, Volume 78, Issue 8, pp 809–821 | Cite as

Treatment of Eosinophilic Granulomatosis with Polyangiitis: A Review

  • Loïc Raffray
  • Loïc Guillevin
Leading Article


Eosinophilic granulomatosis with polyangiitis (formerly Churg–Strauss syndrome) is a rare type of anti-neutrophil cytoplasm antibody-associated vasculitis. Nevertheless, eosinophilic granulomatosis with polyangiitis stands apart because it has features of vasculitis and eosinophilic disorders that require targeted therapies somewhat different from those used for other anti-neutrophil cytoplasm antibody-associated vasculitides. Considerable advances have been made in understanding the underlying pathophysiology of eosinophilic granulomatosis with polyangiitis that have highlighted the key role of eosinophils and opened new therapeutic opportunities. Its conventional treatment relies mainly on agents that decrease inflammation: corticosteroids and immunosuppressant adjunction for severe manifestations. New therapeutic approaches are needed for refractory disease, relapses and issues associated with corticosteroid dependence, especially for asthma manifestations. Drugs under evaluation mostly target eosinophils and B cells. Results of low-evidence-based trials suggested possible efficacies of biologicals: B-cell-blocking rituximab and anti-immunoglobulin E omalizumab. Recently, the first large-scale randomised controlled trial on eosinophilic granulomatosis with polyangiitis proved the efficacy of anti-interleukin-5 mepolizumab. That finding opens a new era in eosinophilic granulomatosis with polyangiitis management, with mepolizumab approval but also in future drug evaluations and trial designs for eosinophilic granulomatosis with polyangiitis. Additional studies are needed to determine which patients would benefit most from targeted therapies and achieve personalised treatment for patients with eosinophilic granulomatosis with polyangiitis. Herein, we review eosinophilic granulomatosis with polyangiitis characteristics and provide an overview of established and novel pharmacological agents.



The authors thank Benjamin Terrier for critical appraisal of the manuscript and figure.

Compliance with Ethical Standards


No sources of funding were received for the preparation of this article.

Conflict of interest

Loïc Raffray received financial support for attending symposia from Amgen in 2017 and AbbVie in 2016. Loïc Guillevin has no conflicts of interest directly relevant to the content of this article.


  1. 1.
    Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 revised international chapel hill consensus conference nomenclature of vasculitides. Arthritis Rheum. 2013;65:1–11.PubMedCrossRefGoogle Scholar
  2. 2.
    Sinico RA, Di Toma L, Maggiore U, Bottero P, Radice A, Tosoni C, et al. Prevalence and clinical significance of antineutrophil cytoplasmic antibodies in Churg-Strauss syndrome. Arthritis Rheum. 2005;52:2926–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Sablé-Fourtassou R, Cohen P, Mahr A, Pagnoux C, Mouthon L, Jayne D, et al. Antineutrophil cytoplasmic antibodies and the Churg-Strauss syndrome. Ann Intern Med. 2005;143:632–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Guillevin L, Cohen P, Gayraud M, Lhote F, Jarrousse B, Casassus P. Churg-Strauss syndrome: clinical study and long-term follow-up of 96 patients. Medicine (Baltimore). 1999;78:26–37.PubMedCrossRefGoogle Scholar
  5. 5.
    Comarmond C, Pagnoux C, Khellaf M, Cordier J-F, Hamidou M, Viallard J-F, et al. Eosinophilic granulomatosis with polyangiitis (Churg–Strauss): clinical characteristics and long-term followup of the 383 patients enrolled in the French Vasculitis Study Group cohort. Arthritis Rheum. 2013;65:270–81.PubMedCrossRefGoogle Scholar
  6. 6.
    Wohlwill F. Über die nur mikroskopisch erkennbare Form der Periarteriitis nodosa. Virchows Arch Path Anat. 1923;246:377–411.CrossRefGoogle Scholar
  7. 7.
    Wegener F. Über generalisierte, septische Gefässerkrankungen. Verhandlungen der Deutschen Pathologischen Gesselschaft. 1936;29:202–10.Google Scholar
  8. 8.
    Masi AT, Hunder GG, Lie JT, Michel BA, Bloch DA, Arend WP, et al. The American College of Rheumatology 1990 criteria for the classification of Churg-Strauss syndrome (allergic granulomatosis and angiitis). Arthritis Rheum. 1990;33:1094–100.PubMedCrossRefGoogle Scholar
  9. 9.
