agonist activity at mu-receptors in vitro but long-lasting opioid antagonist activity in vivo in mice. Br J Pharmacol. 2015;172(2):668–80.PubMedCrossRefGoogle Scholar
  10. 10.
    Lutfy K, Cowan A. Buprenorphine: a unique drug with complex pharmacology. Curr Neuropharmacol. 2004;2(4):395–402.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Negus SS, Bidlack JM, Mello NK, Furness MS, Rice KC, Brandt MR. Delta opioid antagonist effects of buprenorphine in rhesus monkeys. Behav Pharmacol. 2002;13(7):557–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Grinnell SG, Ansonoff M, Marrone GF, Lu Z, Narayan A, Xu J, et al. Mediation of buprenorphine analgesia by a combination of traditional and truncated mu opioid receptor splice variants. Synapse. 2016;70(10):395–407.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Majumdar S, Grinnell S, Le Rouzic V, Burgman M, Polikar L, Ansonoff M, et al. Truncated G protein-coupled mu opioid receptor MOR-1 splice variants are targets for highly potent opioid analgesics lacking side effects. Proc Natl Acad Sci USA. 2011;108(49):19778–83.PubMedCrossRefGoogle Scholar
  14. 14.
    Traynor JR, Nahorski SR. Modulation by mu-opioid agonists of guanosine-5′-O-(3-[35S]thio)triphosphate binding to membranes from human neuroblastoma SH-SY5Y cells. Mol Pharmacol. 1995;47(4):848–54.PubMedGoogle Scholar
  15. 15.
    Fantozzi R, Mullikin-Kilpatrick D, Blume AJ. Irreversible inactivation of the opiate receptors in the neuroblastoma x glioma hybrid NG108-15 by chlornaltrexamine. Mol Pharmacol. 1981;20(1):8–15.PubMedGoogle Scholar
  16. 16.
    Zaki PA, Keith DE Jr, Brine GA, Carroll FI, Evans CJ. Ligand-induced changes in surface mu-opioid receptor number: relationship to G protein activation? J Pharmacol Exp Ther. 2000;292(3):1127–34.PubMedGoogle Scholar
  17. 17.
    McPherson J, Rivero G, Baptist M, Llorente J, Al-Sabah S, Krasel C, et al. mu-opioid receptors: correlation of agonist efficacy for signalling with ability to activate internalization. Mol Pharmacol. 2010;78(4):756–66.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Vanderah TW, Gardell LR, Burgess SE, Ibrahim M, Dogrul A, Zhong CM, et al. Dynorphin promotes abnormal pain and spinal opioid antinociceptive tolerance. J Neurosci. 2000;20(18):7074–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Ossipov MH, Lai J, Malan TP Jr, Porreca F. Spinal and supraspinal mechanisms of neuropathic pain. Ann N Y Acad Sci. 2000;909:12–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Stanciu CN, Glass OM, Penders TM. Use of Buprenorphine in treatment of refractory depression: a review of current literature. Asian J Psychiatr. 2017;26:94–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Karp JF, Butters MA, Begley AE, Miller MD, Lenze EJ, Blumberger DM, et al. Safety, tolerability, and clinical effect of low-dose buprenorphine for treatment-resistant depression in midlife and older adults. J Clin Psychiatry. 2014;75(8):e785–93.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bodkin JA, Zornberg GL, Lukas SE, Cole JO. Buprenorphine treatment of refractory depression. J Clin Psychopharmacol. 1995;15(1):49–57.PubMedCrossRefGoogle Scholar
  23. 23.
    Falcon E, Browne CA, Leon RM, Fleites VC, Sweeney R, Kirby LG, et al. Antidepressant-like effects of buprenorphine are mediated by kappa opioid receptors. Neuropsychopharmacology. 2016;41(9):2344–51.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science. 1999;286(5449):2495–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Raehal KM, Schmid CL, Groer CE, Bohn LM. Functional selectivity at the mu-opioid receptor: implications for understanding opioid analgesia and tolerance. Pharmacol Rev. 2011;63(4):1001–19.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Raehal KM, Bohn LM. The role of beta-arrestin2 in the severity of antinociceptive tolerance and physical dependence induced by different opioid pain therapeutics. Neuropharmacology. 2011;60(1):58–65.PubMedCrossRefGoogle Scholar
  27. 27.
    Reiter E, Ahn S, Shukla AK, Lefkowitz RJ. Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol. 2012;52:179–97.PubMedCrossRefGoogle Scholar
  28. 28.
    Yu Y, Zhang L, Yin X, Sun H, Uhl GR, Wang JB. Mu opioid receptor phosphorylation, desensitization, and ligand efficacy. J Biol Chem. 1997;272(46):28869–74.PubMedCrossRefGoogle Scholar
  29. 29.
    Grinnell SG, Majumdar S, Narayan A, Le Rouzic V, Ansonoff M, Pintar JE, et al. Pharmacologic characterization in the rat of a potent analgesic lacking respiratory depression, IBNtxA. J Pharmacol Exp Ther. 2014;350(3):710–8.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Cowan A. Buprenorphine: the basic pharmacology revisited. J Addict Med. 2007;1(2):68–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Cowan A. Buprenorphine: new pharmacological aspects. Int J Clin Pract Suppl. 2003;133:3–8 (discussion 23–4).Google Scholar
  32. 32.
    Kogel B, Christoph T, Strassburger W, Friderichs E. Interaction of mu-opioid receptor agonists and antagonists with the analgesic effect of buprenorphine in mice. Eur J Pain. 2005;9(5):599–611.PubMedCrossRefGoogle Scholar
  33. 33.
    Kress HG. Clinical update on the pharmacology, efficacy and safety of transdermal buprenorphine. Eur J Pain. 2009;13(3):219–30.PubMedCrossRefGoogle Scholar
  34. 34.
    Recker MD, Higgins GA. The opioid receptor like-1 receptor agonist Ro 64-6198 (1S,3aS-8-2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one) produces a discriminative stimulus in rats distinct from that of a mu, kappa, and delta opioid receptor agonist cue. J Pharmacol Exp Ther. 2004;311(2):652–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Lewis JW, Husbands SM. The orvinols and related opioids–high affinity ligands with diverse efficacy profiles. Curr Pharm Des. 2004;10(7):717–32.PubMedCrossRefGoogle Scholar
  36. 36.
    Pergolizzi J, Aloisi AM, Dahan A, Filitz J, Langford R, Likar R, et al. Current knowledge of buprenorphine and its unique pharmacological profile. Pain Pract. 2010;10(5):428–50.PubMedCrossRefGoogle Scholar
  37. 37.
