Advertisement

Drugs

, Volume 78, Issue 10, pp 1037–1048 | Cite as

Empagliflozin: A Review in Type 2 Diabetes

Adis Drug Evaluation

Abstract

Empagliflozin (Jardiance®), a potent, highly selective, sodium glucose cotransporter-2 (SGLT2) inhibitor, is an effective and generally well tolerated antihyperglycaemic agent approved for the treatment of adults with type 2 diabetes (T2D) in the EU, USA and Japan, among other parts of the world. As with other members of its class, empagliflozin offers the convenience of once-daily oral administration and carries a low inherent risk of hypoglycaemia as a result of its insulin-independent mechanism of action, enabling it to be used as monotherapy and as a component of combination therapy with other antidiabetic agents with complementary modes of action to improve glycaemic control in patients with T2D. Beyond lowering glucose, empagliflozin exerts a favourable effect on a number of nonglycaemic outcomes, including modest reductions in bodyweight and blood pressure. As an adjunct to standard care, it demonstrated cardioprotective and renoprotective properties largely independent of glycaemic control in patients with T2D and established cardiovascular disease (CVD) in a mandated cardiovascular (CV) outcomes trial (EMPA-REG OUTCOME). Empagliflozin is generally well tolerated as monotherapy or as add-on therapy and, unlike canagliflozin (the only other SGLT2 inhibitor that has so far shown CV and renal benefits), it has not been associated with an increased risk of amputation or bone fractures. In conclusion, empagliflozin is a valuable treatment option for the management of T2D. Given its demonstrable cardioprotective benefits, the drug is worthy of preferential consideration in patients at high CV risk who require an (additional) antidiabetic medication in order to attain their glycaemic goal.

Notes

Acknowledgements

During the peer review process, the manufacturer of empagliflozin was also offered an opportunity to review this article. Changes resulting from comments received were made on the basis of scientific and editorial merit.

Compliance with Ethical Standards

Funding

The preparation of this review was not supported by any external funding.

Conflict of interest

James Frampton is a salaried employee of Adis/Springer, is responsible for the article content and declares no relevant conflicts of interest.

