, Volume 78, Issue 4, pp 411–437 | Cite as

Recent Advances in Pharmacotherapy for Migraine Prevention: From Pathophysiology to New Drugs

  • Jonathan Jia Yuan Ong
  • Diana Yi-Ting Wei
  • Peter J. GoadsbyEmail author
Review Article


Migraine is a common and disabling neurological disorder, with a significant socioeconomic burden. Its pathophysiology involves abnormalities in complex neuronal networks, interacting at different levels of the central and peripheral nervous system, resulting in the constellation of symptoms characteristic of a migraine attack. Management of migraine is individualised and often necessitates the commencement of preventive medication. Recent advancements in the understanding of the neurobiology of migraine have begun to account for some parts of the symptomatology, which has led to the development of novel target-based therapies that may revolutionise how migraine is treated in the future. This review will explore recent advances in the understanding of migraine pathophysiology, and pharmacotherapeutic developments for migraine prevention, with particular emphasis on novel treatments targeted at the calcitonin gene-related peptide (CGRP) pathway.


Compliance with Ethical Standards


The authors certify that no funding has been received for the conduct of this study and/or preparation of this manuscript.

Conflict of interest

Dr D Jonathan Jia Yuan Ong has no conflict of interest to declare. Dr Diana Yi-Ting Wei has no conflict of interest to declare. Professor Peter Goadsby has the following disclosures: grants and personal fees from Allergan, Amgen, and Eli-Lilly and Company; and personal fees from Akita Biomedical, Alder Biopharmaceuticals, Cipla Ltd, Dr Reddy’s Laboratories, eNeura, Electrocore LLC, Novartis, Pfizer Inc, Quest Diagnostics, Scion, Teva Pharmaceuticals, Trigemina Inc., Scion; and personal fees from MedicoLegal work, Journal Watch, Up-to-Date, Massachusetts Medical Society, Oxford University Press; and in addition, Dr. Goadsby has a patent Magnetic stimulation for headache assigned to eNeura.


  1. 1.
    Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–59.CrossRefGoogle Scholar
  2. 2.
    Lipton RB, Stewart WF, Scher AI. Epidemiology and economic impact of migraine. Curr Med Res Opin. 2001;17(Suppl 1):s4–12.PubMedCrossRefGoogle Scholar
  3. 3.
    Lipton RB, Bigal ME, Diamond M, Freitag F, Reed ML, Stewart WF, et al. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology. 2007;68(5):343–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Vetvik KG, MacGregor EA. Sex differences in the epidemiology, clinical features, and pathophysiology of migraine. Lancet Neurol. 2017;16(1):76–87.PubMedCrossRefGoogle Scholar
  5. 5.
    Headache Classfication Committee of the International Headache Society. The international classification of headache disorders, 3rd edition (beta version). Cephalalgia. 2013;33(9):629–808.Google Scholar
  6. 6.
    Buse DC, Scher AI, Dodick DW, Reed ML, Fanning KM, Manack Adams A, et al. Impact of migraine on the family: perspectives of people with migraine and their spouse/domestic partner in the CaMEO Study. Mayo Clin Proc. 2016;pii: S0025-6196(16)00126-9.Google Scholar
  7. 7.
    Lanteri-Minet M, Duru G, Mudge M, Cottrell S. Quality of life impairment, disability and economic burden associated with chronic daily headache, focusing on chronic migraine with or without medication overuse: a systematic review. Cephalalgia. 2011;31(7):837–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Mitsikostas DD, Thomas AM. Comorbidity of headache and depressive disorders. Cephalalgia. 1999;19(4):211–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Buse DC, Manack A, Serrano D, Turkel C, Lipton RB. Sociodemographic and comorbidity profiles of chronic migraine and episodic migraine sufferers. J Neurol Neurosurg Psychiatry. 2010;81(4):428–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Silberstein SD, Holland S, Freitag F, Dodick DW, Argoff C, Ashman E, et al. Evidence-based guideline update: pharmacologic treatment for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology. 2012;78(17):1337–45.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Silberstein SD, Winner PK, Chmiel JJ. Migraine preventive medication reduces resource utilization. Headache. 2003;43(3):171–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Loder E, Burch R, Rizzoli P. The 2012 AHS/AAN guidelines for prevention of episodic migraine: a summary and comparison with other recent clinical practice guidelines. Headache. 2012;52(6):930–45.PubMedCrossRefGoogle Scholar
  13. 13.
    Shamliyan TA, Choi JY, Ramakrishnan R, Miller JB, Wang SY, Taylor FR, et al. Preventive pharmacologic treatments for episodic migraine in adults. J Gen Intern Med. 2013;28(9):1225–37.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Goadsby PJ, Sprenger T. Current practice and future directions in the prevention and acute management of migraine. Lancet Neurol. 2010;9(3):285–98.PubMedCrossRefGoogle Scholar
  15. 15.
    Evans RW, Linde M. Expert opinion: adherence to prophylactic migraine medication. Headache. 2009;49(7):1054–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Gracia-Naya M, Santos-Lasaosa S, Rios-Gomez C, Sanchez-Valiente S, Garcia-Gomara MJ, Latorre-Jimenez AM, et al. Predisposing factors affecting drop-out rates in preventive treatment in a series of patients with migraine. Rev Neurol. 2011;53(4):201–8.PubMedGoogle Scholar
  17. 17.
    Hepp Z, Dodick DW, Varon SF, Gillard P, Hansen RN, Devine EB. Adherence to oral migraine-preventive medications among patients with chronic migraine. Cephalalgia. 2015;35(6):478–88.PubMedCrossRefGoogle Scholar
  18. 18.
    Goadsby PJ. Bench to bedside advances in the 21st century for primary headache disorders: migraine treatments for migraine patients. Brain. 2016;139(Pt 10):2571–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Giffin NJ, Ruggiero L, Lipton RB, Silberstein SD, Tvedskov JF, Olesen J, et al. Premonitory symptoms in migraine: an electronic diary study. Neurology. 2003;60(6):935–40.PubMedCrossRefGoogle Scholar
  20. 20.
    Kelman L. The premonitory symptoms (prodrome): a tertiary care study of 893 migraineurs. Headache. 2004;44(9):865–72.PubMedCrossRefGoogle Scholar
  21. 21.
    Giffin NJ, Lipton RB, Silberstein SD, Olesen J, Goadsby PJ. The migraine postdrome: an electronic diary study. Neurology. 2016;87(3):309–13.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Rasmussen BK, Olesen J. Migraine with aura and migraine without aura: an epidemiological study. Cephalalgia. 1992;12(4):221–8 (discussion 186).Google Scholar
  23. 23.
    Amin FM, Asghar MS, Hougaard A, Hansen AE, Larsen VA, de Koning PJ, et al. Magnetic resonance angiography of intracranial and extracranial arteries in patients with spontaneous migraine without aura: a cross-sectional study. Lancet Neurol. 2013;12(5):454–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev. 2017;97(2):553–622.PubMedCrossRefGoogle Scholar
  25. 25.
    Goadsby PJ, Charbit AR, Andreou AP, Akerman S, Holland PR. Neurobiology of migraine. Neuroscience. 2009;161(2):327–41.PubMedCrossRefGoogle Scholar
  26. 26.
    Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci. 2015;35(17):6619–29.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Charles A. Migraine: a brain state. Curr Opin Neurol. 2013;26(3):235–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Ferrari MD, Klever RR, Terwindt GM, Ayata C, van den Maagdenberg AM. Migraine pathophysiology: lessons from mouse models and human genetics. Lancet Neurol. 2015;14(1):65–80.PubMedCrossRefGoogle Scholar
  29. 29.
    Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci. 2011;12(10):570–84.PubMedCrossRefGoogle Scholar
  30. 30.
    Ho TW, Edvinsson L, Goadsby PJ. CGRP and its receptors provide new insights into migraine pathophysiology. Nat Rev Neurol. 2010;6(10):573–82.PubMedCrossRefGoogle Scholar
  31. 31.