    Dahan A. Opioid-induced respiratory effects: new data on buprenorphine. Palliat Med. 2006;20(Suppl 1):s3–8.PubMedGoogle Scholar
  38. 38.
    Gerhold KJ, Drdla-Schutting R, Honsek SD, Forsthuber L, Sandkuhler J. Pronociceptive and antinociceptive effects of buprenorphine in the spinal cord dorsal horn cover a dose range of four orders of magnitude. J Neurosci. 2015;35(26):9580–94.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Schnabel A, Reichl SU, Zahn PK, Pogatzki-Zahn EM, Meyer-Friessem CH. Efficacy and safety of buprenorphine in peripheral nerve blocks: a meta-analysis of randomised controlled trials. Eur J Anaesthesiol. 2017;34(9):576–86.PubMedCrossRefGoogle Scholar
  40. 40.
    Leffler A, Frank G, Kistner K, Niedermirtl F, Koppert W, Reeh PW, et al. Local anesthetic-like inhibition of voltage-gated Na(+) channels by the partial mu-opioid receptor agonist buprenorphine. Anesthesiology. 2012;116(6):1335–46.PubMedCrossRefGoogle Scholar
  41. 41.
    Rickli A, Liakoni E, Hoener MC, Liechti ME. Opioid-induced inhibition of the human 5-HT and noradrenaline transporters in vitro: link to clinical reports of serotonin syndrome. Br J Pharmacol. 2018;175(3):532–43.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Sutcliffe KJ, Henderson G, Kelly E, Sessions RB. Drug binding poses relate structure with efficacy in the mu opioid receptor. J Mol Biol. 2017;429(12):1840–51.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Christopoulos A, El-Fakahany EE. Qualitative and quantitative assessment of relative agonist efficacy. Biochem Pharmacol. 1999;58(5):735–48.PubMedCrossRefGoogle Scholar
  44. 44.
    Heit HA, Gourlay DL. Buprenorphine: new tricks with an old molecule for pain management. Clin J Pain. 2008;24(2):93–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Sloan P. Buprenorphine for chronic pain management. J Support Oncol. 2012;10(6):220–1.PubMedCrossRefGoogle Scholar
  46. 46.
    Macintyre PE, Huxtable CA. Buprenorphine for the management of acute pain. Anaesth Intensive Care. 2017;45(2):143–6.PubMedGoogle Scholar
  47. 47.
    Macintyre PE, Russell RA, Usher KA, Gaughwin M, Huxtable CA. Pain relief and opioid requirements in the first 24 hours after surgery in patients taking buprenorphine and methadone opioid substitution therapy. Anaesth Intensive Care. 2013;41(2):222–30.PubMedGoogle Scholar
  48. 48.
    Huxtable CA, Roberts LJ, Somogyi AA, MacIntyre PE. Acute pain management in opioid-tolerant patients: a growing challenge. Anaesth Intensive Care. 2011;39(5):804–23.PubMedGoogle Scholar
  49. 49.
    Ohtani M, Kotaki H, Sawada Y, Iga T. Comparative analysis of buprenorphine- and norbuprenorphine-induced analgesic effects based on pharmacokinetic-pharmacodynamic modeling. J Pharmacol Exp Ther. 1995;272(2):505–10.PubMedGoogle Scholar
  50. 50.
    Tournier N, Chevillard L, Megarbane B, Pirnay S, Scherrmann JM, Decleves X. Interaction of drugs of abuse and maintenance treatments with human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). Int J Neuropsychopharmacol. 2010;13(7):905–15.PubMedCrossRefGoogle Scholar
  51. 51.
    Alhaddad H, Cisternino S, Decleves X, Tournier N, Schlatter J, Chiadmi F, et al. Respiratory toxicity of buprenorphine results from the blockage of P-glycoprotein-mediated efflux of norbuprenorphine at the blood-brain barrier in mice. Crit Care Med. 2012;40(12):3215–23.PubMedCrossRefGoogle Scholar
  52. 52.
    Raehal KM, Walker JK, Bohn LM. Morphine side effects in beta-arrestin 2 knockout mice. J Pharmacol Exp Ther. 2005;314(3):1195–201.PubMedCrossRefGoogle Scholar
  53. 53.
    Webster LR, Camilleri M, Finn A. Opioid-induced constipation: rationale for the role of norbuprenorphine in buprenorphine-treated individuals. Subst Abuse Rehabil. 2016;7:81–6.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Brown SM, Holtzman M, Kim T, Kharasch ED. Buprenorphine metabolites, buprenorphine-3-glucuronide and norbuprenorphine-3-glucuronide, are biologically active. Anesthesiology. 2011;115(6):1251–60.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Yassen A, Kan J, Olofsen E, Suidgeest E, Dahan A, Danhof M. Pharmacokinetic-pharmacodynamic modeling of the respiratory depressant effect of norbuprenorphine in rats. J Pharmacol Exp Ther. 2007;321(2):598–607.PubMedCrossRefGoogle Scholar
  56. 56.
    Ohtani M, Kotaki H, Nishitateno K, Sawada Y, Iga T. Kinetics of respiratory depression in rats induced by buprenorphine and its metabolite, norbuprenorphine. J Pharmacol Exp Ther. 1997;281(1):428–33.PubMedGoogle Scholar
  57. 57.
    Strang J, Knight A, Baillie S, Reed K, Bogdanowicz K, Bell J. Norbuprenorphine and respiratory depression: Exploratory analyses with new lyophilized buprenorphine and sublingual buprenorphine. Int J Clin Pharmacol Ther. 2018;56(2):81–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Megarbane B, Marie N, Pirnay S, Borron SW, Gueye PN, Risede P, et al. Buprenorphine is protective against the depressive effects of norbuprenorphine on ventilation. Toxicol Appl Pharmacol. 2006;212(3):256–67.PubMedCrossRefGoogle Scholar
  59. 59.
    Brown SM, Campbell SD, Crafford A, Regina KJ, Holtzman MJ, Kharasch ED. P-glycoprotein is a major determinant of norbuprenorphine brain exposure and antinociception. J Pharmacol Exp Ther. 2012;343(1):53–61.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wang Y, Cipriano A, Munera C, Harris SC. Dose-dependent flux of buprenorphine following transdermal administration in healthy subjects. J Clin Pharmacol. 2016;56(10):1263–71.PubMedCrossRefGoogle Scholar
  61. 61.