    Lyons PA, Rayner TF, Trivedi S, Holle JU, Watts RA, Jayne DRW, et al. Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med. 2012;367:214–23.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Smith K. Genetic studies in ANCA-associated vasculitis point to a new, practical disease classification based on autoantibody specificity. Presented at the 18th International Vasculitis and ANCA Workshop, Tokyo, Japan. Rheumatology (Oxford). 2017;56(Suppl. S3):iii3–4.Google Scholar
  11. 11.
    Watts RA, Mahr A, Mohammad AJ, Gatenby P, Basu N, Flores-Suárez LF. Classification, epidemiology and clinical subgrouping of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Nephrol Dial Transplant. 2015;30(Suppl. 1):i14–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Watts RA, Lane SE, Scott DG, Koldingsnes W, Nossent H, Gonzalez-Gay MA, et al. Epidemiology of vasculitis in Europe. Ann Rheum Dis. 2001;60:1156–7.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Watts RA, Scott DGI, Lane SE. Epidemiology of Wegener’s granulomatosis, microscopic polyangiitis, and Churg–Strauss syndrome. Cleve Clin J Med. 2002;69(Suppl. 2):SII84–6.Google Scholar
  14. 14.
    Stassen PM, Cohen-Tervaert JW, Lems SPM, Hepkema BG, Kallenberg CGM, Stegeman CA. HLA-DR4, DR13(6) and the ancestral haplotype A1B8DR3 are associated with ANCA-associated vasculitis and Wegener’s granulomatosis. Rheumatology (Oxford). 2009;48:622–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Vaglio A, Martorana D, Maggiore U, Grasselli C, Zanetti A, Pesci A, et al. HLA-DRB4 as a genetic risk factor for Churg-Strauss syndrome. Arthritis Rheum. 2007;56:3159–66.PubMedCrossRefGoogle Scholar
  16. 16.
    Wieczorek S, Hellmich B, Gross WL, Epplen JT, et al. Associations of Churg-Strauss syndrome with the HLA-DRB1 locus, and relationship to the genetics of antineutrophil cytoplasmic antibody-associated vasculitides: comment on the article by Vaglio. Arthritis Rheum. 2008;58:329–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Wieczorek S, Hellmich B, Arning L, Moosig F, Lamprecht P, Gross WL, et al. Functionally relevant variations of the interleukin-10 gene associated with antineutrophil cytoplasmic antibody-negative Churg-Strauss syndrome, but not with Wegener’s granulomatosis. Arthritis Rheum. 2008;58:1839–48.PubMedCrossRefGoogle Scholar
  18. 18.
    Bottero P, Bonini M, Vecchio F, Grittini A, Patruno GM, Colombo B, et al. The common allergens in the Churg-Strauss syndrome. Allergy. 2007;62:1288–94.PubMedCrossRefGoogle Scholar
  19. 19.
    Wechsler ME, Garpestad E, Flier SR, Kocher O, Weiland DA, Polito AJ, et al. Pulmonary infiltrates, eosinophilia, and cardiomyopathy following corticosteroid withdrawal in patients with asthma receiving zafirlukast. JAMA. 1998;279:455–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Hauser T, Mahr A, Metzler C, Coste J, Sommerstein R, Gross WL, et al. The leucotriene receptor antagonist montelukast and the risk of Churg-Strauss syndrome: a case-crossover study. Thorax. 2008;63:677–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Kiene M, Csernok E, Müller A, Metzler C, Trabandt A, Gross WL. Elevated interleukin-4 and interleukin-13 production by T cell lines from patients with Churg-Strauss syndrome. Arthritis Rheum. 2001;44:469–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Hellmich B, Csernok E, Gross WL. Proinflammatory cytokines and autoimmunity in Churg-Strauss syndrome. Ann N Y Acad Sci. 2005;1051:121–31.PubMedCrossRefGoogle Scholar
  23. 23.
    Jakiela B, Szczeklik W, Plutecka H, Sokolowska B, Mastalerz L, Sanak M, et al. Increased production of IL-5 and dominant Th2-type response in airways of Churg-Strauss syndrome patients. Rheumatology (Oxford). 2012;51:1887–93.PubMedCrossRefGoogle Scholar
  24. 24.
    Fagin U, Csernok E, Müller A, Pitann S, Fazio J, Krause K, et al. Distinct proteinase 3-induced cytokine patterns in Wegener’s granulomatosis, Churg-Strauss syndrome, and healthy controls. Clin Exp Rheumatol. 2011;29(1 Suppl. 64):S57–62.PubMedGoogle Scholar
  25. 25.