References

  1. 1.
    Matheus AS, Tannus LR, Cobas RA, et al. Impact of diabetes on cardiovascular disease: an update. Int J Hypertens. 2013;2013:653789.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38(1):140–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Lorber D. Importance of cardiovascular disease risk management in patients with type 2 diabetes mellitus. Diabetes Metab Syndr Obes. 2014;7:169–83.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wilding JPH, Rajeev SP, DeFronzo RA. Positioning SGLT2 inhibitors/incretin-based therapies in the treatment algorithm. Diabetes Care. 2016;39(Suppl 2):S154–64.CrossRefPubMedGoogle Scholar
  5. 5.
    Abdul-Ghani M, Del Prato S, Chilton R, et al. SGLT2 inhibitors and cardiovascular risk: lessons learned from the EMPA-REG OUTCOME study. Diabetes Care. 2016;39:717–25.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    European Medicines Agency. Jardiance 10 and 25 mg film-coated tablets: summary of product characteristics. 2014. http://www.ema.europa.eu. Accessed 8 June 2018.
  7. 7.
    Boehringer Ingelheim Pharmaceuticals, Inc. Jardiance® (empagliflozin) tablets, for oral use. US prescribing information. 2016. http://docs.boehringer-ingelheim.com/Prescribing%20Information/PIs/Jardiance/jardiance.pdf. Accessed 8 June 2018.
  8. 8.
    Scott LJ. Empagliflozin: a review of its use in patients with type 2 diabetes mellitus. Drugs. 2014;74(15):1769–84.CrossRefPubMedGoogle Scholar
  9. 9.
    Scheen AJ. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2014;53(3):213–25.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Levine MJ. Empagliflozin for type 2 diabetes mellitus: an overview of phase 3 clinical trials. Curr Diabetes Rev. 2016;12(4):1–19.Google Scholar
  11. 11.
    Dailey G. Empagliflozin for the treatment of type 2 diabetes mellitus: an overview of safety and efficacy based on phase 3 trials. J Diabetes. 2015;7(4):448–61.CrossRefPubMedGoogle Scholar
  12. 12.
    Roden M, Weng J, Eilbracht J, et al. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2013;1(3):208–19.CrossRefPubMedGoogle Scholar
  13. 13.
    Hӓring H-U, Merker L, Seewaldt-Becker E, et al. Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week randomized, double-blind, placebo-controlled trial. Diabetes Care. 2014;37(6):1650–9.CrossRefGoogle Scholar
  14. 14.
    Hӓring H-U, Merker L, Seewaldt-Becker E, et al. Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care. 2013;36(11):3396–404.CrossRefGoogle Scholar
  15. 15.
    Kovacs CS, Seshiah V, Swallow R, et al. Empagliflozin improves glycaemic and weight control as add-on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebo-controlled trial. Diabetes Obes Metab. 2014;16(2):147–58.CrossRefPubMedGoogle Scholar
  16. 16.
    Søfteland E, Meier JJ, Vangen B, et al. Empagliflozin as add-on therapy in patients with type 2 diabetes inadequately controlled with linagliptin and metformin: a 24-week randomized, double-blind, parallel-group trial. Diabetes Care. 2017;40(2):201–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Ridderstrale M, Andersen RK, Zeller C, et al. Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week, randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol. 2014;2(3):691–700.CrossRefPubMedGoogle Scholar
  18. 18.
    Rosenstock J, Jelaska A, Zeller C, et al. Impact of empagliflozin added on to basal insulin in type 2 diabetes inadequately controlled on basal insulin: a 78-week randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2015;17(10):936–48.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Barnett AH, Mithal A, Manassie J, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2(5):369–84.CrossRefPubMedGoogle Scholar
  20. 20.
    Tikkanen I, Narko K, Zeller C, et al. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38(3):420–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Rosenstock J, Jelaska A, Frappin G, et al. Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycaemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care. 2014;37:1815–23.CrossRefPubMedGoogle Scholar
  22. 22.