    Yokell MA, Zaller ND, Green TC, Rich JD. Buprenorphine and buprenorphine/naloxone diversion, misuse, and illicit use: an international review. Curr Drug Abuse Rev. 2011;4(1):28–41.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Bullingham RE, McQuay HJ, Moore RA. Clinical pharmacokinetics of narcotic agonist-antagonist drugs. Clin Pharmacokinet. 1983;8(4):332–43.PubMedCrossRefGoogle Scholar
  63. 63.
    Mendelson J, Upton RA, Everhart ET, Jacob P 3rd, Jones RT. Bioavailability of sublingual buprenorphine. J Clin Pharmacol. 1997;37(1):31–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Nath RP, Upton RA, Everhart ET, Cheung P, Shwonek P, Jones RT, et al. Buprenorphine pharmacokinetics: relative bioavailability of sublingual tablet and liquid formulations. J Clin Pharmacol. 1999;39(6):619–23.PubMedCrossRefGoogle Scholar
  65. 65.
    Downing JW, Leary WP, White ES. Buprenorphine: a new potent long-acting synthetic analgesic. Comparison with morphine. Br J Anaesth. 1977;49(3):251–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Yassen A, Olofsen E, Kan J, Dahan A, Danhof M. Animal-to-human extrapolation of the pharmacokinetic and pharmacodynamic properties of buprenorphine. Clin Pharmacokinet. 2007;46(5):433–47.PubMedCrossRefGoogle Scholar
  67. 67.
    Yassen A, Olofsen E, Dahan A, Danhof M. Pharmacokinetic-pharmacodynamic modeling of the antinociceptive effect of buprenorphine and fentanyl in rats: role of receptor equilibration kinetics. J Pharmacol Exp Ther. 2005;313(3):1136–49.PubMedCrossRefGoogle Scholar
  68. 68.
    Bullingham RE, McQuay HJ, Moore A, Bennett MR. Buprenorphine kinetics. Clin Pharmacol Ther. 1980;28(5):667–72.PubMedCrossRefGoogle Scholar
  69. 69.
    Yassen A, Kan J, Olofsen E, Suidgeest E, Dahan A, Danhof M. Mechanism-based pharmacokinetic-pharmacodynamic modeling of the respiratory-depressant effect of buprenorphine and fentanyl in rats. J Pharmacol Exp Ther. 2006;319(2):682–92.PubMedCrossRefGoogle Scholar
  70. 70.
    Yassen A, Olofsen E, Romberg R, Sarton E, Danhof M, Dahan A. Mechanism-based pharmacokinetic-pharmacodynamic modeling of the antinociceptive effect of buprenorphine in healthy volunteers. Anesthesiology. 2006;104(6):1232–42.PubMedCrossRefGoogle Scholar
  71. 71.
    Koppert W, Ihmsen H, Korber N, Wehrfritz A, Sittl R, Schmelz M, et al. Different profiles of buprenorphine-induced analgesia and antihyperalgesia in a human pain model. Pain. 2005;118(1–2):15–22.PubMedCrossRefGoogle Scholar
  72. 72.
    Ebling WF, Lee EN, Stanski DR. Understanding pharmacokinetics and pharmacodynamics through computer stimulation: I. The comparative clinical profiles of fentanyl and alfentanil. Anesthesiology. 1990;72(4):650–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Pontani RB, Vadlamani NL, Misra AL. Disposition in the rat of buprenorphine administered parenterally and as a subcutaneous implant. Xenobiotica. 1985;15(4):287–97.PubMedCrossRefGoogle Scholar
  74. 74.
    Shiue CY, Bai LQ, Teng RR, Arnett CD, Dewey SL, Wolf AP, et al. A comparison of the brain uptake of N-(cyclopropyl[11C]methyl)norbuprenorphine ([11C]buprenorphine) and N-(cyclopropyl[11C]methyl)nordiprenorphine ([11C]diprenorphine) in baboon using PET. Int J Rad Appl Instrum B. 1991;18(3):281–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Greenwald M, Johanson CE, Bueller J, Chang Y, Moody DE, Kilbourn M, et al. Buprenorphine duration of action: mu-opioid receptor availability and pharmacokinetic and behavioral indices. Biol Psychiatry. 2007;61(1):101–10.PubMedCrossRefGoogle Scholar
  76. 76.
    Plosker GL. Buprenorphine 5, 10 and 20 mug/h transdermal patch: a review of its use in the management of chronic non-malignant pain. Drugs. 2011;71(18):2491–509.PubMedCrossRefGoogle Scholar
  77. 77.
    Heel RC, Brogden RN, Speight TM, Avery GS. Buprenorphine: a review of its pharmacological properties and therapeutic efficacy. Drugs. 1979;17(2):81–110.PubMedCrossRefGoogle Scholar
  78. 78.
    Brewster D, Humphrey MJ, McLeavy MA. Biliary excretion, metabolism and enterohepatic circulation of buprenorphine. Xenobiotica. 1981;11(3):189–96.PubMedCrossRefGoogle Scholar
  79. 79.
    Cone EJ, Gorodetzky CW, Yousefnejad D, Buchwald WF, Johnson RE. The metabolism and excretion of buprenorphine in humans. Drug Metab Dispos. 1984;12(5):577–81.PubMedGoogle Scholar
  80. 80.
    Picard N, Cresteil T, Djebli N, Marquet P. In vitro metabolism study of buprenorphine: evidence for new metabolic pathways. Drug Metab Dispos. 2005;33(5):689–95.PubMedCrossRefGoogle Scholar
  81. 81.
    Sullivan JG, Webster L. Novel buccal film formulation of buprenorphine-naloxone for the maintenance treatment of opioid dependence: a 12-week conversion study. Clin Ther. 2015;37(5):1064–75.PubMedCrossRefGoogle Scholar
  82. 82.
    Webster L, Hjelmstrom P, Sumner M, Gunderson EW. Efficacy and safety of a sublingual buprenorphine/naloxone rapidly dissolving tablet for the treatment of adults with opioid dependence: a randomized trial. J Addict Dis. 2016;35(4):325–38.PubMedCrossRefGoogle Scholar
  83. 83.
    Kuhlman JJ Jr, Lalani S, Magluilo J Jr, Levine B, Darwin WD. Human pharmacokinetics of intravenous, sublingual, and buccal buprenorphine. J Anal Toxicol. 1996;20(6):369–78.PubMedCrossRefGoogle Scholar
  84. 84.
    Elkader A, Sproule B. Buprenorphine: clinical pharmacokinetics in the treatment of opioid dependence. Clin Pharmacokinet. 2005;44(7):661–80.PubMedCrossRefGoogle Scholar
  85. 85.