    Uddman R, Tajti J, Hou M, Sundler F, Edvinsson L. Neuropeptide expression in the human trigeminal nucleus caudalis and in the cervical spinal cord C1 and C2. Cephalalgia. 2002;22(2):112–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Goadsby PJ, Hoskin KL. The distribution of trigeminovascular afferents in the nonhuman primate brain Macaca nemestrina: a c-fos immunocytochemical study. J Anat. 1997;190(Pt 3):367–75.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Hoskin KL, Zagami AS, Goadsby PJ. Stimulation of the middle meningeal artery leads to Fos expression in the trigeminocervical nucleus: a comparative study of monkey and cat. J Anat. 1999;194(Pt 4):579–88.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Bartsch T, Goadsby PJ. Stimulation of the greater occipital nerve induces increased central excitability of dural afferent input. Brain. 2002;125(Pt 7):1496–509.PubMedCrossRefGoogle Scholar
  35. 35.
    Spencer SE, Sawyer WB, Wada H, Platt KB, Loewy AD. CNS projections to the pterygopalatine parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell body labeling study. Brain Res. 1990;534(1–2):149–69.PubMedGoogle Scholar
  36. 36.
    May A, Goadsby PJ. The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. J Cereb Blood Flow Metab. 1999;19(2):115–27.PubMedCrossRefGoogle Scholar
  37. 37.
    Suzuki N, Hardebo JE, Owman C. Origins and pathways of cerebrovascular nerves storing substance P and calcitonin gene-related peptide in rat. Neuroscience. 1989;31(2):427–38.PubMedCrossRefGoogle Scholar
  38. 38.
    Ivanusic JJ, Kwok MM, Ahn AH, Jennings EA. 5-HT(1D) receptor immunoreactivity in the sphenopalatine ganglion: implications for the efficacy of triptans in the treatment of autonomic signs associated with cluster headache. Headache. 2011;51(3):392–402.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Zagami AS, Edvinsson L, Goadsby PJ. Pituitary adenylate cyclase activating polypeptide and migraine. Ann Clin Transl Neurol. 2014;1(12):1036–40.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Akerman S, Holland PR, Lasalandra MP, Goadsby PJ. Oxygen inhibits neuronal activation in the trigeminocervical complex after stimulation of trigeminal autonomic reflex, but not during direct dural activation of trigeminal afferents. Headache. 2009;49(8):1131–43.PubMedCrossRefGoogle Scholar
  41. 41.
    Akerman S, Holland PR, Summ O, Lasalandra MP, Goadsby PJ. A translational in vivo model of trigeminal autonomic cephalalgias: therapeutic characterization. Brain. 2012;135(Pt 12):3664–75.PubMedCrossRefGoogle Scholar
  42. 42.
    Weiller C, May A, Limmroth V, Juptner M, Kaube H, Schayck RV, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med. 1995;1(7):658–60.PubMedCrossRefGoogle Scholar
  43. 43.
    Bahra A, Matharu MS, Buchel C, Frackowiak RS, Goadsby PJ. Brainstem activation specific to migraine headache. Lancet. 2001;357(9261):1016–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Raskin NH, Hosobuchi Y, Lamb S. Headache may arise from perturbation of brain. Headache. 1987;27(8):416–20.PubMedCrossRefGoogle Scholar
  45. 45.
    Stankewitz A, Aderjan D, Eippert F, May A. Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci. 2011;31(6):1937–43.PubMedCrossRefGoogle Scholar
  46. 46.
    Borsook D, Burstein R. The enigma of the dorsolateral pons as a migraine generator. Cephalalgia. 2012;32(11):803–12.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kroger IL, May A. Triptan-induced disruption of trigemino-cortical connectivity. Neurology. 2015;84(21):2124–31.PubMedCrossRefGoogle Scholar
  48. 48.
    Goadsby PJ, Hoskin KL. Inhibition of trigeminal neurons by intravenous administration of the serotonin (5HT)1B/D receptor agonist zolmitriptan (311C90): are brain stem sites therapeutic target in migraine? Pain. 1996;67(2–3):355–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Goadsby PJ. The pharmacology of headache. Prog Neurobiol. 2000;62(5):509–25.PubMedCrossRefGoogle Scholar
  50. 50.
    Goadsby PJ, Gundlach AL. Localization of 3H-dihydroergotamine-binding sites in the cat central nervous system: relevance to migraine. Ann Neurol. 1991;29(1):91–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Hoskin KL, Kaube H, Goadsby PJ. Central activation of the trigeminovascular pathway in the cat is inhibited by dihydroergotamine. A c-Fos and electrophysiological study. Brain. 1996;119(Pt 1):249–56.PubMedCrossRefGoogle Scholar
  52. 52.
    Pozo-Rosich P, Storer RJ, Charbit AR, Goadsby PJ. Periaqueductal gray calcitonin gene-related peptide modulates trigeminovascular neurons. Cephalalgia. 2015;35(14):1298–307.PubMedCrossRefGoogle Scholar
  53. 53.
    Storer RJ, Akerman S, Goadsby PJ. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol. 2004;142(7):1171–81.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Settle M. The hypothalamus. Neonatal Netw. 2000;19(6):9–14.PubMedCrossRefGoogle Scholar
  55. 55.
    Kagan R, Kainz V, Burstein R, Noseda R. Hypothalamic and basal ganglia projections to the posterior thalamus: possible role in modulation of migraine headache and photophobia. Neuroscience. 2013;248:359–68.PubMedCrossRefGoogle Scholar
  56. 56.
    Abdallah K, Artola A, Monconduit L, Dallel R, Luccarini P. Bilateral descending hypothalamic projections to the spinal trigeminal nucleus caudalis in rats. PLoS One. 2013;8(8):e73022.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Robert C, Bourgeais L, Arreto CD, Condes-Lara M, Noseda R, Jay T, et al. Paraventricular hypothalamic regulation of trigeminovascular mechanisms involved in headaches. J Neurosci. 2013;33(20):8827–40.PubMedCrossRefGoogle Scholar
  58. 58.
    Moulton EA, Becerra L, Johnson A, Burstein R, Borsook D. Altered hypothalamic functional connectivity with autonomic circuits and the locus coeruleus in migraine. PLoS One. 2014;9(4):e95508.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby PJ. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain. 2014;137(Pt 1):232–41.PubMedCrossRefGoogle Scholar
  60. 60.
    Bartsch T, Levy MJ, Knight YE, Goadsby PJ. Differential modulation of nociceptive dural input to [hypocretin] orexin A and B receptor activation in the posterior hypothalamic area. Pain. 2004;109(3):367–78.PubMedCrossRefGoogle Scholar
  61. 61.
    Charbit AR, Akerman S, Holland PR, Goadsby PJ. Neurons of the dopaminergic/calcitonin gene-related peptide A11 cell group modulate neuronal firing in the trigeminocervical complex: an electrophysiological and immunohistochemical study. J Neurosci. 2009;29(40):12532–41.PubMedCrossRefGoogle Scholar
  62. 62.
    Hosoya Y, Sugiura Y, Ito R, Kohno K. Descending projections from the hypothalamic paraventricular nucleus to the A5 area, including the superior salivatory nucleus, in the rat. Exp Brain Res. 1990;82(3):513–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Hypothalamic activation in spontaneous migraine attacks. Headache. 2007;47(10):1418–26.PubMedGoogle Scholar
  64. 64.
    Schulte LH, May A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain. 2016;139(Pt 7):1987–93.PubMedCrossRefGoogle Scholar
  65. 65.
    Noseda R, Jakubowski M, Kainz V, Borsook D, Burstein R. Cortical projections of functionally identified thalamic trigeminovascular neurons: implications for migraine headache and its associated symptoms. J Neurosci. 2011;31(40):14204–17.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Noseda R, Kainz V, Borsook D, Burstein R. Neurochemical pathways that converge on thalamic trigeminovascular neurons: potential substrate for modulation of migraine by sleep, food intake, stress and anxiety. PLoS ONE. 2014;9(8):e103929.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Noseda R, Kainz V, Jakubowski M, Gooley JJ, Saper CB, Digre K, et al. A neural mechanism for exacerbation of headache by light. Nat Neurosci. 2010;13(2):239–45.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Burstein R, Jakubowski M, Garcia-Nicas E, Kainz V, Bajwa Z, Hargreaves R, et al. Thalamic sensitization transforms localized pain into widespread allodynia. Ann Neurol. 2010;68(1):81–91.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Shields KG, Goadsby PJ. Propranolol modulates trigeminovascular responses in thalamic ventroposteromedial nucleus: a role in migraine? Brain. 2005;128(Pt 1):86–97.PubMedGoogle Scholar
  70. 70.