    Jakiela B, Sanak M, Szczeklik W, Sokolowska B, Plutecka H, Mastalerz L, et al. Both Th2 and Th17 responses are involved in the pathogenesis of Churg-Strauss syndrome. Clin Exp Rheumatol. 2011;29(1 Suppl. 64):S23–34.PubMedGoogle Scholar
  26. 26.
    Symowski C, Voehringer D. Interactions between innate lymphoid cells and cells of the innate and adaptive immune system. Front Immunol. 2017;8:1422.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Terrier B, Bièche I, Maisonobe T, Laurendeau I, Rosenzwajg M, Kahn J-E, et al. Interleukin-25: a cytokine linking eosinophils and adaptive immunity in Churg-Strauss syndrome. Blood. 2010;116:4523–31.PubMedCrossRefGoogle Scholar
  28. 28.
    Tsurikisawa N, Saito H, Oshikata C, Tsuburai T, Akiyama K. Decreases in the numbers of peripheral blood regulatory T cells, and increases in the levels of memory and activated B cells, in patients with active eosinophilic granulomatosis and polyangiitis. J Clin Immunol. 2013;33:965–76.PubMedCrossRefGoogle Scholar
  29. 29.
    Dallos T, Heiland GR, Strehl J, Karonitsch T, Gross WL, Moosig F, et al. CCL17/thymus and activation-related chemokine in Churg-Strauss syndrome. Arthritis Rheum. 2010;62:3496–503.PubMedCrossRefGoogle Scholar
  30. 30.
    Zwerina J, Bach C, Martorana D, Jatzwauk M, Hegasy G, Moosig F, et al. Eotaxin-3 in Churg-Strauss syndrome: a clinical and immunogenetic study. Rheumatology (Oxford). 2011;50:1823–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Khoury P, Grayson PC, Klion AD. Eosinophils in vasculitis: characteristics and roles in pathogenesis. Nat Rev Rheumatol. 2014;10:474–83.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Khoury P, Zagallo P, Talar-Williams C, Santos CS, Dinerman E, Holland NC, et al. Serum biomarkers are similar in Churg-Strauss syndrome and hypereosinophilic syndrome. Allergy. 2012;67:1149–56.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Dejaco C, Oppl B, Monach P, Cuthbertson D, Carette S, Hoffman G, et al. Serum biomarkers in patients with relapsing eosinophilic granulomatosis with polyangiitis (Churg–Strauss). PLoS One. 2015;10:e0121737.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Saito H, Tsurikisawa N, Tsuburai T, Oshikata C, Akiyama K. Cytokine production profile of CD4+ T cells from patients with active Churg-Strauss syndrome tends toward Th17. Int Arch Allergy Immunol. 2009;149(Suppl. 1):61–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Jennette JC, Falk RJ. New insight into the pathogenesis of vasculitis associated with antineutrophil cytoplasmic autoantibodies. Curr Opin Rheumatol. 2008;20:55–60.PubMedCrossRefGoogle Scholar
  36. 36.
    Sullivan S, Salapow MA, Breen R, Broide DH. Eosinophil peroxidase differs from neutrophil myeloperoxidase in its ability to bind antineutrophil cytoplasmic antibodies reactive with myeloperoxidase. Int Arch Allergy Immunol. 1994;105:150–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Moosig F, Bremer JP, Hellmich B, Holle JU, Holl-Ulrich K, Laudien M, et al. A vasculitis centre based management strategy leads to improved outcome in eosinophilic granulomatosis and polyangiitis (Churg–Strauss, EGPA): monocentric experiences in 150 patients. Ann Rheum Dis. 2013;72:1011–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Lanham JG, Elkon KB, Pusey CD, Hughes GR. Systemic vasculitis with asthma and eosinophilia: a clinical approach to the Churg-Strauss syndrome. Medicine (Baltimore). 1984;63:65–81.PubMedCrossRefGoogle Scholar
  39. 39.
    Cottin V, Bel E, Bottero P, Dalhoff K, Humbert M, Lazor R, et al. Revisiting the systemic vasculitis in eosinophilic granulomatosis with polyangiitis (Churg–Strauss): a study of 157 patients by the Groupe d’Etudes et de Recherche sur les Maladies Orphelines Pulmonaires and the European Respiratory Society Taskforce on Eosinophilic Granulomatosis with Polyangiitis (Churg–Strauss). Autoimmun Rev. 2017;16:1–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Bossuyt X, Cohen Tervaert J-W, Arimura Y, Blockmans D, Flores-Suárez LF, Guillevin L, et al. Position paper: revised 2017 international consensus on testing of ANCAs in granulomatosis with polyangiitis and microscopic polyangiitis. Nat Rev Rheumatol. 2017;13:683–92.PubMedCrossRefGoogle Scholar
  41. 41.
    Mouthon L, Dunogue B, Guillevin L. Diagnosis and classification of eosinophilic granulomatosis with polyangiitis (formerly named Churg-Strauss syndrome). J Autoimmun. 2014;48–49:99–103.PubMedCrossRefGoogle Scholar
  42. 42.
    Grayson PC, Monach PA, Pagnoux C, Cuthbertson D, Carette S, Hoffman GS, et al. Value of commonly measured laboratory tests as biomarkers of disease activity and predictors of relapse in eosinophilic granulomatosis with polyangiitis. Rheumatology (Oxford). 2015;54:1351–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Churg J, Strauss L. Allergic granulomatosis, allergic angiitis, and periarteritis nodosa. Am J Pathol. 1951;27:277–301.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Groh M, Pagnoux C, Baldini C, Bel E, Bottero P, Cottin V, et al. Eosinophilic Granulomatosis with Polyangiitis (Churg–Strauss) (EGPA) Consensus Task Force recommendations for evaluation and management. Eur J Intern Med. 2015;26:545–53.PubMedCrossRefGoogle Scholar
  45. 45.
    Guillevin L, Lhote F, Gayraud M, Cohen P, Jarrousse B, Lortholary O, et al. Prognostic factors in polyarteritis nodosa and Churg-Strauss syndrome: a prospective study in 342 patients. Medicine (Baltimore). 1996;75:17–28.PubMedCrossRefGoogle Scholar
  46. 46.
    Guillevin L, Pagnoux C, Seror R, Mahr A, Mouthon L, Le Toumelin P, et al. The Five-Factor Score revisited: assessment of prognoses of systemic necrotizing vasculitides based on the French Vasculitis Study Group (FVSG) cohort. Medicine (Baltimore). 2011;90:19–27.PubMedCrossRefGoogle Scholar
  47. 47.
    Samson M, Puéchal X, Devilliers H, Ribi C, Cohen P, Stern M, et al. Long-term outcomes of 118 patients with eosinophilic granulomatosis with polyangiitis (Churg–Strauss syndrome) enrolled in two prospective trials. J Autoimmun. 2013;43:60–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Cohen P, Pagnoux C, Mahr A, Arène J-P, Mouthon L, Le Guern V, et al. Churg-Strauss syndrome with poor-prognosis factors: a prospective multicenter trial comparing glucocorticoids and six or twelve cyclophosphamide pulses in forty-eight patients. Arthritis Rheum. 2007;57:686–93.PubMedCrossRefGoogle Scholar
  49. 49.
    Ribi C, Cohen P, Pagnoux C, Mahr A, Arène J-P, Lauque D, et al. Treatment of Churg-Strauss syndrome without poor-prognosis factors: a multicenter, prospective, randomized, open-label study of seventy-two patients. Arthritis Rheum. 2008;58:586–94.PubMedCrossRefGoogle Scholar
  50. 50.
    Yates M, Watts RA, Bajema IM, Cid MC, Crestani B, Hauser T, et al. EULAR/ERA-EDTA recommendations for the management of ANCA-associated vasculitis. Ann Rheum Dis. 2016;75:1583–94.PubMedCrossRefGoogle Scholar
  51. 51.
    Puéchal X, Pagnoux C, Baron G, Quémeneur T, Néel A, Agard C, et al. Adding azathioprine to remission-induction glucocorticoids for eosinophilic granulomatosis with polyangiitis (Churg–Strauss), microscopic polyangiitis, or polyarteritis nodosa without poor prognosis factors: a randomized, controlled trial. Arthritis Rheumatol. 2017;69:2175–86.PubMedCrossRefGoogle Scholar
  52. 52.
    Wechsler ME, Akuthota P, Jayne D, Khoury P, Klion A, Langford CA, et al. Mepolizumab or placebo for eosinophilic granulomatosis with polyangiitis. N Engl J Med. 2017;376:1921–32.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Moosig F, Gross WL, Herrmann K, Bremer JP, Hellmich B. Targeting interleukin-5 in refractory and relapsing Churg-Strauss syndrome. Ann Intern Med. 2011;155:341–3.PubMedCrossRefGoogle Scholar
  54. 54.