    Gunderson EW, Hjelmstrom P, Sumner M, Study I. Effects of a higher-bioavailability buprenorphine/naloxone sublingual tablet versus buprenorphine/naloxone film for the treatment of opioid dependence during induction and stabilization: a multicenter, randomized trial. Clin Ther. 2015;37(10):2244–55.Google Scholar
  86. 86.
    Fischer A, Jonsson M, Hjelmstrom P. Pharmaceutical and pharmacokinetic characterization of a novel sublingual buprenorphine/naloxone tablet formulation in healthy volunteers. Drug Dev Ind Pharm. 2015;41(1):79–84.PubMedCrossRefGoogle Scholar
  87. 87.
    Lintzeris N, Leung SY, Dunlop AJ, Larance B, White N, Rivas GR, et al. A randomised controlled trial of sublingual buprenorphine-naloxone film versus tablets in the management of opioid dependence. Drug Alcohol Depend. 2013;131(1–2):119–26.PubMedCrossRefGoogle Scholar
  88. 88.
    Bai SA, Xiang Q, Finn A. Evaluation of the pharmacokinetics of single- and multiple-dose buprenorphine buccal film in healthy volunteers. Clin Ther. 2016;38(2):358–69.PubMedCrossRefGoogle Scholar
  89. 89.
    Priestley T, Chappa AK, Mould DR, Upton RN, Shusterman N, Passik S, et al. Converting from transdermal to buccal formulations of buprenorphine: a pharmacokinetic meta-model simulation in healthy volunteers. Pain Med. Epub 29 Sep 2017.  https://doi.org/10.1093/pm/pnx235.
  90. 90.
    Evans HC, Easthope SE. Transdermal buprenorphine. Drugs. 2003;63(19):1999–2010 (discussion 1–2).PubMedCrossRefGoogle Scholar
  91. 91.
    Sittl R. Transdermal buprenorphine in the treatment of chronic pain. Expert Rev Neurother. 2005;5(3):315–23.PubMedCrossRefGoogle Scholar
  92. 92.
    Kapil RP, Cipriano A, Friedman K, Michels G, Shet MS, Colucci SV, et al. Once-weekly transdermal buprenorphine application results in sustained and consistent steady-state plasma levels. J Pain Symp Manag. 2013;46(1):65–75.CrossRefGoogle Scholar
  93. 93.
    Plosker GL, Lyseng-Williamson KA. Buprenorphine 5, 10 and 20 mug/h transdermal patch: a guide to its use in chronic non-malignant pain. CNS Drugs. 2012;26(4):367–73.PubMedCrossRefGoogle Scholar
  94. 94.
    Middleton LS, Nuzzo PA, Lofwall MR, Moody DE, Walsh SL. The pharmacodynamic and pharmacokinetic profile of intranasal crushed buprenorphine and buprenorphine/naloxone tablets in opioid abusers. Addiction. 2011;106(8):1460–73.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Walsh SL, Nuzzo PA, Babalonis S, Casselton V, Lofwall MR. Intranasal buprenorphine alone and in combination with naloxone: abuse liability and reinforcing efficacy in physically dependent opioid abusers. Drug Alcohol Depend. 2016;162:190–8.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Tegeder I, Lotsch J, Geisslinger G. Pharmacokinetics of opioids in liver disease. Clin Pharmacokinet. 1999;37(1):17–40.PubMedCrossRefGoogle Scholar
  97. 97.
    Chang Y, Moody DE. Glucuronidation of buprenorphine and norbuprenorphine by human liver microsomes and UDP-glucuronosyltransferases. Drug Metab Lett. 2009;3(2):101–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Blanco F, Muriel C, Labrador J, Gonzalez-Porras JR, Gonzalez-Sarmiento R, Lozano FS. Influence of UGT2B7, CYP3A4, and OPRM1 gene polymorphisms on transdermal buprenorphine pain control in patients with critical lower limb ischemia awaiting revascularization. Pain Pract. 2016;16(7):842–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Sastre JA, Varela G, Lopez M, Muriel C, Gonzalez-Sarmiento R. Influence of uridine diphosphate-glucuronyltransferase 2B7 (UGT2B7) variants on postoperative buprenorphine analgesia. Pain Pract. 2015;15(1):22–30.PubMedCrossRefGoogle Scholar
  100. 100.
    Moody DE, Slawson MH, Strain EC, Laycock JD, Spanbauer AC, Foltz RL. A liquid chromatographic-electrospray ionization-tandem mass spectrometric method for determination of buprenorphine, its metabolite, norbuprenorphine, and a coformulant, naloxone, that is suitable for in vivo and in vitro metabolism studies. Anal Biochem. 2002;306(1):31–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Fihlman M, Hemmila T, Hagelberg NM, Kuusniemi K, Backman JT, Laitila J, et al. Voriconazole more likely than posaconazole increases plasma exposure to sublingual buprenorphine causing a risk of a clinically important interaction. Eur J Clin Pharmacol. 2016;72(11):1363–71.PubMedCrossRefGoogle Scholar
  102. 102.
    Kapil RP, Cipriano A, Michels GH, Perrino P, O’Keefe SA, Shet MS, et al. Effect of ketoconazole on the pharmacokinetic profile of buprenorphine following administration of a once-weekly buprenorphine transdermal system. Clin Drug Investig. 2012;32(9):583–92.PubMedGoogle Scholar
  103. 103.
    Moody DE, Chang Y, Huang W, McCance-Katz EF. The in vivo response of novel buprenorphine metabolites, M1 and M3, to antiretroviral inducers and inhibitors of buprenorphine metabolism. Basic Clin Pharmacol Toxicol. 2009;105(3):211–5.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Moody DE, Fang WB, Lin SN, Weyant DM, Strom SC, Omiecinski CJ. Effect of rifampin and nelfinavir on the metabolism of methadone and buprenorphine in primary cultures of human hepatocytes. Drug Metab Dispos. 2009;37(12):2323–9.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Mahmood I. Prediction of clearance, volume of distribution, and half-life of drugs in extremely low to low birth weight neonates: an allometric approach. Eur J Drug Metab Pharmacokinet. 2017;42(4):601–10.PubMedCrossRefGoogle Scholar
  106. 106.