    Tepe N, Filiz A, Dilekoz E, Akcali D, Sara Y, Charles A, et al. The thalamic reticular nucleus is activated by cortical spreading depression in freely moving rats: prevention by acute valproate administration. Eur J Neurosci. 2015;41(1):120–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Andreou AP, Shields KG, Goadsby PJ. GABA and valproate modulate trigeminovascular nociceptive transmission in the thalamus. Neurobiol Dis. 2010;37(2):314–23.PubMedCrossRefGoogle Scholar
  72. 72.
    Summ O, Charbit AR, Andreou AP, Goadsby PJ. Modulation of nocioceptive transmission with calcitonin gene-related peptide receptor antagonists in the thalamus. Brain. 2010;133(9):2540–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Andreou AP, Holland PR, Akerman S, Summ O, Fredrick J, Goadsby PJ. Transcranial magnetic stimulation and potential cortical and trigeminothalamic mechanisms in migraine. Brain. 2016;139(Pt 7):2002–14.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Aurora SK, al-Sayeed F, Welch KM. The cortical silent period is shortened in migraine with aura. Cephalalgia. 1999;19(8):708–12.Google Scholar
  75. 75.
    Aurora SK, Cao Y, Bowyer SM, Welch KM. The occipital cortex is hyperexcitable in migraine: experimental evidence. Headache. 1999;39(7):469–76.PubMedCrossRefGoogle Scholar
  76. 76.
    Lang E, Kaltenhauser M, Neundorfer B, Seidler S. Hyperexcitability of the primary somatosensory cortex in migraine—a magnetoencephalographic study. Brain. 2004;127(Pt 11):2459–69.PubMedCrossRefGoogle Scholar
  77. 77.
    Coppola G, Di Renzo A, Tinelli E, Lepre C, Iacovelli E, Di Lorenzo C, et al. O028. Thalamo-cortical network changes during the migraine cycle: insights from MRI-based microstructural and functional resting-state network correlation analysis. J Headache Pain. 2015;16(Suppl 1):A52.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Sprenger T, Borsook D. Migraine changes the brain: neuroimaging makes its mark. Curr Opin Neurol. 2012;25(3):252–62.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Chong CD, Schwedt TJ, Dodick DW. Migraine: what imaging reveals. Curr Neurol Neurosci Rep. 2016;16(7):64.PubMedCrossRefGoogle Scholar
  80. 80.
    Noseda R, Constandil L, Bourgeais L, Chalus M, Villanueva L. Changes of meningeal excitability mediated by corticotrigeminal networks: a link for the endogenous modulation of migraine pain. J Neurosci. 2010;30(43):14420–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Leao AAP. Pial circulation and spreading depression of activity in the cerebral cortex. J Neurophysiol. 1944;7(6):391–6.CrossRefGoogle Scholar
  82. 82.
    Leao AAP. Spreading depression of activity in the cerebral cortex. J Neurophysiol. 1944;7(6):359–90.CrossRefGoogle Scholar
  83. 83.
    Bhaskar S, Saeidi K, Borhani P, Amiri H. Recent progress in migraine pathophysiology: role of cortical spreading depression and magnetic resonance imaging. Eur J Neurosci. 2013;38(11):3540–51.PubMedCrossRefGoogle Scholar
  84. 84.
    Hadjikhani N, Sanchez Del Rio M, Wu O, Schwartz D, Bakker D, Fischl B, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA. 2001;98(8):4687–92.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002;8(2):136–42.PubMedCrossRefGoogle Scholar
  86. 86.
    Zhang X, Levy D, Kainz V, Noseda R, Jakubowski M, Burstein R. Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol. 2011;69(5):855–65.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Gasparini CF, Smith RA, Griffiths LR. Genetic insights into migraine and glutamate: a protagonist driving the headache. J Neurol Sci. 2016;367:258–68.PubMedCrossRefGoogle Scholar
  88. 88.
    Freilinger T, Anttila V, de Vries B, Malik R, Kallela M, Terwindt GM, et al. Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet. 2012;44(7):777–82.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. 2014;94(4):1099–142.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature. 1982;298(5871):240–4.PubMedCrossRefGoogle Scholar
  91. 91.
    Amara SG, Arriza JL, Leff SE, Swanson LW, Evans RM, Rosenfeld MG. Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science. 1985;229(4718):1094–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Bovenberg RA, van de Meerendonk WP, Baas PD, Steenbergh PH, Lips CJ, Jansz HS. Model for alternative RNA processing in human calcitonin gene expression. Nucleic Acids Res. 1986;14(22):8785–803.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol. 1988;23(2):193–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Edvinsson L. The journey to establish CGRP as a migraine target: a retrospective view. Headache. 2015;55(9):1249–55.PubMedCrossRefGoogle Scholar
  95. 95.
    Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol. 1990;28(2):183–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol. 1993;33(1):48–56.PubMedCrossRefGoogle Scholar
  97. 97.
    Cernuda-Morollon E, Martinez-Camblor P, Ramon C, Larrosa D, Serrano-Pertierra E, Pascual J. CGRP and VIP levels as predictors of efficacy of onabotulinumtoxin type A in chronic migraine. Headache. 2014;54(6):987–95.PubMedCrossRefGoogle Scholar
  98. 98.
    Cady R, Turner I, Dexter K, Beach ME, Cady R, Durham P. An exploratory study of salivary calcitonin gene-related peptide levels relative to acute interventions and preventative treatment with onabotulinumtoxinA in chronic migraine. Headache. 2014;54(2):269–77.PubMedCrossRefGoogle Scholar
  99. 99.
    Hansen JM, Hauge AW, Olesen J, Ashina M. Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura. Cephalalgia. 2010;30(10):1179–86.PubMedCrossRefGoogle Scholar
  100. 100.
    Guo S, Vollesen AL, Olesen J, Ashina M. Premonitory and nonheadache symptoms induced by CGRP and PACAP38 in patients with migraine. Pain. 2016;157(12):2773–81.PubMedCrossRefGoogle Scholar
  101. 101.
    Lennerz JK, Ruhle V, Ceppa EP, Neuhuber WL, Bunnett NW, Grady EF, et al. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution. J Comp Neurol. 2008;507(3):1277–99.PubMedCrossRefGoogle Scholar
  102. 102.
    Eftekhari S, Salvatore CA, Calamari A, Kane SA, Tajti J, Edvinsson L. Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion. Neuroscience. 2010;169(2):683–96.PubMedCrossRefGoogle Scholar
  103. 103.
    VanRossum D, Hanisch UK, Quirion R. Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav R. 1997;21(5):649–78.CrossRefGoogle Scholar
  104. 104.
    Uddman R, Tajtj J, Cardell LO, Sundler F, Uddman E, Edvinsson L. Endothelin ETA and ETB receptor expression in the human trigeminal ganglion. Neuroendocrinol Lett. 2006;27(3):345–9.PubMedGoogle Scholar
  105. 105.
    Walker CS, Hay DL, Fitzpatrick SM, Cooper GJ, Loomes KM. alpha-Calcitonin gene related peptide (alpha-CGRP) mediated lipid mobilization in 3T3-L1 adipocytes. Peptides. 2014;58:14–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Edvinsson L, Ekman R, Jansen I, McCulloch J, Uddman R. Calcitonin gene-related peptide and cerebral blood vessels: distribution and vasomotor effects. J Cereb Blood Flow Metab. 1987;7(6):720–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Goadsby PJ. Recent advances in understanding migraine mechanisms, molecules and therapeutics. Trends Mol Med. 2007;13(1):39–44.PubMedCrossRefGoogle Scholar
  108. 108.
    Unger JW, Lange W. Immunohistochemical mapping of neurophysins and calcitonin gene-related peptide in the human brainstem and cervical spinal cord. J Chem Neuroanat. 1991;4(4):299–309.PubMedCrossRefGoogle Scholar
  109. 109.
    Just S, Arndt K, Doods H. The role of CGRP and nicotinic receptors in centrally evoked facial blood flow changes. Neurosci Lett. 2005;381(1–2):120–4.PubMedCrossRefGoogle Scholar
  110. 110.
    Bigal ME, Ferrari M, Silberstein SD, Lipton RB, Goadsby PJ. Migraine in the triptan era: lessons from epidemiology, pathophysiology, and clinical science. Headache. 2009;49(Suppl 1):S21–33.PubMedCrossRefGoogle Scholar
  111. 111.
    Miller S, Liu H, Warfvinge K, Shi L, Dovlatyan M, Xu C, et al. Immunohistochemical localization of the calcitonin gene-related peptide binding site in the primate trigeminovascular system using functional antagonist antibodies. Neuroscience. 2016;328:165–83.PubMedCrossRefGoogle Scholar
  112. 112.
    Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W, et al. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev. 2002;54(2):233–46.PubMedCrossRefGoogle Scholar
  113. 113.
    Johansson E, Hansen JL, Hansen AM, Shaw AC, Becker P, Schaffer L, et al. Type II turn of receptor-bound salmon calcitonin revealed by X-ray crystallography. J Biol Chem. 2016;291(26):13689–98.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Evans BN, Rosenblatt MI, Mnayer LO, Oliver KR, Dickerson IM. CGRP-RCP, a novel protein required for signal transduction at calcitonin gene-related peptide and adrenomedullin receptors. J Biol Chem. 2000;275(40):31438–43.PubMedCrossRefGoogle Scholar
  115. 115.
    Brain SD, Grant AD. Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev. 2004;84(3):903–34.PubMedCrossRefGoogle Scholar
  116. 116.
    Crossman DC, Dashwood MR, Brain SD, McEwan J, Pearson JD. Action of calcitonin gene-related peptide upon bovine vascular endothelial and smooth muscle cells grown in isolation and co-culture. Br J Pharmacol. 1990;99(1):71–6.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Edvinsson L, Fredholm BB, Hamel E, Jansen I, Verrecchia C. Perivascular peptides relax cerebral arteries concomitant with stimulation of cyclic adenosine monophosphate accumulation or release of an endothelium-derived relaxing factor in the cat. Neurosci Lett. 1985;58(2):213–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Edvinsson L, Gulbenkian S, Barroso CP, Cunha e Sa M, Polak JM, Mortensen A, et al. Innervation of the human middle meningeal artery: immunohistochemistry, ultrastructure, and role of endothelium for vasomotility. Peptides. 1998;19(7):1213–25.PubMedCrossRefGoogle Scholar
  119. 119.
    Sun H, Dodick DW, Silberstein S, Goadsby PJ, Reuter U, Ashina M, et al. Safety and efficacy of AMG 334 for prevention of episodic migraine: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(4):382–90.PubMedCrossRefGoogle Scholar
  120. 120.
    Bigal ME, Edvinsson L, Rapoport AM, Lipton RB, Spierings EL, Diener HC, et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of chronic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol. 2015;14(11):1091–100.PubMedCrossRefGoogle Scholar
  121. 121.
    Dodick DW, Goadsby PJ, Silberstein SD, Lipton RB, Olesen J, Ashina M, et al. Safety and efficacy of ALD403, an antibody to calcitonin gene-related peptide, for the prevention of frequent episodic migraine: a randomised, double-blind, placebo-controlled, exploratory phase 2 trial. Lancet Neurol. 2014;13(11):1100–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Diener HC, Barbanti P, Dahlof C, Reuter U, Habeck J, Podhorna J. BI 44370 TA, an oral CGRP antagonist for the treatment of acute migraine attacks: results from a Phase II study. Cephalalgia. 2011;31(5):573–84.PubMedCrossRefGoogle Scholar
  123. 123.
    Ho TW, Ferrari MD, Dodick DW, Galet V, Kost J, Fan X, et al. Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet. 2008;372(9656):2115–23.PubMedCrossRefGoogle Scholar
  124. 124.
    Iovino M, Feifel U, Yong CL, Wolters JM, Wallenstein G. Safety, tolerability and pharmacokinetics of BIBN 4096 BS, the first selective small molecule calcitonin gene-related peptide receptor antagonist, following single intravenous administration in healthy volunteers. Cephalalgia. 2004;24(8):645–56.PubMedCrossRefGoogle Scholar
  125. 125.
    Edvinsson L. CGRP receptor antagonists and antibodies against CGRP and its receptor in migraine treatment. Br J Clin Pharmacol. 2015;80(2):193–9.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Bigal ME, Walter S. Monoclonal antibodies for migraine: preventing calcitonin gene-related peptide activity. CNS Drugs. 2014;28(5):389–99.PubMedCrossRefGoogle Scholar
  127. 127.
    Bell IM. Calcitonin gene-related peptide receptor antagonists: new therapeutic agents for migraine. J Med Chem. 2014;57(19):7838–58.PubMedCrossRefGoogle Scholar
  128. 128.
    Connor KM, Aurora SK, Loeys T, Ashina M, Jones C, Giezek H, et al. Long-term tolerability of telcagepant for acute treatment of migraine in a randomized trial. Headache. 2011;51(1):73–84.PubMedCrossRefGoogle Scholar
  129. 129.
    Bigal ME, Escandon R, Bronson M, Walter S, Sudworth M, Huggins JP, et al. Safety and tolerability of LBR-101, a humanized monoclonal antibody that blocks the binding of CGRP to its receptor: results of the Phase 1 program. Cephalalgia. 2014;34(7):483–92.PubMedCrossRefGoogle Scholar
  130. 130.
    Salvatore CA, Hershey JC, Corcoran HA, Fay JF, Johnston VK, Moore EL, et al. Pharmacological characterization of MK-0974 [N-[(3R,6S)-6-(2,3-difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide], a potent and orally active calcitonin gene-related peptide receptor antagonist for the treatment of migraine. J Pharmacol Exp Ther. 2008;324(2):416–21.PubMedCrossRefGoogle Scholar
  131. 131.
    Sun H, Dodick DW, Silberstein S, Goadsby PJ, Reuter U, Ashina M, et al. A randomised, double-blind, placebo-controlled, phase 2 study to evaluate the efficacy and safety of AMG 334 for the prevention of episodic migraine. Lancet Neurology. 2016;15:382–90.PubMedCrossRefGoogle Scholar
  132. 132.
    Dodick DW, Goadsby PJ, Spierings EL, Scherer JC, Sweeney SP, Grayzel DS. Safety and efficacy of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Neurol. 2014;13(9):885–92.PubMedCrossRefGoogle Scholar
  133. 133.
    Sexton PM, McKenzie JS, Mason RT, Moseley JM, Martin TJ, Mendelsohn FA. Localization of binding sites for calcitonin gene-related peptide in rat brain by in vitro autoradiography. Neuroscience. 1986;19(4):1235–45.PubMedCrossRefGoogle Scholar
  134. 134.
    Inagaki S, Kito S, Kubota Y, Girgis S, Hillyard CJ, MacIntyre I. Autoradiographic localization of calcitonin gene-related peptide binding sites in human and rat brains. Brain Res. 1986;374(2):287–98.PubMedCrossRefGoogle Scholar
  135. 135.
    Chakravarty P, Suthar TP, Coppock HA, Nicholl CG, Bloom SR, Legon S, et al. CGRP and adrenomedullin binding correlates with transcript levels for calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs) in rat tissues. Br J Pharmacol. 2000;130(1):189–95.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Hay DL, Poyner DR, Quirion R. International Union of P. International Union of Pharmacology. LXIX. Status of the calcitonin gene-related peptide subtype 2 receptor. Pharmacol Rev. 2008;60(2):143–5.PubMedCrossRefGoogle Scholar
  137. 137.
    McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature. 1998;393(6683):333–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Christopoulos G, Perry KJ, Morfis M, Tilakaratne N, Gao Y, Fraser NJ, et al. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol. 1999;56(1):235–42.PubMedCrossRefGoogle Scholar
  139. 139.
    Muff R, Buhlmann N, Fischer JA, Born W. An amylin receptor is revealed following co-transfection of a calcitonin receptor with receptor activity modifying proteins-1 or -3. Endocrinology. 1999;140(6):2924–7.PubMedCrossRefGoogle Scholar
  140. 140.
    Walker CS, Eftekhari S, Bower RL, Wilderman A, Insel PA, Edvinsson L, et al. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor. Ann Clin Transl Neurol. 2015;2(6):595–608.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    MaassenVanDenBrink A, Meijer J, Villalon CM, Ferrari MD. Wiping out CGRP: potential cardiovascular risks. Trends Pharmacol Sci. 2016;37(9):779–88.PubMedCrossRefGoogle Scholar
  142. 142.
    Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med. 2004;350(11):1104–10.PubMedCrossRefGoogle Scholar
  143. 143.
    Marcus R, Goadsby PJ, Dodick D, Stock D, Manos G, Fischer TZ. BMS-927711 for the acute treatment of migraine: a double-blind, randomized, placebo controlled, dose-ranging trial. Cephalalgia. 2014;34(2):114–25.PubMedCrossRefGoogle Scholar
  144. 144.
    Hewitt DJ, Aurora SK, Dodick DW, Goadsby PJ, Ge YJ, Bachman R, et al. Randomized controlled trial of the CGRP receptor antagonist MK-3207 in the acute treatment of migraine. Cephalalgia. 2011;31(6):712–22.PubMedCrossRefGoogle Scholar
  145. 145.
    Voss T, Lipton RB, Dodick DW, Dupre N, Ge JY, Bachman R, et al. A Phase IIb randomized, double-blind, placebo-controlled trial of ubrogepant for the acute treatment of migraine. Cephalalgia. 2016;36(9):887–98.PubMedCrossRefGoogle Scholar
  146. 146.
    Ho TW, Connor KM, Zhang Y, Pearlman E, Koppenhaver J, Fan X, et al. Randomized controlled trial of the CGRP receptor antagonist telcagepant for migraine prevention. Neurology. 2014;83(11):958–66.PubMedCrossRefGoogle Scholar
  147. 147.
    Tso AR, Goadsby PJ. New targets for migraine therapy. Curr Treat Options Neurol. 2014;16(11):318.PubMedCrossRefGoogle Scholar
  148. 148.
    Petersen KA, Lassen LH, Birk S, Lesko L, Olesen J. BIBN4096BS antagonizes human alpha-calcitonin gene related peptide-induced headache and extracerebral artery dilatation. Clin Pharmacol Ther. 2005;77(3):202–13.PubMedCrossRefGoogle Scholar
  149. 149.
    Baumann A. Early development of therapeutic biologics–pharmacokinetics. Curr Drug Metab. 2006;7(1):15–21.PubMedCrossRefGoogle Scholar
  150. 150.
    Silberstein S, Lenz R, Xu C. Therapeutic monoclonal antibodies: what headache specialists need to know. Headache. 2015;55(8):1171–82.PubMedCrossRefGoogle Scholar
  151. 151.
    Keizer RJ, Huitema AD, Schellens JH, Beijnen JH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(8):493–507.PubMedCrossRefGoogle Scholar
  152. 152.
    Bigal ME, Dodick DW, Rapoport AM, Silberstein SD, Ma Y, Yang R, et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of high-frequency episodic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol. 2015;14(11):1081–90.PubMedCrossRefGoogle Scholar
  153. 153.
    Felgenhauer K. Protein size and cerebrospinal fluid composition. Klin Wochenschr. 1974;52(24):1158–64.PubMedCrossRefGoogle Scholar
  154. 154.
    Schankin CJ, Maniyar FH, Seo Y, Kori S, Eller M, Chou DE, et al. Ictal lack of binding to brain parenchyma suggests integrity of the blood-brain barrier for 11C-dihydroergotamine during glyceryl trinitrate-induced migraine. Brain. 2016;139(Pt 7):1994–2001.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Amin FM, Hougaard A, Cramer SP, Christensen CE, Wolfram F, Larsson HBW, et al. Intact blood-brain barrier during spontaneous attacks of migraine without aura: a 3T DCE-MRI study. Eur J Neurol. 2017;24(9):1116–24.PubMedCrossRefGoogle Scholar
  156. 156.
    Hougaard A, Amin FM, Christensen CE, Younis S, Wolfram F, Cramer SP, et al. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura. Brain. 2017;140(6):1633–42.PubMedCrossRefGoogle Scholar
  157. 157.
    Lenz R, Dodick D, Goadsby PJ, et al. Prevention of episodic migraine with in AMG 334, a human anticalcitonin gene-related peptide receptor monoclonal antibody: phase 2 study results and 52-week analysis of open-label extension. Neurology. 2016;86 (16 Supplement):S26.002.Google Scholar
  158. 158.
    Tepper S, Ashina M, Reuter U, Brandes JL, Dolezil D, Silberstein S, et al. Safety and efficacy of erenumab for preventive treatment of chronic migraine: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2017;16(6):425–34.PubMedCrossRefGoogle Scholar
  159. 159.
    Cohen JM, Dodick DW, Yang R, Newman LC, Li T, Aycardi E, et al. Fremanezumab as add-on treatment for patients treated with other migraine preventive medicines. Headache. 2017;57(9):1375–84.PubMedCrossRefGoogle Scholar
  160. 160.
    Bigal ME, Dodick DW, Krymchantowski AV, VanderPluym JH, Tepper SJ, Aycardi E, et al. TEV-48125 for the preventive treatment of chronic migraine: efficacy at early time points. Neurology. 2016;87(1):41–8.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Mitsikostas DD, Rapoport AM. New players in the preventive treatment of migraine. BMC Med. 2015;13:279.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Bigal ME, Walter S, Rapoport AM. Calcitonin gene-related peptide (CGRP) and migraine current understanding and state of development. Headache. 2013;53(8):1230–44.PubMedCrossRefGoogle Scholar
  163. 163.
    Descotes J. Immunotoxicity of monoclonal antibodies. MAbs. 2009;1(2):104–11.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Feuerstein G, Willette R, Aiyar N. Clinical perspectives of calcitonin gene related peptide pharmacology. Can J Physiol Pharmacol. 1995;73(7):1070–4.PubMedCrossRefGoogle Scholar
  165. 165.
    Bertolotto A. Evaluation of the impact of neutralizing antibodies on IFNbeta response. Clin Chim Acta. 2015;449:31–6.PubMedCrossRefGoogle Scholar
  166. 166.
    Rup B, Pallardy M, Sikkema D, Albert T, Allez M, Broet P, et al. Standardizing terms, definitions and concepts for describing and interpreting unwanted immunogenicity of biopharmaceuticals: recommendations of the Innovative Medicines Initiative ABIRISK consortium. Clin Exp Immunol. 2015;181(3):385–400.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Goadsby PJ, Reuter U, Hallstrom Y, Broessner G, Bonner JH, Zhang F, et al. A controlled trial of erenumab for episodic migraine. N Engl J Med. 2017;377(22):2123–32.PubMedCrossRefGoogle Scholar
  168. 168.
    Silberstein SD, Dodick DW, Bigal ME, Yeung PP, Goadsby PJ, Blankenbiller T, et al. Fremanezumab for the preventive treatment of chronic migraine. N Engl J Med. 2017;377(22):2113–22.PubMedCrossRefGoogle Scholar
  169. 169.
    Ashina M, Dodick D, Goadsby PJ, Reuter U, Silberstein S, Zhang F, et al. Erenumab (AMG 334) in episodic migraine: interim analysis of an ongoing open-label study. Neurology. 2017;89(12):1237–43.PubMedCrossRefGoogle Scholar
  170. 170.
    Goadsby PJ, Paemeleire K, Broessner G, Brandes J, Klatt J, Zhang F et al. Efficacy of erenumab in subsjects with episodic migraine with prior preventive treatment failure(s). Cephalalgia. 2017;37(IS):13–4.Google Scholar
  171. 171.
    Depre C, Antalik L, Starling A, Koren M, Eisele O, Kubo Y et al. A randomized, double-blind, placebocontrolled study to evaluate the effect of erenumab on exercise time during a treadmill test in patients with stable angina. Cephalalgia. 2017;37(IS):340.Google Scholar
  172. 172.
    Karsan N, Goadsby PJ. CGRP mechanism antagonists and migraine management. Curr Neurol Neurosci Rep. 2015;15(5):25.PubMedCrossRefGoogle Scholar
  173. 173.
    Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, et al. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun. 1990;170(2):643–8.PubMedCrossRefGoogle Scholar
  174. 174.
    Uddman R, Hara H, Edvinsson L. Neuronal pathways to the rat middle meningeal artery revealed by retrograde tracing and immunocytochemistry. J Auton Nerv Syst. 1989;26(1):69–75.PubMedCrossRefGoogle Scholar
  175. 175.
    Banks WA, Kastin AJ, Komaki G, Arimura A. Passage of pituitary adenylate cyclase activating polypeptide1-27 and pituitary adenylate cyclase activating polypeptide1-38 across the blood-brain barrier. J Pharmacol Exp Ther. 1993;267(2):690–6.PubMedGoogle Scholar
  176. 176.
    Edvinsson L, Elsas T, Suzuki N, Shimizu T, Lee TJ. Origin and Co-localization of nitric oxide synthase, CGRP, PACAP, and VIP in the cerebral circulation of the rat. Microsc Res Tech. 2001;53(3):221–8.PubMedCrossRefGoogle Scholar
  177. 177.
    Laburthe M, Couvineau A, Marie JC. VPAC receptors for VIP and PACAP. Recept Chann. 2002;8(3–4):137–53.CrossRefGoogle Scholar
  178. 178.
    Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, et al. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol. 2012;166(1):4–17.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Chan KY, Baun M, de Vries R, van den Bogaerdt AJ, Dirven CM, Danser AH, et al. Pharmacological characterization of VIP and PACAP receptors in the human meningeal and coronary artery. Cephalalgia. 2011;31(2):181–9.PubMedCrossRefGoogle Scholar
  180. 180.
    Csati A, Tajti J, Kuris A, Tuka B, Edvinsson L, Warfvinge K. Distribution of vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, nitric oxide synthase, and their receptors in human and rat sphenopalatine ganglion. Neuroscience. 2012;202:158–68.PubMedCrossRefGoogle Scholar
  181. 181.
    Ingram SL, Williams JT. Modulation of the hyperpolarization-activated current (Ih) by cyclic nucleotides in guinea-pig primary afferent neurons. J Physiol. 1996;492(Pt 1):97–106.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Levy D, Strassman AM. Distinct sensitizing effects of the cAMP-PKA second messenger cascade on rat dural mechanonociceptors. J Physiol. 2002;538(Pt 2):483–93.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Jansen-Olesen I, Baun M, Amrutkar DV. PACAP-38 but not VIP induces release of CGRP from trigeminal nucleus caudalis via a receptor distinct from the PAC 1 receptor. Neuropeptides. 2014;48(2):53–64.Google Scholar
  184. 184.
    Amin FM, Hougaard A, Schytz HW, Asghar MS, Lundholm E, Parvaiz AI, et al. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38. Brain. 2014;137(Pt 3):779–94.PubMedCrossRefGoogle Scholar
  185. 185.
    Fahrenkrug J. PACAP—a multifacetted neuropeptide. Chronobiol Int. 2006;23(1–2):53–61.PubMedCrossRefGoogle Scholar
  186. 186.
    Schytz HW, Olesen J, Ashina M. The PACAP receptor: a novel target for migraine treatment. Neurotherapeutics. 2010;7(2):191–6.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Akerman S, Goadsby PJ. Neuronal PAC1 receptors mediate delayed activation and sensitization of trigeminocervical neurons: Relevance to migraine. Sci Transl Med. 2015;7(308):308ra157.Google Scholar
  188. 188.
    Cernuda-Morollon E, Riesco N, Martinez-Camblor P, Serrano-Pertierra E, Garcia-Cabo C, Pascual J. No change in interictal PACAP levels in peripheral blood in women with chronic migraine. Headache. 2016;56(9):1448–54.PubMedCrossRefGoogle Scholar
  189. 189.
    Vollesen ALH, Ashina M. PACAP38: emerging drug target in migraine and cluster headache. Headache. 2017;57(Suppl 2):56–63.PubMedCrossRefGoogle Scholar
  190. 190.
    Maleki N, Becerra L, Borsook D. Migraine: maladaptive brain responses to stress. Headache. 2012;52(Suppl 2):102–6.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Hauge AW, Kirchmann M, Olesen J. Trigger factors in migraine with aura. Cephalalgia. 2010;30(3):346–53.PubMedCrossRefGoogle Scholar
  192. 192.
    McEwen BS. Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci. 2004;1032:1–7.PubMedCrossRefGoogle Scholar
  193. 193.
    Aldrich JV, McLaughlin JP. Peptide kappa opioid receptor ligands: potential for drug development. AAPS J. 2009;11(2):312–22.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Bruchas MR, Land BB, Chavkin C. The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res. 2010;1314:44–55.PubMedCrossRefGoogle Scholar
  195. 195.
    Land BB, Bruchas MR, Lemos JC, Xu M, Melief EJ, Chavkin C. The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system. J Neurosci. 2008;28(2):407–14.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Griebel G, Holsboer F. Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning? Nat Rev Drug Discov. 2012;11(6):462–78.PubMedCrossRefGoogle Scholar
  197. 197.
    DePaoli AM, Hurley KM, Yasada K, Reisine T, Bell G. Distribution of kappa opioid receptor mRNA in adult mouse brain: an in situ hybridization histochemistry study. Mol Cell Neurosci. 1994;5(4):327–35.PubMedCrossRefGoogle Scholar
  198. 198.
    Koob GF. Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry. 1999;46(9):1167–80.PubMedCrossRefGoogle Scholar
  199. 199.
    Van’t Veer A CWJ. Role of kappa-opioid receptors in stress and anxiety-related behavior. Psychopharmacol (Berl) 2013;229:435–52.Google Scholar
  200. 200.
    Xie JY, De Felice M, Kopruszinski CM, Eyde N, LaVigne J, Remeniuk B, et al. Kappa opioid receptor antagonists: a possible new class of therapeutics for migraine prevention. Cephalalgia. 2017;37(8):780–94.PubMedCrossRefGoogle Scholar
  201. 201.
    de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA. 1998;95(1):322–7.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Gotter AL, Roecker AJ, Hargreaves R, Coleman PJ, Winrow CJ, Renger JJ. Orexin receptors as therapeutic drug targets. Prog Brain Res. 2012;198:163–88.PubMedCrossRefGoogle Scholar
  203. 203.
    Holland PR, Akerman S, Goadsby PJ. Modulation of nociceptive dural input to the trigeminal nucleus caudalis via activation of the orexin 1 receptor in the rat. Eur J Neurosci. 2006;24(10):2825–33.PubMedCrossRefGoogle Scholar
  204. 204.
    Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–85.PubMedCrossRefGoogle Scholar
  205. 205.
    Holland P, Goadsby PJ. The hypothalamic orexinergic system: pain and primary headaches. Headache. 2007;47(6):951–62.PubMedCrossRefGoogle Scholar
  206. 206.
    Bigal ME, Hargreaves RJ. Why does sleep stop migraine? Curr Pain Headache Rep. 2013;17(10):369.PubMedCrossRefGoogle Scholar
  207. 207.
    Andress-Rothrock D, King W, Rothrock J. An analysis of migraine triggers in a clinic-based population. Headache. 2010;50(8):1366–70.PubMedCrossRefGoogle Scholar
  208. 208.
    Holland PR, Akerman S, Goadsby PJ. Orexin 1 receptor activation attenuates neurogenic dural vasodilation in an animal model of trigeminovascular nociception. J Pharmacol Exp Ther. 2005;315(3):1380–5.PubMedCrossRefGoogle Scholar
  209. 209.
    Hoffmann J, Supronsinchai W, Akerman S, Andreou AP, Winrow CJ, Renger J, et al. Evidence for orexinergic mechanisms in migraine. Neurobiol Dis. 2015;74:137–43.PubMedCrossRefGoogle Scholar
  210. 210.
    Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(5):1 (page following 696).Google Scholar
  211. 211.
    Herring WJ, Snyder E, Budd K, Hutzelmann J, Snavely D, Liu K, et al. Orexin receptor antagonism for treatment of insomnia: a randomized clinical trial of suvorexant. Neurology. 2012;79(23):2265–74.PubMedCrossRefGoogle Scholar
  212. 212.
    Hoever P, Dorffner G, Benes H, Penzel T, Danker-Hopfe H, Barbanoj MJ, et al. Orexin receptor antagonism, a new sleep-enabling paradigm: a proof-of-concept clinical trial. Clin Pharmacol Ther. 2012;91(6):975–85.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Chabi F, Champmartin S, Sarraf C, Noguera R. Critical evaluation of three hemodynamic models for the numerical simulation of intra-stent flows. J Biomech. 2015;48(10):1769–76.PubMedCrossRefGoogle Scholar
  214. 214.
    Wemmie JA, Price MP, Welsh MJ. Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci. 2006;29(10):578–86.PubMedCrossRefGoogle Scholar
  215. 215.
    Baron A, Voilley N, Lazdunski M, Lingueglia E. Acid sensing ion channels in dorsal spinal cord neurons. J Neurosci. 2008;28(6):1498–508.PubMedCrossRefGoogle Scholar
  216. 216.
    Price MP, Snyder PM, Welsh MJ. Cloning and expression of a novel human brain Na+ channel. J Biol Chem. 1996;271(14):7879–82.PubMedCrossRefGoogle Scholar
  217. 217.
    Waldmann R, Champigny G, Voilley N, Lauritzen I, Lazdunski M. The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J Biol Chem. 1996;271(18):10433–6.PubMedCrossRefGoogle Scholar
  218. 218.
    Wu LJ, Duan B, Mei YD, Gao J, Chen JG, Zhuo M, et al. Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J Biol Chem. 2004;279(42):43716–24.PubMedCrossRefGoogle Scholar
  219. 219.
    Mamet J, Baron A, Lazdunski M, Voilley N. Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci. 2002;22(24):10662–70.PubMedGoogle Scholar
  220. 220.
    Voilley N, de Weille J, Mamet J, Lazdunski M. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci. 2001;21(20):8026–33.PubMedGoogle Scholar
  221. 221.
    Lambert GA, Michalicek J. Cortical spreading depression reduces dural blood flow—a possible mechanism for migraine pain? Cephalalgia. 1994;14(6):430–6.Google Scholar
  222. 222.
    Burstein R. Deconstructing migraine headache into peripheral and central sensitization. Pain. 2001;89(2–3):107–10.PubMedCrossRefGoogle Scholar
  223. 223.
    Friese MA, Craner MJ, Etzensperger R, Vergo S, Wemmie JA, Welsh MJ, et al. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med. 2007;13(12):1483–9.PubMedCrossRefGoogle Scholar
  224. 224.
    Holland PR, Akerman S, Andreou AP, Karsan N, Wemmie JA, Goadsby PJ. Acid-sensing ion channel 1: a novel therapeutic target for migraine with aura. Ann Neurol. 2012;72(4):559–63.PubMedCrossRefGoogle Scholar
  225. 225.
    Watkins LR, Milligan ED, Maier SF. Glial activation: a driving force for pathological pain. Trends Neurosci. 2001;24(8):450–5.PubMedCrossRefGoogle Scholar
  226. 226.
    Watkins LR, Maier SF. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev. 2002;82(4):981–1011.PubMedCrossRefGoogle Scholar
  227. 227.
    Ren K, Dubner R. Neuron-glia crosstalk gets serious: role in pain hypersensitivity. Curr Opin Anaesthesiol. 2008;21(5):570–9.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Milligan ED, Watkins LR. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci. 2009;10(1):23–36.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Mizuno T, Kurotani T, Komatsu Y, Kawanokuchi J, Kato H, Mitsuma N, et al. Neuroprotective role of phosphodiesterase inhibitor ibudilast on neuronal cell death induced by activated microglia. Neuropharmacology. 2004;46(3):404–11.PubMedCrossRefGoogle Scholar
  230. 230.
    Rolan P, Hutchinson M, Johnson K. Ibudilast: a review of its pharmacology, efficacy and safety in respiratory and neurological disease. Expert Opin Pharmacother. 2009;10(17):2897–904.PubMedCrossRefGoogle Scholar
  231. 231.
    Hutchinson MR, Lewis SS, Coats BD, Skyba DA, Crysdale NY, Berkelhammer DL, et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun. 2009;23(2):240–50.PubMedCrossRefGoogle Scholar
  232. 232.
    Thalakoti S, Patil VV, Damodaram S, Vause CV, Langford LE, Freeman SE, et al. Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology. Headache. 2007;47(7):1008–23.Google Scholar
  233. 233.
    Kraig RP, Mitchell HM, Christie-Pope B, Kunkler PE, White DM, Tang YP, et al. TNF-alpha and microglial hormetic involvement in neurological health & migraine. Dose Response. 2010;8(4):389–413.PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Bartley J. Could glial activation be a factor in migraine? Med Hypothes. 2009;72(3):255–7.CrossRefGoogle Scholar
  235. 235.
    Raghavendra V, Tanga F, DeLeo JA. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther. 2003;306(2):624–30.PubMedCrossRefGoogle Scholar
  236. 236.
    Sweitzer SM, Colburn RW, Rutkowski M, DeLeo JA. Acute peripheral inflammation induces moderate glial activation and spinal IL-1beta expression that correlates with pain behavior in the rat. Brain Res. 1999;829(1–2):209–21.PubMedCrossRefGoogle Scholar
  237. 237.
    Ledeboer A, Liu T, Shumilla JA, Mahoney JH, Vijay S, Gross MI, et al. The glial modulatory drug AV411 attenuates mechanical allodynia in rat models of neuropathic pain. Neuron Glia Biol. 2006;2(4):279–91.PubMedCrossRefGoogle Scholar
  238. 238.
    Rolan P, Gibbons JA, He L, Chang E, Jones D, Gross MI, et al. Ibudilast in healthy volunteers: safety, tolerability and pharmacokinetics with single and multiple doses. Br J Clin Pharmacol. 2008;66(6):792–801.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Barkhof F, Hulst HE, Drulovic J, Uitdehaag BM, Matsuda K, Landin R, et al. Ibudilast in relapsing-remitting multiple sclerosis: a neuroprotectant? Neurology. 2010;74(13):1033–40.PubMedCrossRefGoogle Scholar
  240. 240.
    Kwok YH, Swift JE, Gazerani P, Rolan P. A double-blind, randomized, placebo-controlled pilot trial to determine the efficacy and safety of ibudilast, a potential glial attenuator, in chronic migraine. J Pain Res. 2016;9:899–907.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Johnson JL, Kwok YH, Sumracki NM, Swift JE, Hutchinson MR, Johnson K, et al. Glial attenuation with ibudilast in the treatment of medication overuse headache: a double-blind, randomized, placebo-controlled pilot trial of efficacy and safety. Headache. 2015;55(9):1192–208.PubMedCrossRefGoogle Scholar
  242. 242.
    Kuwabara Y, Takeda S, Mizuno M, Sakamoto S. Oxytocin levels in maternal and fetal plasma, amniotic fluid, and neonatal plasma and urine. Arch Gynecol Obstet. 1987;241(1):13–23.PubMedCrossRefGoogle Scholar
  243. 243.
    Hoshiyama E, Tatsumoto M, Iwanami H, Saisu A, Watanabe H, Inaba N, et al. Postpartum migraines: a long-term prospective study. Intern Med. 2012;51(22):3119–23.PubMedCrossRefGoogle Scholar
  244. 244.
    Grewen KM, Davenport RE, Light KC. An investigation of plasma and salivary oxytocin responses in breast- and formula-feeding mothers of infants. Psychophysiology. 2010;47(4):625–32.PubMedPubMedCentralGoogle Scholar
  245. 245.
    Carmichael MS, Humbert R, Dixen J, Palmisano G, Greenleaf W, Davidson JM. Plasma oxytocin increases in the human sexual response. J Clin Endocrinol Metab. 1987;64(1):27–31.PubMedCrossRefGoogle Scholar
  246. 246.
    Evans RW, Couch R. Orgasm and migraine. Headache. 2001;41(5):512–4.PubMedCrossRefGoogle Scholar
  247. 247.
    Phillips WJ, Ostrovsky O, Galli RL, Dickey S. Relief of acute migraine headache with intravenous oxytocin: report of two cases. J Pain Palliat Care Pharmacother. 2006;20(3):25–8.PubMedGoogle Scholar
  248. 248.
    Tzabazis A, Kori S, Mechanic J, Miller J, Pascual C, Manering N, et al. Oxytocin and migraine headache. Headache. 2017;57(Suppl 2):64–75.PubMedCrossRefGoogle Scholar
  249. 249.
    Tzabazis A, Mechanic J, Miller J, Klukinov M, Pascual C, Manering N, et al. Oxytocin receptor: expression in the trigeminal nociceptive system and potential role in the treatment of headache disorders. Cephalalgia. 2016;36(10):943–50.PubMedCrossRefGoogle Scholar
  250. 250.
    De Col R, Koulchitsky SV, Messlinger KB. Nitric oxide synthase inhibition lowers activity of neurons with meningeal input in the rat spinal trigeminal nucleus. NeuroReport. 2003;14(2):229–32.PubMedCrossRefGoogle Scholar
  251. 251.
    Tassorelli C, Joseph SA. Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat. Brain Res. 1995;682(1–2):167–81.PubMedCrossRefGoogle Scholar
  252. 252.
    Shimomura T, Murakami F, Kotani K, Ikawa S, Kono S. Platelet nitric oxide metabolites in migraine. Cephalalgia. 1999;19(4):218–22.PubMedCrossRefGoogle Scholar
  253. 253.
    Taffi R, Vignini A, Lanciotti C, Luconi R, Nanetti L, Mazzanti L, et al. Platelet membrane fluidity and peroxynitrite levels in migraine patients during headache-free periods. Cephalalgia. 2005;25(5):353–8.PubMedCrossRefGoogle Scholar
  254. 254.
    Hoivik HO, Laurijssens BE, Harnisch LO, Twomey CK, Dixon RM, Kirkham AJ, et al. Lack of efficacy of the selective iNOS inhibitor GW274150 in prophylaxis of migraine headache. Cephalalgia. 2010;30(12):1458–67.PubMedCrossRefGoogle Scholar
  255. 255.
    Andreou AP, Goadsby PJ. Therapeutic potential of novel glutamate receptor antagonists in migraine. Expert Opin Investig Drugs. 2009;18(6):789–803.PubMedCrossRefGoogle Scholar
  256. 256.
    Ramadan NM. The link between glutamate and migraine. CNS Spectr. 2003;8(6):446–9.PubMedCrossRefGoogle Scholar
  257. 257.
    Waung MW, Akerman S, Wakefield M, Keywood C, Goadsby PJ. Metabotropic glutamate receptor 5: a target for migraine therapy. Ann Clin Transl Neurol. 2016;3(8):560–71.PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Huang L, Bocek M, Jordan JK, Sheehan AH. Memantine for the prevention of primary headache disorders. Ann Pharmacother. 2014;48(11):1507–11.PubMedCrossRefGoogle Scholar
  259. 259.
    Noruzzadeh R, Modabbernia A, Aghamollaii V, Ghaffarpour M, Harirchian MH, Salahi S, et al. Memantine for prophylactic treatment of migraine without aura: a randomized double-blind placebo-controlled study. Headache. 2016;56(1):95–103.PubMedCrossRefGoogle Scholar
  260. 260.
    Barbanti P, Egeo G. Pharmacological trials in migraine: it’s time to reappraise where the headache is and what the pain is like. Headache. 2015;55(3):439–41.PubMedCrossRefGoogle Scholar
  261. 261.
    Barbanti P, Fabbrini G, Vanacore N, Pesare M, Buzzi MG. Sumatriptan in migraine with unilateral cranial autonomic symptoms: an open study. Headache. 2003;43(4):400–3.PubMedCrossRefGoogle Scholar
  262. 262.
    Barbanti P, Fofi L, Dall’Armi V, Aurilia C, Egeo G, Vanacore N, et al. Rizatriptan in migraineurs with unilateral cranial autonomic symptoms: a double-blind trial. J Headache Pain. 2012;13(5):407–14.PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Jakubowski M, McAllister PJ, Bajwa ZH, Ward TN, Smith P, Burstein R. Exploding vs imploding headache in migraine prophylaxis with Botulinum Toxin A. Pain. 2006;125(3):286–95.PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Sandrini G, Perrotta A, Tassorelli C, Torelli P, Brighina F, Sances G, et al. Botulinum toxin type-A in the prophylactic treatment of medication-overuse headache: a multicenter, double-blind, randomized, placebo-controlled, parallel group study. J Headache Pain. 2011;12(4):427–33.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Cernuda-Morollon E, Ramon C, Martinez-Camblor P, Serrano-Pertierra E, Larrosa D, Pascual J. OnabotulinumtoxinA decreases interictal CGRP plasma levels in patients with chronic migraine. Pain. 2015;156(5):820–4.PubMedCrossRefGoogle Scholar
  266. 266.
    Skljarevski V, Oakes TM, Zhang Q, Ferguson MB, Martinez J, Camporeale A, et al. Effect of different doses of galcanezumab vs placebo for episodic migraine prevention: a randomized clinical trial. JAMA Neurol. 2017.Google Scholar
  267. 267.
    Stauffer VL, Zhang Q, Skljarevski V, Millen B, Yang J, Selzler KJ, et al. Phase 3 study (EVOLVE-1) of galcanezumab in episodic migraine. Headache. 2017;57(8):1336.CrossRefGoogle Scholar
  268. 268.
    Skljarevski V, Zhang Q, Detke HC, Millen B, Yang J, Selzler KJ. Phase 3 study (EVOLVE-2) of galcanezumab in episodic migraine. Headache. 2017;57:1312.Google Scholar
  269. 269.
    Detke HC, Wang S, Skljarevski V, Ahl J, Millen B, Aurora SK, et al. Galcanezumab in patients with chronic migraine: results from the 3-month double-blind treatment phase of the REGAIN study. Headache. 2017;57:1336–7.Google Scholar
  270. 270.
    Dodick D, Ashina M, Kudrow D, Lanteri-Minet M, Osipova V, Palmer K, et al. A phase 3, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of erenumab in migraine prevention: primary results of the ARISE trial. Headache. 2017;57(Suppl3):191–2.Google Scholar
  271. 271.
    Saper J, Lipton R, Kudrow D, Hirman J, Dodick D, Silberstein S, et al. A Phase 3, Randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of eptinezumab in frequent episodic migraine prevention: primary results of the PROMISE 1 (PRevention Of Migraine via Intravenous eptinezumab Safety and Efficacy 1) Trial. Cephalalgia. 2017;37(IS):337.Google Scholar
  272. 272.
    Aycardi E, Bigal M, Yeung P, Blankenbiller T, Grozinski-Wolff M, Yang R, et al. Efficacy and safety of 2 dose regimens of subcutaneous administration of fremanezumab (TEV-48125) versus placebo for the preventive treatment of episodic migraine. Cephalalgia. 2017;57 (IS):343.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jonathan Jia Yuan Ong
    • 1
    • 2
    • 3
  • Diana Yi-Ting Wei
    • 1
    • 2
  • Peter J. Goadsby
    • 1
    • 2
    Email author
  1. 1.Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK
  2. 2.NIHR-Wellcome Trust King’s Clinical Research FacilityKing’s College HospitalLondonUK
  3. 3.Division of Neurology, Department of MedicineNational University Health System, University Medicine ClusterSingaporeSingapore

Personalised recommendations