Advertisement

Drugs

, Volume 78, Issue 2, pp 155–162 | Cite as

Hypermutated Tumors and Immune Checkpoint Inhibition

Leading Article

Abstract

Microsatellite instability-high/DNA mismatch repair deficient tumors are found across the cancer spectrum and often harbor markedly increased numbers of mutations when compared to microsatellite stable/DNA mismatch repair proficient tumors. As a result of this high mutational load, tumor-infiltrating lymphocyte density is increased and more immunogenic neoepitopes are expressed, leading to upregulation of immune checkpoints in these tumors. Checkpoint inhibitors such as pembrolizumab and nivolumab, both immunoglobulin G4 (IgG4) monoclonal antibodies that block interactions between the programmed cell death receptor-1 and its ligands, have significant activity in this tumor class. This review will focus on hypermutated tumors and immuno-oncology drug development for this biologically unique tumor type, with an emphasis on FDA-approved immunotherapies for these cancers, as well as a short discussion of the many therapeutic and scientific challenges ahead in order to optimize the uses of this new class of drug.

Notes

Funding

No funding was received for the preparation of this article.

Compliance with Ethical Standards

Conflict of interest

Both authors (KKC, RMG) have received research funding from Merck. KKC has also received research funding from Bristol-Myers Squibb. RMG has served as a paid consultant to Merck and Merck KGA.