    Ng CM, Dombrowsky E, Lin H, Erlich ME, Moody DE, Barrett JS, et al. Population pharmacokinetic model of sublingual buprenorphine in neonatal abstinence syndrome. Pharmacotherapy. 2015;35(7):670–80.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Vest M. Insufficient glucuronide formation in the newborn and its relationship to the pathogenesis of icterus neonatorum. Arch Dis Child. 1958;33(171):473–6.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Choonara I, Lawrence A, Michalkiewicz A, Bowhay A, Ratcliffe J. Morphine metabolism in neonates and infants. Br J Clin Pharmacol. 1992;34(5):434–7.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    de Wildt SN, Kearns GL, Murry DJ, Koren G, van den Anker JN. Ontogeny of midazolam glucuronidation in preterm infants. Eur J Clin Pharmacol. 2010;66(2):165–70.PubMedCrossRefGoogle Scholar
  110. 110.
    Hartley R, Green M, Quinn MW, Rushforth JA, Levene MI. Development of morphine glucuronidation in premature neonates. Biol Neonate. 1994;66(1):1–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Michel E, Anderson BJ, Zernikow B. Buprenorphine TTS for children: a review of the drug’s clinical pharmacology. Paediatr Anaesth. 2011;21(3):280–90.PubMedCrossRefGoogle Scholar
  112. 112.
    Michel E, Zernikow B. Buprenorphine in children. A clinical and pharmacological review [in German]. Schmerz. 2006;20(1):40–50.PubMedCrossRefGoogle Scholar
  113. 113.
    Pergolizzi J, Boger RH, Budd K, Dahan A, Erdine S, Hans G, et al. Opioids and the management of chronic severe pain in the elderly: consensus statement of an International Expert Panel with focus on the six clinically most often used World Health Organization Step III opioids (buprenorphine, fentanyl, hydromorphone, methadone, morphine, oxycodone). Pain Pract. 2008;8(4):287–313.PubMedCrossRefGoogle Scholar
  114. 114.
    Vadivelu N, Hines RL. Management of chronic pain in the elderly: focus on transdermal buprenorphine. Clin Interv Aging. 2008;3(3):421–30.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Al-Tawil N, Odar-Cederlof I, Berggren AC, Johnson HE, Persson J. Pharmacokinetics of transdermal buprenorphine patch in the elderly. Eur J Clin Pharmacol. 2013;69(2):143–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Filitz J, Griessinger N, Sittl R, Likar R, Schuttler J, Koppert W. Effects of intermittent hemodialysis on buprenorphine and norbuprenorphine plasma concentrations in chronic pain patients treated with transdermal buprenorphine. Eur J Pain. 2006;10(8):743–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Boger RH. Renal impairment: a challenge for opioid treatment? The role of buprenorphine. Palliat Med. 2006;20(Suppl 1):s17–23.PubMedGoogle Scholar
  118. 118.
    Yeung CK, Shen DD, Thummel KE, Himmelfarb J. Effects of chronic kidney disease and uremia on hepatic drug metabolism and transport. Kidney Int. 2014;85(3):522–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Nolin TD, Appiah K, Kendrick SA, Le P, McMonagle E, Himmelfarb J. Hemodialysis acutely improves hepatic CYP3A4 metabolic activity. J Am Soc Nephrol. 2006;17(9):2363–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Hand CW, Sear JW, Uppington J, Ball MJ, McQuay HJ, Moore RA. Buprenorphine disposition in patients with renal impairment: single and continuous dosing, with special reference to metabolites. Br J Anaesth. 1990;64(3):276–82.PubMedCrossRefGoogle Scholar
  121. 121.
    Summerfield RJ, Allen MC, Moore RA, Sear JW, McQuay HJ. Buprenorphine in end stage renal failure. Anaesthesia. 1985;40(9):914.PubMedCrossRefGoogle Scholar
  122. 122.
    Nasser AF, Heidbreder C, Liu Y, Fudala PJ. Pharmacokinetics of sublingual buprenorphine and naloxone in subjects with mild to severe hepatic impairment (child-pugh classes A, B, and C), in hepatitis C virus-seropositive subjects, and in healthy volunteers. Clin Pharmacokinet. 2015;54(8):837–49.PubMedCrossRefGoogle Scholar
  123. 123.
    Furlan V, Demirdjian S, Bourdon O, Magdalou J, Taburet AM. Glucuronidation of drugs by hepatic microsomes derived from healthy and cirrhotic human livers. J Pharmacol Exp Ther. 1999;289(2):1169–75.PubMedGoogle Scholar
  124. 124.
    Hardwick RN, Ferreira DW, More VR, Lake AD, Lu Z, Manautou JE, et al. Altered UDP-glucuronosyltransferase and sulfotransferase expression and function during progressive stages of human nonalcoholic fatty liver disease. Drug Metab Dispos. 2013;41(3):554–61.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Verbeeck RK. Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol. 2008;64(12):1147–61.PubMedCrossRefGoogle Scholar
  126. 126.
    Elbekai RH, Korashy HM, El-Kadi AO. The effect of liver cirrhosis on the regulation and expression of drug metabolizing enzymes. Curr Drug Metab. 2004;5(2):157–67.PubMedCrossRefGoogle Scholar
  127. 127.
    Ciccozzi A, Angeletti C, Baldascino G, Petrucci E, Bonetti C, De Santis S, et al. High dose of buprenorphine in terminally ill patient with liver failure: efficacy and tolerability. J Opioid Manag. 2012;8(4):253–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Wolff RF, Aune D, Truyers C, Hernandez AV, Misso K, Riemsma R, et al. Systematic review of efficacy and safety of buprenorphine versus fentanyl or morphine in patients with chronic moderate to severe pain. Curr Med Res Opin. 2012;28(5):833–45.PubMedCrossRefGoogle Scholar
  129. 129.
    Wolff RF, Reid K, di Nisio M, Aune D, Truyers C, Hernandez AV, et al. Systematic review of adverse events of buprenorphine patch versus fentanyl patch in patients with chronic moderate-to-severe pain. Pain Manag. 2012;2(4):351–62.PubMedCrossRefGoogle Scholar
  130. 130.
    Ahn JS, Lin J, Ogawa S, Yuan C, O’Brien T, Le BH, et al. Transdermal buprenorphine and fentanyl patches in cancer pain: a network systematic review. J Pain Res. 2017;10:1963–72.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Cote J, Montgomery L. Sublingual buprenorphine as an analgesic in chronic pain: a systematic review. Pain Med. 2014;15(7):1171–8.PubMedCrossRefGoogle Scholar
  132. 132.
    James IG, O’Brien CM, McDonald CJ. A randomized, double-blind, double-dummy comparison of the efficacy and tolerability of low-dose transdermal buprenorphine (BuTrans seven-day patches) with buprenorphine sublingual tablets (Temgesic) in patients with osteoarthritis pain. J Pain Symp Manag. 2010;40(2):266–78.CrossRefGoogle Scholar
  133. 133.