    US National Library of Medicine. Rituximab in eosinophilic granulomatosis with polyangiitis. identifier: NCT02807103. Accessed 20 Dec 2017.
  55. 55.
    US National Library of Medicine. Maintenance of remission with rituximab versus azathioprine for newly-diagnosed or relapsing eosinophilic granulomatosis with polyangiitis. identifier: NCT03164473. Accessed 20 Dec 2017.
  56. 56.
    Stone JH, Merkel PA, Spiera R, Seo P, Langford CA, Hoffman GS, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010;363:221–32.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Specks U, Merkel PA, Seo P, Spiera R, Langford CA, Hoffman GS, et al. Efficacy of remission-induction regimens for ANCA-associated vasculitis. N Engl J Med. 2013;369:417–27.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Guillevin L, Pagnoux C, Karras A, Khouatra C, Aumaître O, Cohen P, et al. Rituximab versus azathioprine for maintenance in ANCA-associated vasculitis. N Engl J Med. 2014;371:1771–80.PubMedCrossRefGoogle Scholar
  59. 59.
    Pagnoux C, Mahr A, Hamidou MA, Boffa J-J, Ruivard M, Ducroix J-P, et al. Azathioprine or methotrexate maintenance for ANCA-associated vasculitis. N Engl J Med. 2008;359:2790–803.PubMedCrossRefGoogle Scholar
  60. 60.
    Hiemstra TF, Walsh M, Mahr A, Savage CO, de Groot K, Harper L, et al. Mycophenolate mofetil vs azathioprine for remission maintenance in antineutrophil cytoplasmic antibody-associated vasculitis: a randomized controlled trial. JAMA. 2010;304:2381–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Jayne DRW, Gaskin G, Rasmussen N, Abramowicz D, Ferrario F, Guillevin L, et al. Randomized trial of plasma exchange or high-dosage methylprednisolone as adjunctive therapy for severe renal vasculitis. J Am Soc Nephrol. 2007;18:2180–8.PubMedCrossRefGoogle Scholar
  62. 62.
    US National Library of Medicine. Plasma exchange and glucocorticoids for treatment of anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis (PEXIVAS). identifier: NCT00987389. Accessed 12 Jan 2018.
  63. 63.
    Kostianovsky A, Hauser T, Pagnoux C, Cohen P, Daugas E, Mouthon L, et al. Alveolar haemorrhage in ANCA-associated vasculitides: 80 patients’ features and prognostic factors. Clin Exp Rheumatol. 2012;30(1 Suppl. 70):S77–82.PubMedGoogle Scholar
  64. 64.
    Martinez V, Cohen P, Pagnoux C, Vinzio S, Mahr A, Mouthon L, et al. Intravenous immunoglobulins for relapses of systemic vasculitides associated with antineutrophil cytoplasmic autoantibodies: results of a multicenter, prospective, open-label study of twenty-two patients. Arthritis Rheum. 2008;58:308–17.PubMedCrossRefGoogle Scholar
  65. 65.
    Jayne DR, Chapel H, Adu D, Misbah S, O’Donoghue D, Scott D, et al. Intravenous immunoglobulin for ANCA-associated systemic vasculitis with persistent disease activity. QJM. 2000;93:433–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Jayne DR, Lockwood CM. Intravenous immunoglobulin as sole therapy for systemic vasculitis. Br J Rheumatol. 1996;35:1150–3.PubMedCrossRefGoogle Scholar
  67. 67.
    Faurschou M, Jayne DRW. Anti-B cell antibody therapies for inflammatory rheumatic diseases. Annu Rev Med. 2014;65:263–78.PubMedCrossRefGoogle Scholar
  68. 68.
    Jones RB, Tervaert JWC, Hauser T, Luqmani R, Morgan MD, Peh CA, et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N Engl J Med. 2010;363:211–20.PubMedCrossRefGoogle Scholar
  69. 69.
    Charles P, Néel A, Tieulié N, Hot A, Pugnet G, Decaux O, et al. Rituximab for induction and maintenance treatment of ANCA-associated vasculitides: a multicentre retrospective study on 80 patients. Rheumatology (Oxford). 2014;53:532–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Koukoulaki M, Smith KGC, Jayne DRW. Rituximab in Churg-Strauss syndrome. Ann Rheum Dis. 2006;65:557–9.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Pepper RJ, Fabre MA, Pavesio C, Gaskin G, Jones RB, Jayne D, et al. Rituximab is effective in the treatment of refractory Churg-Strauss syndrome and is associated with diminished T-cell interleukin-5 production. Rheumatology (Oxford). 2008;47:1104–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Bouldouyre M-A, Cohen P, Guillevin L. Severe bronchospasm associated with rituximab for refractory Churg-Strauss syndrome. Ann Rheum Dis. 2009;68:606.PubMedCrossRefGoogle Scholar
  73. 73.
    Dønvik KK, Omdal R. Churg-Strauss syndrome successfully treated with rituximab. Rheumatol Int. 2011;31:89–91.PubMedCrossRefGoogle Scholar
  74. 74.
    Cartin-Ceba R, Keogh KA, Specks U, Sethi S, Fervenza FC. Rituximab for the treatment of Churg-Strauss syndrome with renal involvement. Nephrol Dial Transplant. 2011;26:2865–71.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Thiel J, Hässler F, Salzer U, Voll RE, Venhoff N. Rituximab in the treatment of refractory or relapsing eosinophilic granulomatosis with polyangiitis (Churg–Strauss syndrome). Arthritis Res Ther. 2013;15:R133.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Novikov P, Moiseev S, Smitienko I, Zagvozdkina E. Rituximab as induction therapy in relapsing eosinophilic granulomatosis with polyangiitis: a report of 6 cases. Joint Bone Spine. 2016;83:81–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Mohammad AJ, Hot A, Arndt F, Moosig F, Guerry M-J, Amudala N, et al. Rituximab for the treatment of eosinophilic granulomatosis with polyangiitis (Churg–Strauss). Ann Rheum Dis. 2016;75:396–401.PubMedCrossRefGoogle Scholar
  78. 78.
    Thiel J, Troilo A, Salzer U, Schleyer T, Halmschlag K, Rizzi M, et al. Rituximab as induction therapy in eosinophilic granulomatosis with polyangiitis refractory to conventional immunosuppressive treatment: a 36-month follow-up analysis. J Allergy Clin Immunol Pract. 2017;5:1556–63.PubMedCrossRefGoogle Scholar
  79. 79.
    Yanagibashi T, Satoh M, Nagai Y, Koike M, Takatsu K. Allergic diseases: from bench to clinic-contribution of the discovery of interleukin-5. Cytokine. 2017;98:59–70.PubMedCrossRefGoogle Scholar
  80. 80.
    Leckie MJ, ten Brinke A, Khan J, Diamant Z, O’Connor BJ, Walls CM, et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet. 2000;356:2144–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Keating GM. Mepolizumab: first global approval. Drugs. 2015;75:2163–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Ortega HG, Liu MC, Pavord ID, Brusselle GG, FitzGerald JM, Chetta A, et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med. 2014;371:1198–207.PubMedCrossRefGoogle Scholar
  83. 83.
    Bel EH, Wenzel SE, Thompson PJ, Prazma CM, Keene ON, Yancey SW, et al. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N Engl J Med. 2014;371:1189–97.PubMedCrossRefGoogle Scholar
  84. 84.
    Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380:651–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Kahn J-E, Grandpeix-Guyodo C, Marroun I, Catherinot E, Mellot F, Roufosse F, et al. Sustained response to mepolizumab in refractory Churg-Strauss syndrome. J Allergy Clin Immunol. 2010;125:267–70.PubMedCrossRefGoogle Scholar
  86. 86.
    Kim S, Marigowda G, Oren E, Israel E, Wechsler ME. Mepolizumab as a steroid-sparing treatment option in patients with Churg-Strauss syndrome. J Allergy Clin Immunol. 2010;125:1336–43.PubMedCrossRefGoogle Scholar
  87. 87.
    Herrmann K, Gross WL, Moosig F. Extended follow-up after stopping mepolizumab in relapsing/refractory Churg-Strauss syndrome. Clin Exp Rheumatol. 2012;30(1 Suppl. 70):S62–5.PubMedGoogle Scholar
  88. 88.
    US National Library of Medicine. Long-term access program (LAP) of mepolizumab for subjects who participated in study MEA115921. identifier: NCT03298061. Accessed 20 Dec 2017.
  89. 89.
    US National Library of Medicine. Reslizumab in the treatment of eosinophilic granulomatosis with polyangiitis (EGPA) study. identifier: NCT02947945. Available from: Accessed 20 Dec 2017.
  90. 90.
    US National Library of Medicine. Benralizumab in the treatment of eosinophilic granulomatosis with polyangiitis (EGPA) study. identifier: NCT03010436. Accessed 20 Dec 2017.
  91. 91.
    Soresi S, Togias A. Mechanisms of action of anti-immunoglobulin E therapy. Allergy Asthma Proc. 2006;27(2 Suppl. 1):S15–23.PubMedGoogle Scholar
  92. 92.
    McKeage K. Omalizumab: a review of its use in patients with severe persistent allergic asthma. Drugs. 2013;73:1197–212.PubMedCrossRefGoogle Scholar
  93. 93.
    McCormack PL. Omalizumab: a review of its use in patients with chronic pontaneous urticaria. Drugs. 2014;74:1693–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Jachiet M, Samson M, Cottin V, Kahn J-E, Le Guenno G, Bonniaud P, et al. Anti-IgE monoclonal antibody (omalizumab) in refractory and relapsing eosinophilic granulomatosis with polyangiitis (Churg–Strauss): data on seventeen patients. Arthitis Rheumatol. 2016;68:2274–82.CrossRefGoogle Scholar
  95. 95.
    Detoraki A, Capua LD, Varricchi G, Genovese A, Marone G, Spadaro G. Omalizumab in patients with eosinophilic granulomatosis with polyangiitis: a 36-month follow-up study. J Asthma. 2016;53:201–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Giavina-Bianchi P, Giavina-Bianchi M, Agondi R, Kalil J. Administration of anti-IgE to a Churg-Strauss syndrome patient. Int Arch Allergy Immunol. 2007;144:155–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Pabst S, Tiyerili V, Grohé C. Apparent response to anti-IgE therapy in two patients with refractory “forme fruste” of Churg-Strauss syndrome. Thorax. 2008;63:747–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Lau EMT, Cooper W, Bye PT, Yan K. Difficult asthma and Churg–Strauss-like syndrome: a cautionary tale. Respirology. 2011;16:180–1.PubMedCrossRefGoogle Scholar
  99. 99.
    Iglesias E, Camacho Lovillo M, Delgado Pecellín I, Lirola Cruz MJ, Falcón Neyra MD, Salazar Quero JC, et al. Successful management of Churg-Strauss syndrome using omalizumab as adjuvant immunomodulatory therapy: first documented pediatric case. Pediatr Pulmonol. 2014;49:E78–81.PubMedCrossRefGoogle Scholar
  100. 100.
    Graziani A, Quercia O, Girelli F, Martelli A, Mirici Cappa F, Stefanini GF. Omalizumab treatment in patient with severe asthma and eosinophilic granulomatosis with polyangiitis: a case report. Eur Ann Allergy Clin Immunol. 2014;46:226–8.PubMedGoogle Scholar
  101. 101.
    Aguirre-Valencia D, Posso-Osorio I, Bravo J-C, Bonilla-Abadía F, Tobón GJ, Cañas CA. Sequential rituximab and omalizumab for the treatment of eosinophilic granulomatosis with polyangiitis (Churg–Strauss syndrome). Clin Rheumatol. 2017;36:2159–62.PubMedCrossRefGoogle Scholar
  102. 102.
    Nazir S, Tachamo N, Fareedy SB, Khan MS, Lohani S. Omalizumab-associated eosinophilic granulomatosis with polyangiitis (Churg–Strauss syndrome). Ann Allergy Asthma Immunol. 2017;118:372–4.PubMedCrossRefGoogle Scholar
  103. 103.
    Bekçibaşı M, Barutçu S, Çelen MK, Dayan S, Hoşoğlu S. Churg-Strauss syndrome occurring during omalizumab treatment. Eur J Rheumatol. 2015;2:129–30.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Szwarc D, Veillon F, Moser T, Averous G, De Blay F, Riehm S. Churg-Strauss syndrome under omalizumab treatment: a rare visceral manifestation [in French]. J Radiol. 2009;90:1737–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Wechsler ME, Wong DA, Miller MK, Lawrence-Miyasaki L. Churg-Strauss syndrome in patients treated with omalizumab. Chest. 2009;136:507–18.PubMedCrossRefGoogle Scholar
  106. 106.
    Schandené L, Del Prete GF, Cogan E, Stordeur P, Crusiaux A, Kennes B, et al. Recombinant interferon-alpha selectively inhibits the production of interleukin-5 by human CD4 + T cells. J Clin Invest. 1996;97:309–15.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Shibuya H, Hirohata S. Differential effects of IFN-alpha on the expression of various TH2 cytokines in human CD4+ T cells. J Allergy Clin Immunol. 2005;116:205–12.PubMedCrossRefGoogle Scholar
  108. 108.
    Tatsis E, Schnabel A, Gross WL. Interferon-alpha treatment of four patients with the Churg-Strauss syndrome. Ann Intern Med. 1998;129:370–4.PubMedCrossRefGoogle Scholar
  109. 109.
    Lesens O, Hansmann Y, Nerson J, Pasquali J, Gasser B, Wihlm J, et al. Severe Churg-Strauss syndrome with mediastinal lymphadenopathy treated with interferon therapy. Eur J Intern Med. 2002;13:458.PubMedCrossRefGoogle Scholar
  110. 110.
    Simon H-U, Seelbach H, Ehmann R, Schmitz M. Clinical and immunological effects of low-dose IFN-alpha treatment in patients with corticosteroid-resistant asthma. Allergy. 2003;58:1250–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Metzler C, Csernok E, Gross WL, Hellmich B. Interferon-alpha for maintenance of remission in Churg-Strauss syndrome: a long-term observational study. Clin Exp Rheumatol. 2010;28:24–30.PubMedGoogle Scholar
  112. 112.
    Seeliger B, Förster M, Happe J, Forberg T, Moeser A, Neumann T, et al. Interferon-α for induction and maintenance of remission in eosinophilic granulomatosis with polyangiitis: a single-center retrospective observational cohort study. J Rheumatol. 2017;44:806–14.PubMedCrossRefGoogle Scholar
  113. 113.
    Feldmann M, Pusey CD. Is there a role for TNF-alpha in anti-neutrophil cytoplasmic antibody-associated vasculitis? Lessons from other chronic inflammatory diseases. J Am Soc Nephrol. 2006;17:1243–52.PubMedCrossRefGoogle Scholar
  114. 114.
    Morgan MD, Drayson MT, Savage COS, Harper L. Addition of infliximab to standard therapy for ANCA-associated vasculitis. Nephron Clin Pract. 2011;117:c89–97.PubMedCrossRefGoogle Scholar
  115. 115.
    Wegener’s Granulomatosis Etanercept Trial. (WGET) Research Group. Etanercept plus standard therapy for Wegener’s granulomatosis. N Engl J Med. 2005;352:351–61.CrossRefGoogle Scholar
  116. 116.
    Arbach O, Gross WL, Gause A. Treatment of refractory Churg-Strauss syndrome (CSS) by TNF-alpha blockade. Immunobiology. 2002;206:496–501.PubMedCrossRefGoogle Scholar
  117. 117.
    Tiliakos A, Shaia S, Hostoffer R, Kent L. The use of infliximab in a patient with steroid-dependent Churg-Strauss syndrome. J Clin Rheumatol. 2004;10:96–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43:343–73.PubMedCrossRefGoogle Scholar
  119. 119.
    Beswick DM, Gray ST, Smith TL. Pharmacological management of chronic rhinosinusitis: current and evolving treatments. Drugs. 2017;77:1713–21.PubMedCrossRefGoogle Scholar
  120. 120.
    Guillevin L, Guittard T, Blétry O, Godeau P, Rosenthal P. Systemic necrotizing angiitis with asthma: causes and precipitating factors in 43 cases. Lung. 1987;165:165–72.PubMedCrossRefGoogle Scholar
  121. 121.
    Park JW, Curtis JR, Moon J, Song YW, Kim S, Lee EB. Prophylactic effect of trimethoprim-sulfamethoxazole for Pneumocystis pneumonia in patients with rheumatic diseases exposed to prolonged high-dose glucocorticoids. Ann Rheum Dis. 2018;77(5):644–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Moosig F, Holle JU, Gross WL. Value of anti-infective chemoprophylaxis in primary systemic vasculitis: what is the evidence? Arthritis Res Ther. 2009;11:253.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Samson M, Puéchal X, Mouthon L, Devilliers H, Cohen P, Bienvenu B, et al. Microscopic polyangiitis and non-HBV polyarteritis nodosa with poor-prognosis factors: 10-year results of the prospective CHUSPAN trial. Clin Exp Rheumatol. 2017;35(Suppl. 103):176–84.PubMedGoogle Scholar
  124. 124.
    Sriaroon P, Ballow M. Biological modulators in eosinophilic diseases. Clin Rev Allergy Immunol. 2016;50:252–72.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Internal MedicineFélix-Guyon University Hospital of La RéunionSaint DenisFrance
  2. 2.Department of Internal MedicineReferral Center for Rare Systemic and Autoimmune Diseases, Hôpital Cochin, Université Paris DescartesParisFrance

Personalised recommendations