    Roden M, Merker L, Christiansen AV, et al. Safety, tolerability and effects on cardiometabolic risk factors of empagliflozin monotherapy in drug-naive patients with type 2 diabetes: a double-blind extension of a phase III randomized controlled trial. Cardiovasc Diabetol. 2015;14:154.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Merker L, Haring HU, Christiansen AV, et al. Empagliflozin as add-on to metformin in people with type 2 diabetes. Diabet Med. 2015;32(12):1555–67.CrossRefPubMedGoogle Scholar
  24. 24.
    Haering H-U, Merker L, Christiansen AV, et al. Empagliflozin as add-on to metformin plus sulphonylurea in patients with type 2 diabetes. Diabetes Res Clin Pract. 2015;110(1):82–90.CrossRefPubMedGoogle Scholar
  25. 25.
    Kovacs CS, Seshiah V, Merker L, et al. Empagliflozin as add-on therapy to pioglitazone with or without metformin in patients with type 2 diabetes mellitus. Clin Ther. 2015;37(8):1773–88.e1.Google Scholar
  26. 26.
    Ridderstrale M, Elsasser U, Zeller C, et al. Influence of baseline HbA1c, BMI, beta-cell function, and insulin sensitivity on the treatment response of empagliflozin (EMPA) in patients with type 2 diabetes (T2DM) [abstract no. 118-LB]. Diabetes. 2015;64(Suppl 1A):LB31.Google Scholar
  27. 27.
    Romera I, Ampudia-Blasco FJ, Perez A, et al. Efficacy and safety of empagliflozin in combination with other oral hypoglycemic agents in patients with type 2 diabetes mellitus. Endocrinologia y Nutricion (English Edition). 2016;63(10):519–26.Google Scholar
  28. 28.
    Cherney DZI, Cooper ME, Tikkanen I, et al. Pooled analysis of phase III trials indicate contrasting influences of renal function on blood pressure, body weight, and HbA1c reductions with empagliflozin. Kidney Int. 2018;93(1):231–44.CrossRefPubMedGoogle Scholar
  29. 29.
    Zinman B, Inzucchi SE, Lachin JM, et al. Rationale, design, and baseline characteristics of a randomized, placebo-controlled cardiovascular outcome trial of empagliflozin (EMPA-REG OUTCOME™). Cardiovasc Diabetol. 2014;13:102.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.CrossRefPubMedGoogle Scholar
  31. 31.
    EMA. Assessment report. Jardiance. International non-proprietary name: empagliflozin. Procedure No. EMEA/H/C/002677/II/0014. http://www.ema.europa.eu. Accessed 8 June 2018.
  32. 32.
    Fitchett D, Zinman B, Wanner C, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME trial. Eur Heart J. 2016;37(19):1526–34.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34.CrossRefPubMedGoogle Scholar
  34. 34.
    Schnee J, Inzucchi SE, Zinman B, et al. Consistent effect of empagliflozin on composite outcomes related to heart failure: results from EMPA-REG OUTCOME [abstract no. 182]. Diabetologia. 2017;60(Suppl 1):S85–6.Google Scholar
  35. 35.
    Fitchett D, Mathieu C, Kaspers S, et al. Empagliflozin (EMPA) reduces mortality in analyses adjusted for control of blood pressure (BP), low density lipoprotein cholesterol (LDL-C) and HbA1c over time [abstract no. 42]. Diabetologia. 2017;60(Suppl 1):S21.Google Scholar
  36. 36.
    McKnight J, Fitchett D, Lee J, et al. Empagliflozin (EMPA) reduces heart failure outcomes irrespective of blood pressure (BP), low density lipoprotein cholesterol (LDL-C) and HbA1c control [abstract no. 899]. Diabetologia. 2017;60(1 Suppl 1):S416–7.Google Scholar
  37. 37.
    Wanner C, Lachin JM, Inzucchi SE, et al. Empagliflozin and clinical outcomes in patients with type 2 diabetes, established cardiovascular disease and chronic kidney disease. Circulation. 2018;137(2):119–29.CrossRefPubMedGoogle Scholar
  38. 38.
    Kaku K, Lee J, Mattheus M, et al. Empagliflozin and cardiovascular outcomes in Asian patients with type 2 diabetes and established cardiovascular disease - results from EMPA-REG OUTCOME. Circ J. 2017;81(2):227–34.CrossRefPubMedGoogle Scholar
  39. 39.
    Verma S, Mazer CD, Al-Omran M, et al. Cardiovascular outcomes and safety of empagliflozin in patients with type 2 diabetes mellitus and peripheral artery disease: a subanalysis of EMPA-REG OUTCOME. Circulation. 2017;137(4):405–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Salsali A, Kim G, Woerle HJ, et al. Cardiovascular safety of empagliflozin in patients with type 2 diabetes: a meta-analysis of data from randomized placebo-controlled trials. Diabetes Obes Metab. 2016;18(10):1034–40.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wanner C. EMPA-REG OUTCOME: the nephrologist’s point of view. Am J Med. 2017;130(Suppl 6):S63–72.CrossRefPubMedGoogle Scholar
  42. 42.
    Wanner C, Inzucchi SE, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(18):1801–2.PubMedGoogle Scholar
  43. 43.
    Kohler S, Zeller C, Iliev H, et al. Safety and tolerability of empagliflozin in patients with type 2 diabetes: pooled analysis of phase I–III clinical trials. Adv Ther. 2017;34(7):1707–26.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Levin A, Nangaku M, Kadowaki T, et al. Safety and tolerability of empagliflozin in patients with t2d and advanced kidney disease: a large, pooled analysis of placebo-controlled clinical trials (abstract no. 1218-P plus poster). Diabetes. 2017;66(Suppl 1):A325.Google Scholar
  45. 45.
    Lund S, Solimando F, Kohler S, et al. Effect of empagliflozin (EMPA) on diabetic ketoacidosis (DKA) in patients with type 2 diabetes (T2DM): pooled clinical trial data [abstract no. 50]. Diabetologia. 2016;59(Suppl 1):S26–7.Google Scholar
  46. 46.
    de Leeuw AE, de Boer R. Sodium–glucose cotransporter 2 inhibition: cardioprotection by treating diabetes—a translational viewpoint explaining its potential salutary effects. Eur Heart J Cardiovasc Pharmacother. 2016;2:244–55.CrossRefPubMedGoogle Scholar
  47. 47.
    Inzucchi SE, Zinman B, Fitchett D, et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care. 2018;41(2):356–63.CrossRefPubMedGoogle Scholar
  48. 48.
    Tanaka A, Shimabukuro M, Okada Y, et al. Rationale and design of a multicenter placebo-controlled double-blind randomized trial to evaluate the effect of empagliflozin on endothelial function: the EMBLEM trial. Cardiovasc Diabetol. 2017;16(1):48.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Cefalu WT, Kaul S, Gerstein HC, et al. Cardiovascular outcomes trials in type 2 diabetes: where do we go from here? Reflections from a Diabetes Care Editors’ Expert Forum. Diabetes Care. 2018;41(1):14–31.CrossRefPubMedGoogle Scholar
  50. 50.
    Boehringer Ingelheim. Boehringer Ingelheim and Lilly announce an academic collaboration with University of Oxford to investigate the effects of empagliflozin in people with chronic kidney disease [media release]. 18 Apr 2018. https://www.boehringer-ingelheim.com.
  51. 51.
    Saxon DR, Rasouli N, Eckel RH. Pharmacological prevention of cardiovascular outcomes in diabetes mellitus: established and emerging agents. Drugs. 2018;78(2):203–14.CrossRefPubMedGoogle Scholar
  52. 52.
    Kosiborod M, Cavender MA, Fu AZ, et al. Lower risk of heart failure and death in patients initiated on SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study. Circulation. 2017;136(3):249–59.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kosiborod M, Lam CSP, Kohsaka S, et al. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study. J Am Coll Cardiol. 2018;71(23):2628–39.CrossRefPubMedGoogle Scholar
  54. 54.
    Shyangdan DS, Uthman OA, Waugh N. SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. BMJ Open. 2016;6(2):e009417.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zaccardi F, Webb DR, Htike ZZ, et al. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab. 2016;18(8):783–94.CrossRefPubMedGoogle Scholar
  56. 56.
    Scheen AJ. Does lower limb amputation concern all SGLT2 inhibitors? Nat Rev Endocrinol. 2018;14(6):326–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Inzucchi SE, Iliev H, Pfarr E, et al. Empagliflozin and assessment of lower-limb amputations in the EMPA-REG OUTCOME trial. Diabetes Care. 2018;41(1):e4–5.CrossRefPubMedGoogle Scholar
  58. 58.
    Toulis KA, Bilezikian JP, Thomas GN, et al. Initiation of dapagliflozin and treatment-emergent fractures. Diabetes Obes Metab. 2018;20(4):1070–4.CrossRefPubMedGoogle Scholar
  59. 59.
    Fralick M, Schneeweiss S, Patorno E. Risk of diabetic ketoacidosis after initiation of an SGLT2 inhibitor. N Engl J Med. 2017;376:2300–2.CrossRefPubMedGoogle Scholar
  60. 60.
    Tang H, Li D, Wang T, et al. Effect of sodium-glucose cotransporter 2 inhibitors on diabetic ketoacidosis among patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetes Care. 2016;39(8):e123–4.CrossRefPubMedGoogle Scholar
  61. 61.
    Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care. 2015;38:1638–42.CrossRefPubMedGoogle Scholar
  62. 62.
    American Diabetes Association. Pharmacological approaches to glycemic treatment. Sect. 8. In: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S73–85.Google Scholar
  63. 63.
    Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm-2018 executive summary. Endocr Pract. 2018;24(1):91–120.CrossRefPubMedGoogle Scholar
  64. 64.
    Canadian Diabetes Association Clinical Practice Guidelines Expert Committee. Pharmacologic management of type 2 diabetes. Can J Diabetes. 2013;37(Suppl 1):S61–8.Google Scholar
  65. 65.
    Cahn A, Cefalu WT. Clinical considerations for use of initial combination therapy in type 2 diabetes. Diabetes Care. 2016;39(Suppl 2):S137–45.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Diabetes Canada. Pharmacologic management of type 2 diabetes: November 2016 interim update. http://guidelines.diabetes.ca. Accessed 8 June 2018.
  67. 67.
    Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2016;37(27):2129–200.CrossRefPubMedGoogle Scholar
  68. 68.
    Mettam SR, Bajaj H, Kansal AR, et al. Cost effectiveness of empagliflozin in patients with T2DM and high CV risk in Canada [abstract no. PDB52]. Value Health. 2016;19(7):A674.CrossRefGoogle Scholar
  69. 69.
    Daacke I, Kandaswamy P, Tebboth A, et al. Cost-effectiveness of empagliflozin (jardiance) in the treatment of patients with type 2 diabetes mellitus (T2DM) in the UK based on EMPA-REG outcome data [abstract no. PDB46]. Value Health. 2016;19(7):A673.CrossRefGoogle Scholar
  70. 70.
    NICE. Type 2 diabetes in adults: management. 2017. http://www.nice.org. Accessed 8 June 2018.
  71. 71.
    Heise T, Seewaldt-Becker E, Macha S, et al. Safety, tolerability, pharmacokinetics and pharmacodynamics following 4 weeks’ treatment with empagliflozin once daily in patients with type 2 diabetes. Diabetes Obes Metab. 2013;15(7):613–21.CrossRefPubMedGoogle Scholar
  72. 72.
    Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124(2):499–508.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Al Jobori H, Daniele G, Adams J, et al. Empagliflozin treatment is associated with improved beta cell function in T2DM. J Clin Endocrinol Metab. 2018;103(4):1402–7.CrossRefPubMedGoogle Scholar
  74. 74.
    Riggs MM, Seman LJ, Staab A, et al. Exposure-response modelling for empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in patients with type 2 diabetes. Br J Clin Pharmacol. 2014;78(6):1407–18.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Chilton R, Tikkanen I, Cannon CP, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17(12):1180–93.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Chilton RJ, Gullestad L, Fitchett D, et al. Effects of empagliflozin on cardiac and vascular hemodynamic markers by subgroups of age, sex, and hypertension in patients with T2DM and high CV Risk: EMPA-REG OUTCOME [abstract no. 452-P and poster]. Diabetes. 2017;66(Suppl 1):A119.Google Scholar
  77. 77.
    Neeland IJ, McGuire DK, Chilton R, et al. Empagliflozin reduces body weight and indices of adipose distribution in patients with type 2 diabetes mellitus. Diab Vasc Dis Res. 2016;13(2):119–26.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Neeland IJ, McGuire DK, Fernandez CS, et al. Effect of empagliflozin on anthropometry and indices of visceral and total adiposity in patients with type 2 diabetes and high cardiovascular risk: EMPA-REG OUTCOME [abstract no. 730]. Diabetologia. 2016;59(Suppl 1):S348.Google Scholar
  79. 79.
    Cherney D, Lund SS, Perkins BA, et al. The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes. Diabetologia. 2016;59(9):1860–70.CrossRefPubMedGoogle Scholar
  80. 80.
    Cherney DZI, Zinman B, Inzucchi SE, et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(8):610–21.CrossRefPubMedGoogle Scholar
  81. 81.
    Pham SV, Chilton R. EMPA-REG OUTCOME: the cardiologist’s point of view. Am J Med. 2017;130:S57–62.CrossRefPubMedGoogle Scholar
  82. 82.
    Defronzo RA. The EMPA-REG study: what has it told us? A diabetologist’s perspective. J Diabetes Complicat. 2016;30(1):1–2.CrossRefPubMedGoogle Scholar
  83. 83.
    Chen LZ, Jungnik A, Mao Y, et al. Biotransformation and mass balance of the SGLT2 inhibitor empagliflozin in healthy volunteers. Xenobiotica. 2015;45(6):520–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs. 2015;75(1):33–59.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SpringerAucklandNew Zealand

Personalised recommendations