    Naing C, Yeoh PN, Aung K. A meta-analysis of efficacy and tolerability of buprenorphine for the relief of cancer pain. Springerplus. 2014;3:87.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Wiffen PJ, Derry S, Moore RA, Stannard C, Aldington D, Cole P, et al. Buprenorphine for neuropathic pain in adults. Cochrane Database Syst Rev. 2015;(9):CD011603.Google Scholar
  135. 135.
    Buprenorphine for chronic pain: a review of the clinical effectiveness. Ottawa (ON); Canadian Agency for Drugs and Technologies in Health; 2017.Google Scholar
  136. 136.
    Sittl R, Griessinger N, Likar R. Analgesic efficacy and tolerability of transdermal buprenorphine in patients with inadequately controlled chronic pain related to cancer and other disorders: a multicenter, randomized, double-blind, placebo-controlled trial. Clin Ther. 2003;25(1):150–68.PubMedCrossRefGoogle Scholar
  137. 137.
    Poulain P, Denier W, Douma J, Hoerauf K, Samija M, Sopata M, et al. Efficacy and safety of transdermal buprenorphine: a randomized, placebo-controlled trial in 289 patients with severe cancer pain. J Pain Symp Manag. 2008;36(2):117–25.CrossRefGoogle Scholar
  138. 138.
    Conaghan PG, O’Brien CM, Wilson M, Schofield JP. Transdermal buprenorphine plus oral paracetamol vs an oral codeine-paracetamol combination for osteoarthritis of hip and/or knee: a randomised trial. Osteoarthritis Cartilage. 2011;19(8):930–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Steiner D, Munera C, Hale M, Ripa S, Landau C. Efficacy and safety of buprenorphine transdermal system (BTDS) for chronic moderate to severe low back pain: a randomized, double-blind study. J Pain. 2011;12(11):1163–73.PubMedCrossRefGoogle Scholar
  140. 140.
    Steiner DJ, Sitar S, Wen W, Sawyerr G, Munera C, Ripa SR, et al. Efficacy and safety of the seven-day buprenorphine transdermal system in opioid-naive patients with moderate to severe chronic low back pain: an enriched, randomized, double-blind, placebo-controlled study. J Pain Symptom Manag. 2011;42(6):903–17.CrossRefGoogle Scholar
  141. 141.
    Landau CJ, Carr WD, Razzetti AJ, Sessler NE, Munera C, Ripa SR. Buprenorphine transdermal delivery system in adults with persistent noncancer-related pain syndromes who require opioid therapy: a multicenter, 5-week run-in and randomized, double-blind maintenance-of-analgesia study. Clin Ther. 2007;29(10):2179–93.PubMedCrossRefGoogle Scholar
  142. 142.
    Gordon A, Callaghan D, Spink D, Cloutier C, Dzongowski P, O’Mahony W, et al. Buprenorphine transdermal system in adults with chronic low back pain: a randomized, double-blind, placebo-controlled crossover study, followed by an open-label extension phase. Clin Ther. 2010;32(5):844–60.PubMedCrossRefGoogle Scholar
  143. 143.
    Mitra F, Chowdhury S, Shelley M, Williams G. A feasibility study of transdermal buprenorphine versus transdermal fentanyl in the long-term management of persistent non-cancer pain. Pain Med. 2013;14(1):75–83.PubMedCrossRefGoogle Scholar
  144. 144.
    Muriel C, Failde I, Mico JA, Neira M, Sanchez-Magro I. Effectiveness and tolerability of the buprenorphine transdermal system in patients with moderate to severe chronic pain: a multicenter, open-label, uncontrolled, prospective, observational clinical study. Clin Ther. 2005;27(4):451–62.PubMedCrossRefGoogle Scholar
  145. 145.
    Griessinger N, Sittl R, Likar R. Transdermal buprenorphine in clinical practice—a post-marketing surveillance study in 13,179 patients. Curr Med Res Opin. 2005;21(8):1147–56.PubMedCrossRefGoogle Scholar
  146. 146.
    Gianni W, Madaio AR, Ceci M, Benincasa E, Conati G, Franchi F, et al. Transdermal buprenorphine for the treatment of chronic noncancer pain in the oldest old. J Pain Symptom Manag. 2011;41(4):707–14.CrossRefGoogle Scholar
  147. 147.
    Sittl R, Nuijten M, Poulsen Nautrup B. Patterns of dosage changes with transdermal buprenorphine and transdermal fentanyl for the treatment of noncancer and cancer pain: a retrospective data analysis in Germany. Clin Ther. 2006;28(8):1144–54.PubMedCrossRefGoogle Scholar
  148. 148.
    Likar R, Kayser H, Sittl R. Long-term management of chronic pain with transdermal buprenorphine: a multicenter, open-label, follow-up study in patients from three short-term clinical trials. Clin Ther. 2006;28(6):943–52.PubMedCrossRefGoogle Scholar
  149. 149.
    Aalto M, Visapaa JP, Halme JT, Fabritius C, Salaspuro M. Effectiveness of buprenorphine maintenance treatment as compared to a syringe exchange program among buprenorphine misusing opioid-dependent patients. Nord J Psychiatry. 2011;65(4):238–43.PubMedCrossRefGoogle Scholar
  150. 150.
    Yoon DH, Bin SI, Chan SK, Chung CK, In Y, Kim H, et al. Effectiveness and tolerability of transdermal buprenorphine patches: a multicenter, prospective, open-label study in Asian patients with moderate to severe chronic musculoskeletal pain. BMC Musculoskelet Disord. 2017;18(1):337.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Lesen E, Ericson L, Simonsberg C, Varelius R, Bjorholt I, Soderpalm B. Dose patterns among patients using low-dose buprenorphine patches. Pain Med. 2013;14(9):1374–80.PubMedCrossRefGoogle Scholar
  152. 152.
    Rauck RL, Potts J, Xiang Q, Tzanis E, Finn A. Efficacy and tolerability of buccal buprenorphine in opioid-naive patients with moderate to severe chronic low back pain. Postgrad Med. 2016;128(1):1–11.PubMedCrossRefGoogle Scholar
  153. 153.