References

  1. 1.
    Bellmunt J, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015–26.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Garon EB, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28.CrossRefPubMedGoogle Scholar
  3. 3.
    Chen R, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017;35(19):2125–32.CrossRefPubMedGoogle Scholar
  4. 4.
    Herbst RS, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50.CrossRefPubMedGoogle Scholar
  5. 5.
    Nghiem PT, et al. PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma. N Engl J Med. 2016;374(26):2542–52.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Reck M, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Ribas A, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16(8):908–18.CrossRefPubMedGoogle Scholar
  8. 8.
    Ansell SM, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Antonia SJ, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016;17(7):883–95.CrossRefPubMedGoogle Scholar
  10. 10.
    Borghaei H, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Brahmer J, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ferris RL, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Larkin J, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Motzer RJ, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Postow MA, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Robert C, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.CrossRefPubMedGoogle Scholar
  17. 17.
    Sharma P, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18(3):312–22.CrossRefPubMedGoogle Scholar
  18. 18.
    Le DT, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Aaltonen LA, et al. Clues to the pathogenesis of familial colorectal cancer. Science. 1993;260(5109):812–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Goldstein J, et al. Multicenter retrospective analysis of metastatic colorectal cancer (CRC) with high-level microsatellite instability (MSI-H). Ann Oncol. 2014;25(5):1032–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005;23(3):609–18.CrossRefPubMedGoogle Scholar
  22. 22.
    Lochhead P, et al. Microsatellite instability and BRAF mutation testing in colorectal cancer prognostication. J Natl Cancer Inst. 2013;105(15):1151–6.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Phipps AI, et al. Association between molecular subtypes of colorectal cancer and patient survival. Gastroenterology. 2015;148(1):77–87 e2.CrossRefPubMedGoogle Scholar
  24. 24.
    French AJ, et al. Prognostic significance of defective mismatch repair and BRAF V600E in patients with colon cancer. Clin Cancer Res. 2008;14(11):3408–15.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ribic CM, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349(3):247–57.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Carethers JM, et al. Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. Gastroenterology. 2004;126(2):394–401.CrossRefPubMedGoogle Scholar
  27. 27.
    Sargent DJ, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010;28(20):3219–26.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tajima A, et al. The mismatch repair complex hMutS alpha recognizes 5-fluorouracil-modified DNA: implications for chemosensitivity and resistance. Gastroenterology. 2004;127(6):1678–84.CrossRefPubMedGoogle Scholar
  29. 29.
    Tajima A, et al. Both hMutSalpha and hMutSss DNA mismatch repair complexes participate in 5-fluorouracil cytotoxicity. PLoS One. 2011;6(12):e28117.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138(6):2073–2087 e3.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sinicrope FA, et al. DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J Natl Cancer Inst. 2011;103(11):863–75.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Webber EM, et al. Systematic review of the predictive effect of MSI status in colorectal cancer patients undergoing 5FU-based chemotherapy. BMC Cancer. 2015;15:156.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lynch HT, et al. Milestones of Lynch syndrome: 1895–2015. Nat Rev Cancer. 2015;15(3):181–94.CrossRefPubMedGoogle Scholar
  34. 34.
    Kane MF, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997;57(5):808–11.PubMedGoogle Scholar
  35. 35.
    Geurts-Giele WR, et al. Somatic aberrations of mismatch repair genes as a cause of microsatellite-unstable cancers. J Pathol. 2014;234(4):548–59.CrossRefPubMedGoogle Scholar
  36. 36.
    Haraldsdottir S, et al. Colon and endometrial cancers with mismatch repair deficiency can arise from somatic, rather than germline, mutations. Gastroenterology. 2014;147(6):1308–1316 e1.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Parsons R, et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell. 1993;75(6):1227–36.CrossRefPubMedGoogle Scholar
  38. 38.
    Bhattacharyya NP, et al. Mutator phenotypes in human colorectal carcinoma cell lines. Proc Natl Acad Sci USA. 1994;91(14):6319–23.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Eshleman JR, et al. Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer. Oncogene. 1995;10(1):33–7.PubMedGoogle Scholar
  40. 40.
    Modrich P. DNA mismatch correction. Annu Rev Biochem. 1987;56:435–66.CrossRefPubMedGoogle Scholar
  41. 41.
    Fishel R, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993;75(5):1027–38.CrossRefPubMedGoogle Scholar
  42. 42.
    Liu B, et al. hMSH2 mutations in hereditary nonpolyposis colorectal cancer kindreds. Cancer Res. 1994;54(17):4590–4.PubMedGoogle Scholar
  43. 43.
    Papadopoulos N, et al. Mutation of a mutL homolog in hereditary colon cancer. Science. 1994;263(5153):1625–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Bronner CE, et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature. 1994;368(6468):258–61.CrossRefPubMedGoogle Scholar
  45. 45.
    Eshleman JR, Markowitz SD. Mismatch repair defects in human carcinogenesis. Hum Mol Genet. 1996;5:1489–94.CrossRefPubMedGoogle Scholar
  46. 46.
    Hause RJ, et al. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med. 2016;22(11):1342–50.CrossRefPubMedGoogle Scholar
  47. 47.
    Kim H, et al. Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol. 1994;145(1):148–56.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Alexander J, et al. Histopathological identification of colon cancer with microsatellite instability. Am J Pathol. 2001;158(2):527–35.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Dolcetti R, et al. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol. 1999;154(6):1805–13.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ogino S, et al. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin Cancer Res. 2009;15(20):6412–20.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Vogelstein B, et al. Cancer genome landscapes. Science. 2013;339(6127):1546–58.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Jung B, et al. Loss of activin receptor type 2 protein expression in microsatellite unstable colon cancers. Gastroenterology. 2004;126(3):654–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Markowitz S, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 1995;268(5215):1336–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Lee V, et al. Mismatch repair deficiency and response to immune checkpoint blockade. Oncologist. 2016;21(10):1200–11.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Llosa NJ, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015;5(1):43–51.CrossRefPubMedGoogle Scholar
  56. 56.
    Gatalica Z, et al. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol Biomarkers Prev. 2014;23(12):2965–70.CrossRefPubMedGoogle Scholar
  57. 57.
    Patnaik A, et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res. 2015;21(19):4286–93.CrossRefPubMedGoogle Scholar
  58. 58.
    Le DT, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348(10):919–32.CrossRefPubMedGoogle Scholar
  60. 60.
    Yamamoto H, Imai K, Perucho M. Gastrointestinal cancer of the microsatellite mutator phenotype pathway. J Gastroenterol. 2002;37(3):153–63.CrossRefPubMedGoogle Scholar
  61. 61.
    Zaretsky JM, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–29.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
  63. 63.
    Brahmer JR, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–75.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lipson EJ, et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res. 2013;19(2):462–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Overman MJ, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91.CrossRefPubMedGoogle Scholar
  66. 66.
  67. 67.
    Andre T, Lonardi S, Wong KYM, et al. Combination of nivolumab + ipilimumab in the treatment of patients with deficient DNA mismatch repair/microsatellite instability metastatic colorectal cancer: CheckMate 142 study. Proc Am Soc Clin Oncol. 2017;2017:35.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Hematology and Oncology, Department of Internal MedicineVanderbilt-Ingram Cancer CenterNashvilleUSA
  2. 2.West Virginia University Cancer InstituteMorgantownUSA

Personalised recommendations