    Gimbel J, Spierings EL, Katz N, Xiang Q, Tzanis E, Finn A. Efficacy and tolerability of buccal buprenorphine in opioid-experienced patients with moderate to severe chronic low back pain: results of a phase 3, enriched enrollment, randomized withdrawal study. Pain. 2016;157(11):2517–26.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Hale M, Urdaneta V, Kirby MT, Xiang Q, Rauck R. Long-term safety and analgesic efficacy of buprenorphine buccal film in patients with moderate-to-severe chronic pain requiring around-the-clock opioids. J Pain Res. 2017;10:233–40.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Przeklasa-Muszynska A, Dobrogowski J. Transdermal buprenorphine in the treatment of cancer and non-cancer pain—the results of multicenter studies in Poland. Pharmacol Rep. 2011;63(4):935–48.PubMedCrossRefGoogle Scholar
  156. 156.
    Budd K. High dose buprenorphine for postoperative analgesia. Anaesthesia. 1981;36(9):900–3.PubMedCrossRefGoogle Scholar
  157. 157.
    Kim HJ, Ahn HS, Nam Y, Chang BS, Lee CK, Yeom JS. Comparative study of the efficacy of transdermal buprenorphine patches and prolonged-release tramadol tablets for postoperative pain control after spinal fusion surgery: a prospective, randomized controlled non-inferiority trial. Eur Spine J. 2017;26(11):2961–8.PubMedCrossRefGoogle Scholar
  158. 158.
    Mercieri M, Palmisani S, De Blasi RA, D’Andrilli A, Naccarato A, Silvestri B, et al. Low-dose buprenorphine infusion to prevent postoperative hyperalgesia in patients undergoing major lung surgery and remifentanil infusion: a double-blind, randomized, active-controlled trial. Br J Anaesth. 2017;119(4):792–802.PubMedCrossRefGoogle Scholar
  159. 159.
    Chang KY, Chang WK, Chang WL, Lin SM, Chan KH, Sung CS, et al. Comparison of intravenous patient-controlled analgesia with buprenorphine versus morphine after lumbar spinal fusion—a prospective randomized clinical trial. Acta Anaesthesiol Taiwan. 2006;44(3):153–9.PubMedGoogle Scholar
  160. 160.
    Williams BA, Butt MT, Zeller JR, Coffee S, Pippi MA. Multimodal perineural analgesia with combined bupivacaine-clonidine-buprenorphine-dexamethasone: safe in vivo and chemically compatible in solution. Pain Med. 2015;16(1):186–98.PubMedCrossRefGoogle Scholar
  161. 161.
    Alemanno F, Westermann B, Bettoni A, Candiani A, Cesana BM. Buprenorphine versus tramadol as perineural adjuvants for postoperative analgesia in patients undergoing arthroscopic rotator cuff repair under middle interscalene block: a retrospective study. Minerva Anestesiol. 2014;80(11):1198–204.PubMedGoogle Scholar
  162. 162.
    Kosel J, Bobik P, Tomczyk M. Buprenorphine: the unique opioid adjuvant in regional anesthesia. Expert Rev Clin Pharmacol. 2016;9(3):375–83.PubMedCrossRefGoogle Scholar
  163. 163.
    Strain EC, Moody DE, Stoller KB, Walsh SL, Bigelow GE. Relative bioavailability of different buprenorphine formulations under chronic dosing conditions. Drug Alcohol Depend. 2004;74(1):37–43.PubMedCrossRefGoogle Scholar
  164. 164.
    Weinhold LL, Bigelow GE, Preston KL. Combination of naloxone with buprenorphine in humans. NIDA Res Monogr. 1989;95:485.PubMedGoogle Scholar
  165. 165.
    Simojoki K, Vorma H, Alho H. A retrospective evaluation of patients switched from buprenorphine (Subutex) to the buprenorphine/naloxone combination (Suboxone). Subst Abuse Treat Prev Policy. 2008;3:16.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Coffman BL, Rios GR, King CD, Tephly TR. Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos. 1997;25(1):1–4.PubMedGoogle Scholar
  167. 167.
    Sittl R, Likar R, Nautrup BP. Equipotent doses of transdermal fentanyl and transdermal buprenorphine in patients with cancer and noncancer pain: results of a retrospective cohort study. Clin Ther. 2005;27(2):225–37.PubMedCrossRefGoogle Scholar
  168. 168.
    Mok MS, Lippmann M, Steen SN. Multidose/observational, comparative clinical analgetic evaluation of buprenorphine. J Clin Pharmacol. 1981;21(7):323–9.PubMedCrossRefGoogle Scholar
  169. 169.
    Tigerstedt I, Turunen M, Tammisto T, Hastbacka J. The effect of buprenorphine and oxycodone on the intracholedochal passage pressure. Acta Anaesthesiol Scand. 1981;25(2):99–102.PubMedCrossRefGoogle Scholar
  170. 170.
    Wang RI, Johnson RP, Robinson N, Waite E. The study of analgesics following single and repeated doses. J Clin Pharmacol. 1981;21(2):121–5.PubMedCrossRefGoogle Scholar
  171. 171.
    Mercadante S, Casuccio A, Tirelli W, Giarratano A. Equipotent doses to switch from high doses of opioids to transdermal buprenorphine. Support Care Cancer. 2009;17(6):715–8.PubMedCrossRefGoogle Scholar
  172. 172.
    Mercadante S, Porzio G, Fulfaro F, Aielli F, Verna L, Ficorella C, et al. Switching from transdermal drugs: an observational “N of 1” study of fentanyl and buprenorphine. J Pain Symptom Manage. 2007;34(5):532–8.PubMedCrossRefGoogle Scholar
  173. 173.
    Cuschieri RJ, Morran CG, McArdle CS. Comparison of morphine and sublingual buprenorphine following abdominal surgery. Br J Anaesth. 1984;56(8):855–9.PubMedCrossRefGoogle Scholar
  174. 174.
    Skaer TL. Dosing considerations with transdermal formulations of fentanyl and buprenorphine for the treatment of cancer pain. J Pain Res. 2014;7:495–503.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Oifa S, Sydoruk T, White I, Ekstein MP, Marouani N, Chazan S, et al. Effects of intravenous patient-controlled analgesia with buprenorphine and morphine alone and in combination during the first 12 postoperative hours: a randomized, double-blind, four-arm trial in adults undergoing abdominal surgery. Clin Ther. 2009;31(3):527–41.PubMedCrossRefGoogle Scholar
  176. 176.
    Mercadante S, Villari P, Ferrera P, Porzio G, Aielli F, Verna L, et al. Safety and effectiveness of intravenous morphine for episodic breakthrough pain in patients receiving transdermal buprenorphine. J Pain Symp Manag. 2006;32(2):175–9.CrossRefGoogle Scholar
  177. 177.
    Stromer W, Michaeli K, Sandner-Kiesling A. Reply to: an alternative way of managing acute pain in patients who are in buprenorphine opioid substitution therapy programmes. Eur J Anaesthesiol. 2013;30(11):718–9.PubMedCrossRefGoogle Scholar
  178. 178.
    Stromer W, Michaeli K, Sandner-Kiesling A. Perioperative pain therapy in opioid abuse. Eur J Anaesthesiol. 2013;30(2):55–64.PubMedCrossRefGoogle Scholar
  179. 179.
    Huxtable CA, Macintyre PE. An alternative way of managing acute pain in patients who are in buprenorphine opioid substitution therapy programs. Eur J Anaesthesiol. 2013;30(11):717–8.PubMedCrossRefGoogle Scholar
  180. 180.
    Leighton BL, Crock LW. Case series of successful postoperative pain management in buprenorphine maintenance therapy patients. Anesth Analg. 2017;125(5):1779–83.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Rosado J, Walsh SL, Bigelow GE, Strain EC. Sublingual buprenorphine/naloxone precipitated withdrawal in subjects maintained on 100 mg of daily methadone. Drug Alcohol Depend. 2007;90(2–3):261–9.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Malinoff HL, Barkin RL, Wilson G. Sublingual buprenorphine is effective in the treatment of chronic pain syndrome. Am J Ther. 2005;12(5):379–84.PubMedCrossRefGoogle Scholar
  183. 183.
    Rosenblum A, Cruciani RA, Strain EC, Cleland CM, Joseph H, Magura S, et al. Sublingual buprenorphine/naloxone for chronic pain in at-risk patients: development and pilot test of a clinical protocol. J Opioid Manag. 2012;8(6):369–82.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Daitch D, Daitch J, Novinson D, Frey M, Mitnick C, Pergolizzi J Jr. Conversion from high-dose full-opioid agonists to sublingual buprenorphine reduces pain scores and improves quality of life for chronic pain patients. Pain Med. 2014;15(12):2087–94.PubMedCrossRefGoogle Scholar
  185. 185.
    Daitch J, Frey ME, Silver D, Mitnick C, Daitch D, Pergolizzi J, Jr. Conversion of chronic pain patients from full-opioid agonists to sublingual buprenorphine. Pain Physician. 2012;15(3 Suppl):ES59–66.Google Scholar
  186. 186.
    Webster L, Gruener D, Kirby T, Xiang Q, Tzanis E, Finn A. Evaluation of the tolerability of switching patients on chronic full mu-opioid agonist therapy to buccal buprenorphine. Pain Med (Epub 25 Feb 2016).Google Scholar
  187. 187.
    Heit HA, Covington E, Good PM. Dear DEA. Pain Med. 2004;5(3):303–8.PubMedCrossRefGoogle Scholar
  188. 188.
    Boyer EW, McCance-Katz EF, Marcus S. Methadone and buprenorphine toxicity in children. Am J Addict. 2010;19(1):89–95.PubMedCrossRefGoogle Scholar
  189. 189.
    Fareed A, Patil D, Scheinberg K, Blackinton Gale R, Vayalapalli S, Casarella J, et al. Comparison of QTc interval prolongation for patients in methadone versus buprenorphine maintenance treatment: a 5-year follow-up. J Addict Dis. 2013;32(3):244–51.PubMedCrossRefGoogle Scholar
  190. 190.
    Stallvik M, Nordstrand B, Kristensen O, Bathen J, Skogvoll E, Spigset O. Corrected QT interval during treatment with methadone and buprenorphine: relation to doses and serum concentrations. Drug Alcohol Depend. 2013;129(1–2):88–93.PubMedCrossRefGoogle Scholar
  191. 191.
    de Jong IM, de Ruiter GS. Buprenorphine as a safe alternative to methadone in a patient with acquired long QT syndrome: a case report. Neth Heart J. 2013;21(5):249–52.PubMedCrossRefGoogle Scholar
  192. 192.
    Wedam EF, Bigelow GE, Johnson RE, Nuzzo PA, Haigney MC. QT-interval effects of methadone, levomethadyl, and buprenorphine in a randomized trial. Arch Intern Med. 2007;167(22):2469–75.PubMedCrossRefGoogle Scholar
  193. 193.
    Krantz MJ, Garcia JA, Mehler PS. Effects of buprenorphine on cardiac repolarization in a patient with methadone-related torsade de pointes. Pharmacotherapy. 2005;25(4):611–4.PubMedCrossRefGoogle Scholar
  194. 194.
    Darpo B, Zhou M, Bai SA, Ferber G, Xiang Q, Finn A. Differentiating the effect of an opioid agonist on cardiac repolarization from micro-receptor-mediated, indirect effects on the qt interval: a randomized, 3-way crossover study in healthy subjects. Clin Ther. 2016;38(2):315–26.PubMedCrossRefGoogle Scholar
  195. 195.
    Harris SC, Morganroth J, Ripa SR, Thorn MD, Colucci S. Effects of buprenorphine on QT intervals in healthy subjects: results of 2 randomized positive- and placebo-controlled trials. Postgrad Med. 2017;129(1):69–80.PubMedCrossRefGoogle Scholar
  196. 196.
    Mayet S, Gossop M, Lintzeris N, Markides V, Strang J. Methadone maintenance, QTc and torsade de pointes: who needs an electrocardiogram and what is the prevalence of QTc prolongation? Drug Alcohol Rev. 2011;30(4):388–96.PubMedCrossRefGoogle Scholar
  197. 197.
    Russell L, Levine D. Methadone-induced Torsades de pointes. R I Med J (2013). 2013;96(8):20–1.Google Scholar
  198. 198.
    Baker JR, Best AM, Pade PA, McCance-Katz EF. Effect of buprenorphine and antiretroviral agents on the QT interval in opioid-dependent patients. Ann Pharmacother. 2006;40(3):392–6.PubMedCrossRefGoogle Scholar
  199. 199.
    Kao DP, Haigney MC, Mehler PS, Krantz MJ. Arrhythmia associated with buprenorphine and methadone reported to the Food and Drug Administration. Addiction. 2015;110(9):1468–75.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mellar P. Davis
    • 1
  • Gavril Pasternak
    • 2
  • Bertrand Behm
    • 1
  1. 1.Department of Palliative CareGeisinger Medical CenterDanvilleUSA
  2. 2.Anne Burnett Tandy Chair in Neurology, Laboratory Head, Molecular Pharmacology and Chemistry ProgramMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations