Drugs

pp 1–15 | Cite as

Lipid Management in Chronic Kidney Disease: Systematic Review of PCSK9 Targeting

Review Article
  • 154 Downloads

Abstract

Cardiovascular disease is the leading cause of death in patients with chronic kidney disease (CKD) and CKD is considered a coronary artery disease risk equivalent. So far, statins have been the mainstay of primary and secondary prevention of cardiovascular disease in the general population. However, their benefit on outcomes is limited and controversial in CKD patients and new therapeutic approaches to reduce cardiovascular risk are needed. Monoclonal antibodies targeting proprotein convertase subtilisin/kexin 9 (PCSK9) reduce low-density lipoprotein cholesterol (LDL-C) and lipoprotein(a) in high-risk populations and cardiovascular events in secondary prevention. We now review the limitations of the current approach to lipid management in CKD and information on CKD patients from clinical trials of anti-PCSK9 monoclonal antibodies alirocumab and evolocumab. In CKD sub-group analysis, ODYSSEY COMBO I and ODYSSEY COMBO II studies demonstrated significant superiority of alirocumab on LDL-cholesterol lowering in comparison to placebo and ezetimibe, respectively, when added to statins, and case reports have shown efficacy in nephrotic syndrome. A detailed analysis of CKD subgroups in general population trials of anti-PCSK9 strategies addressing events is needed, given the limited efficacy of statins in CKD both in terms of lipid lowering and events, the high rate of statin non-compliance in these patients, and the high lipoprotein(a) levels. This information should guide the design of trials addressing the safety profile and efficacy on cardiovascular outcomes of PCSK9-targeted therapies in CKD patients.

Notes

Compliance with Ethical Standards

Funding

Research of the authors has been supported by grants from Instituto de Salud Carlos III, Red REDinREN RD 16/0009, FIS PI15/00298, PI15/01460, PI16/02057, PI16/01900, Sociedad Española de Nefrologia, AO was supported by the Programa de Intensificación de la Actividad Investigadora in the Sistema Nacional de Salud and MDSN, ABS and AMR by Miguel Servet program of the Instituto de Salud Carlos III.

Conflict of interest

Unrelated to PCSK9 inhibitors, Alberto Ortiz has served as a consultant for Sanofi and Servier, received speaker fees Amgen, Otsuka, and Shire. BinBin Zheng-Lin declares no potential conflicts of interest with the contents of this manuscript.

Supplementary material

40265_2017_858_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 kb)
40265_2017_858_MOESM2_ESM.docx (25 kb)
Supplementary material 2 (DOCX 25 kb)
40265_2017_858_MOESM3_ESM.docx (24 kb)
Supplementary material 3 (DOCX 24 kb)
40265_2017_858_MOESM4_ESM.pptx (137 kb)
Supplementary material 4 (PPTX 136 kb)

References

  1. 1.
    Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe—epidemiological update 2015. Eur Heart J. 2014;35:2950–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Alzamora MT, Forés R, Baena-Díez JM, Pera G, Toran P, Sorribes M, et al. The peripheral arterial disease study (PERART/ARTPER): prevalence and risk factors in the general population. BMC Public Health. 2010;10:38.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Law MR, Wald NJ, Rudnicka AR. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ. 2003;326:1423. http://www.bmj.com/content/326/7404/1423.
  4. 4.
    George M, Selvarajan S, Muthukumar R, Elangovan S. Looking into the crystal ball-upcoming drugs for dyslipidemia. J Cardiovasc Pharmacol Ther. 2015;20:11–20.CrossRefPubMedGoogle Scholar
  5. 5.
    Ahmad Z. Statin intolerance. Am J Cardiol. 2014;113:1765–71.CrossRefPubMedGoogle Scholar
  6. 6.
    Wanner C, Tonelli M. KDIGO clinical practice guideline for lipid management in CKD: summary of recommendation statements and clinical approach to the patient. Kidney Int. 2014;85:1303–9.  https://doi.org/10.1038/ki.2014.31.CrossRefPubMedGoogle Scholar
  7. 7.
    Briasoulis A, Bakris GL. Chronic kidney disease as a coronary artery disease risk equivalent. Curr Cardiol Rep. 2013;15:340. http://www.ncbi.nlm.nih.gov/pubmed/23338722.
  8. 8.
    GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet (London, England). 2015;385:117–71. http://www.ncbi.nlm.nih.gov/pubmed/25530442.
  9. 9.
    Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet (London, England). 2011;377:2181–92. http://www.ncbi.nlm.nih.gov/pubmed/21663949.
  10. 10.
    Wanner C, Krane V, März W, Olschewski M, Asmus HG, Krämer W, et al. Randomized controlled trial on the efficacy and safety of atorvastatin in patients with type 2 diabetes on hemodialysis (4D study): demographic and baseline characteristics. Kidney Blood Press Res. 2004;27:259–66.CrossRefPubMedGoogle Scholar
  11. 11.
    Fellström B, Holdaas H, Jardine AG, Svensson MK, Gottlow M, Schmieder RE, et al. Cardiovascular disease in patients with renal disease: the role of statins. Curr Med Res Opin. 2009;25:271–85. http://www.ncbi.nlm.nih.gov/pubmed/19210158.
  12. 12.
    Holdaas H, Fellström B, Jardine AG, Holme I, Nyberg G, Fauchald P, et al. Effect of fluvastatin on cardiac outcomes in renal transplant recipients: a multicentre, randomised, placebo-controlled trial. Lancet. 2003;361:2024–31.CrossRefPubMedGoogle Scholar
  13. 13.
    Tonelli M, Wanner C. Lipid management in chronic kidney disease: Synopsis of the kidney disease: improving global outcomes 2013 clinical practice guideline. Ann Intern Med. 2014;160:182–9. http://www.scopus.com/inward/record.url?eid=2-s2.0-84893859646&partnerID=40&md5=5aec35eff84936c3de14a2babdc26d82.
  14. 14.
    Stevens LA, Li S, Wang C, Huang C, Becker BN, Bomback AS, et al. Prevalence of CKD and comorbid illness in elderly patients in the United States: results from the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis. 2010;55:S23–S33. http://www.ncbi.nlm.nih.gov/pubmed/20172445.
  15. 15.
    Adeniyi AB, Laurence CE, Volmink JA, Davids MR. Prevalence of chronic kidney disease and association with cardiovascular risk factors among teachers in Cape Town, South Africa. Clin. Kidney J. 2017;10:363–369. http://www.ncbi.nlm.nih.gov/pubmed/28621342.
  16. 16.
    Kuznik A, Mardekian J, Tarasenko L. Evaluation of cardiovascular disease burden and therapeutic goal attainment in US adults with chronic kidney disease: an analysis of national health and nutritional examination survey data, 2001–2010. BMC Nephrol. 2013;14:132. http://www.ncbi.nlm.nih.gov/pubmed/23802885.
  17. 17.
    Enkhmaa B, Anuurad E, Berglund L. Lipoprotein (a): impact by ethnicity and environmental and medical conditions. J Lipid Res. 2016;57:1111–1125. http://www.ncbi.nlm.nih.gov/pubmed/26637279.
  18. 18.
    Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, et al. 2016 ESC/EAS Guidelines for the management of dyslipidaemias. Eur Heart J. 2016;37:2999–3058. http://www.ncbi.nlm.nih.gov/pubmed/27567407.
  19. 19.
    Senba H, Furukawa S, Sakai T, Niiya T, Miyake T, Yamamoto S, et al. Serum lipoprotein(a) levels and diabetic nephropathy among Japanese patients with type 2 diabetes mellitus. J Diabetes Complic. 2016;30:923–927. http://www.ncbi.nlm.nih.gov/pubmed/26947887.
  20. 20.
    Lin J, Reilly MP, Terembula K, Wilson FP. Plasma lipoprotein(a) levels are associated with mild renal impairment in type 2 diabetics independent of albuminuria. PLoS One. 2014;9:e114397. http://www.ncbi.nlm.nih.gov/pubmed/25490096.
  21. 21.
    Vaziri ND. Disorders of lipid metabolism in nephrotic syndrome: mechanisms and consequences. Kidney Int. 2016;90:41–52. http://www.ncbi.nlm.nih.gov/pubmed/27165836.
  22. 22.
    Hohenstein B. Lipoprotein(a) in nephrological patients. Clin Res Cardiol Suppl. 2017;12:27–30. http://www.ncbi.nlm.nih.gov/pubmed/28181057.
  23. 23.
    Kollerits B, Drechsler C, Krane V, Lamina C, März W, Dieplinger H, et al. Lipoprotein(a) concentrations, apolipoprotein(a) isoforms and clinical endpoints in haemodialysis patients with type 2 diabetes mellitus: results from the 4D Study. Nephrol Dial Transpl. 2016;31:1901–1908. http://www.ncbi.nlm.nih.gov/pubmed/26754832.
  24. 24.
    Konishi H, Miyauchi K, Tsuboi S, Ogita M, Naito R, Dohi T, et al. Plasma lipoprotein(a) predicts major cardiovascular events in patients with chronic kidney disease who undergo percutaneous coronary intervention. Int J Cardiol. 2016;205:50–53. http://www.ncbi.nlm.nih.gov/pubmed/26710333.
  25. 25.
    Lin J, Khetarpal SA, Terembula K, Reilly MP, Wilson FP. Relation of atherogenic lipoproteins with estimated glomerular filtration rate decline: a longitudinal study. BMC Nephrol. 2015;16:130. http://www.ncbi.nlm.nih.gov/pubmed/26238454.
  26. 26.
    Abifadel M, Varret M, Rabès J-P, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–156. http://www.ncbi.nlm.nih.gov/pubmed/12730697.
  27. 27.
    Tavori H, Fan D, Blakemore JL, Yancey PG, Ding L, Linton MF, et al. Serum proprotein convertase subtilisin/kexin type 9 and cell surface low-density lipoprotein receptor: evidence for a reciprocal regulation. Circulation. 2013;127:2403–413. http://www.ncbi.nlm.nih.gov/pubmed/23690465.
  28. 28.
    Lo Surdo P, Bottomley MJ, Calzetta A, Settembre EC, Cirillo A, Pandit S, et al. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. EMBO Rep. 2011;12:1300–1305. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3245695&tool=pmcentrez&rendertype=abstract%5Cn, http://embor.embopress.org/cgi/doi/10.1038/embor.2011.205%5Cn, http://www.ncbi.nlm.nih.gov/pubmed/22081141%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fc.
  29. 29.
    Gustafsen C, Olsen D, Vilstrup J, Lund S, Reinhardt A, Wellner N, et al. Heparan sulfate proteoglycans present PCSK9 to the LDL receptor. Nat Commun. 2017;8:503. http://www.ncbi.nlm.nih.gov/pubmed/28894089.
  30. 30.
    Lambert G, Sjouke B, Choque B, Kastelein JJP, Hovingh GK. The PCSK9 decade. J. Lipid Res. 2012;53:2515–2524. http://www.ncbi.nlm.nih.gov/pubmed/22811413.
  31. 31.
    Dong B, Wu M, Li H, Kraemer F, Adeli K, Seidah N, et al. Strong induction of PCSK9 gene expression through HNF1alpha and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. J Lipid Res. 2010;51:1486–95.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Awan Z, Seidah NG, MacFadyen JG, Benjannet S, Chasman DI, Ridker PM, et al. Rosuvastatin, proprotein convertase subtilisin/kexin type 9 concentrations, and LDL cholesterol response: the JUPITER trial. Clin Chem. 2012;58:183–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Gibbs JP, Doshi S, Kuchimanchi M, Grover A, Emery MG, Dodds MG, et al. Impact of target-mediated elimination on the dose and regimen of evolocumab, a human monoclonal antibody against proprotein convertase subtilisin/kexin type 9 (PCSK9). J Clin Pharmacol. 2017;57:616–626. http://www.ncbi.nlm.nih.gov/pubmed/27861991.
  34. 34.
    Rey J, Poitiers F, Paehler T, Brunet A, DiCioccio AT, Cannon CP, et al. Relationship between low-density lipoprotein cholesterol, free proprotein convertase subtilisin/kexin type 9, and alirocumab levels after different lipid-lowering strategies. J Am Heart Assoc. 2016;5. http://www.ncbi.nlm.nih.gov/pubmed/27287699.
  35. 35.
    Henne KR, Ason B, Howard M, Wang W, Sun J, Higbee J, et al. Anti-PCSK9 antibody pharmacokinetics and low-density lipoprotein-cholesterol pharmacodynamics in nonhuman primates are antigen affinity-dependent and exhibit limited sensitivity to neonatal Fc receptor-binding enhancement. J Pharmacol Exp Ther. 2015;353:119–131. http://www.ncbi.nlm.nih.gov/pubmed/25653417.
  36. 36.
    Ferri N, Bellosta S, Baldessin L, Boccia D, Racagni G, Corsini A. Pharmacokinetics interactions of monoclonal antibodies. Pharmacol Res. 2016;111:592–529. http://www.ncbi.nlm.nih.gov/pubmed/27438459.
  37. 37.
    Hansen RJ, Berna MJ, Sperry AE, Beyer TP, Wroblewski VJ, Schroeder KM, et al. Quantitative characterization of the mechanism of action and impact of a “proteolysis-permitting” anti-PCSK9 antibody. MAbs. 9:285–296. http://www.ncbi.nlm.nih.gov/pubmed/27981884.
  38. 38.
    Lakoski SG, Lagace TA, Cohen JC, Horton JD, Hobbs HH. Genetic and metabolic determinants of plasma PCSK9 levels. J Clin Endocrinol Metab. 2009;94:2537–43.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Leander K, Mälarstig A, Van’t Hooft F, Hyde C, Hellénius M, Troutt J, et al. Circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) predicts future risk of cardiovascular events independently of established risk factors. Circulation. 2016;133:1230–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Werner C, Hoffmann MM, Winkler K, Böhm M, Laufs U. Risk prediction with proprotein convertase subtilisin/kexin type 9 (PCSK9) in patients with stable coronary disease on statin treatment. Vascul Pharmacol. 2014;62:94–102.  https://doi.org/10.1016/j.vph.2014.03.004.CrossRefPubMedGoogle Scholar
  41. 41.
    Ference B, Robinson J, Brook R, Catapano A, Chapman M, Neff D, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375:2144–53.CrossRefPubMedGoogle Scholar
  42. 42.
    Agrawal S, Zaritsky JJ, Fornoni A, Smoyer WE. Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat Rev Nephrol. 2018;14:57–70. http://www.ncbi.nlm.nih.gov/pubmed/29176657.
  43. 43.
    Liu S, Vaziri ND. Role of PCSK9 and IDOL in the pathogenesis of acquired LDL receptor deficiency and hypercholesterolemia in nephrotic syndrome. Nephrol Dial Transpl. 2014;29:538–43.CrossRefGoogle Scholar
  44. 44.
    Haas M, Levenson A, Sun X, Liao W, Rutkowski J, Ferranti S, et al. The role of Proprotein convertase subtilisin/kexin type 9 in nephrotic syndrome-associated hypercholesterolemia. Circulation. 2016;134:61–72.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kwakernaak AJ, Lambert G, Slagman MCJ, Waanders F, Laverman GD, Petrides F, et al. Proprotein convertase subtilisin-kexin type 9 is elevated in proteinuric subjects: relationship with lipoprotein response to antiproteinuric treatment. Atherosclerosis. 2013;226:459–465. http://www.ncbi.nlm.nih.gov/pubmed/23261172.
  46. 46.
    Elewa U, Fernández-Fernández B, Mahillo-Fernández I, Martin-Cleary C, Sanz A, Sanchez-Niño M, et al. PCSK9 in diabetic kidney disease. Eur J Clin Invest. 2016;46:779–86.CrossRefPubMedGoogle Scholar
  47. 47.
    Morena M, Le May C, Chenine L, Arnaud L, Dupuy A-M, Pichelin M, et al. Plasma PCSK9 concentrations during the course of nondiabetic chronic kidney disease: relationship with glomerular filtration rate and lipid metabolism. J Clin Lipidol. 11:87–93. http://www.ncbi.nlm.nih.gov/pubmed/28391915.
  48. 48.
    Konarzewski M, Szolkiewicz M, Sucajtys-Szulc E, Blaszak J, Lizakowski S, Swierczynski J, et al. Elevated circulating PCSK-9 concentration in renal failure patients is corrected by renal replacement therapy. Am J Nephrol. 2014;40:157–63.CrossRefPubMedGoogle Scholar
  49. 49.
    Abujrad H, Mayne J, Ruzicka M, Cousins M, Raymond A, Cheesman J, et al. Chronic kidney disease on hemodialysis is associated with decreased serum PCSK9 levels. Atherosclerosis. 2014;233:123–9.  https://doi.org/10.1016/j.atherosclerosis.2013.12.030.CrossRefPubMedGoogle Scholar
  50. 50.
    Jin K, Park B-S, Kim Y-W, Vaziri ND. Plasma PCSK9 in nephrotic syndrome and in peritoneal dialysis: a cross-sectional study. Am J Kidney Dis. 2014;63:584–589. http://www.ncbi.nlm.nih.gov/pubmed/24315769.
  51. 51.
    Fitzgerald K, White S, Borodovsky A, Bettencourt B, Strahs A, Clausen V, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376:41–51.CrossRefPubMedGoogle Scholar
  52. 52.
    Ray KK, Landmesser U, Leiter LA, Kallend D, Dufour R, Karakas M, et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med. 2017;376:1430–1440. http://www.ncbi.nlm.nih.gov/pubmed/28306389.
  53. 53.
    Mitchell T, Chao G, Sitkoff D, Lo F, Monshizadegan H, Meyers D, et al. Pharmacologic profile of the Adnectin BMS-962476, a small protein biologic alternative to PCSK9 antibodies for low-density lipoprotein lowering. J Pharmacol Exp Ther. 2014;350:412–424. http://www.ncbi.nlm.nih.gov/pubmed/24917546.
  54. 54.
    Lintner NG, McClure KF, Petersen D, Londregan AT, Piotrowski DW, Wei L, et al. Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biol. 2017;15:e2001882. http://www.ncbi.nlm.nih.gov/pubmed/28323820.
  55. 55.
  56. 56.
    European Medicines Agency. Summary of product characteristics: alirocumab. [cited 2017 Dec 10]. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003882/WC500194521.pdf.
  57. 57.
    Endocrinologic and metabolic drugs advisory comittee. FDA Briefind Document about Repatha. [cited 2016 Nov 2]. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM450072.pdf.
  58. 58.
    European Medicines Agency. Summary of product characteristics: evolocumab. [cited 2017 Dec 10]. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003766/WC500191398.pdf.
  59. 59.
    Pfizer Inc. Pfizer Discontinues Global Development of Bococizumab, Its Investigational PCSK9 Inhibitor. 2016 [cited 2016 Nov 9]. http://www.pfizer.com/news/press-release/press-release-detail/pfizer_discontinues_global_development_of_bococizumab_its_investigational_pcsk9_inhibitor.
  60. 60.
    Koren MJ, Lundqvist P, Bolognese M, Neutel JM, Monsalvo ML, Yang J, et al. Anti-PCSK9 monotherapy for hypercholesterolemia: the MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2531–40.  https://doi.org/10.1016/j.jacc.2014.03.018.CrossRefPubMedGoogle Scholar
  61. 61.
    Farnier M, Gaudet D, Valcheva V, Minini P, Miller K, Cariou B. Efficacy of alirocumab in high cardiovascular risk populations with or without heterozygous familial hypercholesterolemia: pooled analysis of eight ODYSSEY Phase 3 clinical program trials. Int J Cardiol. 2016;223:750–7.  https://doi.org/10.1016/j.ijcard.2016.08.273.CrossRefPubMedGoogle Scholar
  62. 62.
    Langslet G, Emery M, Wasserman SM. Evolocumab (AMG 145) for primary hypercholesterolemia. Expert Rev Cardiovasc Ther. 2015;13:477–488. http://www.ncbi.nlm.nih.gov/pubmed/25824308.
  63. 63.
    Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–1499. http://www.nejm.org.ezp-prod1.hul.harvard.edu/doi/full/10.1056/NEJMoa1501031%5Cn, http://www.ncbi.nlm.nih.gov/pubmed/25773378.
  64. 64.
    Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–9.  https://doi.org/10.1056/NEJMoa1501031.CrossRefPubMedGoogle Scholar
  65. 65.
    Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22. http://www.ncbi.nlm.nih.gov/pubmed/28304224.
  66. 66.
    Schwartz GG, Bessac L, Berdan LG, Bhatt DL, Bittner V, Diaz R, et al. Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY Outcomes trial. Am Heart J. 2014;168:682–9.  https://doi.org/10.1016/j.ahj.2014.07.028.CrossRefPubMedGoogle Scholar
  67. 67.
    Nayor M, Vasan RS. Recent update to the US cholesterol treatment guidelines: a comparison with international guidelines. Circulation. 2016;133:1795–1806. http://www.ncbi.nlm.nih.gov/pubmed/27143546.
  68. 68.
    Ray KK, Ginsberg HN, Davidson MH, Pordy R, Bessac L, Minini P, et al. Reductions in atherogenic lipids and major cardiovascular events: a pooled analysis of 10 ODYSSEY trials comparing alirocumab with control. Circulation. 2016;134:1931–1943. http://www.ncbi.nlm.nih.gov/pubmed/27777279.
  69. 69.
    Giugliano rp, keech a, murphy sa, huber k, tokgozoglu sl, lewis bs, et al. clinical efficacy and safety of evolocumab in high-risk patients receiving a statin: secondary analysis of patients with low ldl cholesterol levels and in those already receiving a maximal-potency statin in a randomized clinical trial. JAMA Cardiol. 2017. http://www.ncbi.nlm.nih.gov/pubmed/29117276.
  70. 70.
    The Emerging risk factors collaboration. lipoprotein (a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009;302:412–23.CrossRefPubMedCentralGoogle Scholar
  71. 71.
    Khera AV, Everett BM, Caulfield MP, Hantash FM, Wohlgemuth J, Ridke PM, et al. Lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: an analysis from the JUPITER Trial. Circulation. 2014;129:635–42.CrossRefPubMedGoogle Scholar
  72. 72.
    Jaeger BR, Richter Y, Nagel D, Heigl F, Vogt A, Roeseler E, et al. Longitudinal cohort study on the effectiveness of lipid apheresis treatment to reduce high lipoprotein(a) levels and prevent major adverse coronary events. Nat Clin Pr Cardiovasc Med. 2009;6:229–239. http://www.ncbi.nlm.nih.gov/pubmed/19234501%5Cn, http://www.nature.com/nrcardio/journal/v6/n3/pdf/ncpcardio1456.pdf.
  73. 73.
    Villines TC, Kim AS, Gore RS, Taylor AJ. Niacin: The evidence, clinical use, and future directions. Curr Atheroscler Rep. 2012;14:49–59.CrossRefPubMedGoogle Scholar
  74. 74.
    Nordestgaard BG, Chapman MJ, Ray K, Borén J, Andreotti F, Watts GF, et al. Lipoprotein(a) as a cardiovascular risk factor: Current status. Eur Heart J. 2010;31:2844–53.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Albers J, Slee A, O’Brien K, Robinson J, Kashyap M, Kwiterovich PJ, et al. Relationship of apolipoproteins A-1 and B, and lipoprotein(a) to cardiovascular outcomes: the AIM-HIGH trial (Atherothrombosis Intervention in metabolic syndrome with Low HDL/High triglyceride and impact on global health outcomes). J Am Coll Cardiol. 2013;62:1575–9.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    European Association for Cardiovascular Prevention & Rehabilitation, Reiner Z, Catapano AL, De Backer G, Graham I, Taskinen M-R, et al. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J. 2011;32:1769–1818. http://www.ncbi.nlm.nih.gov/pubmed/21712404.
  77. 77.
    Kasiske BL, Chakkera H a, Roel J. Explained and unexplained ischemic heart disease risk after renal transplantation. J Am Soc Nephrol. 2000;11:1735–1743.Google Scholar
  78. 78.
    Kereiakes DJ, Robinson JG, Cannon CP. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab among high cardiovascular risk patients on maximally tolerated statin therapy: the ODYSSEY COMBO I study. Am Heart J. 2015;169(6):906–915.  https://doi.org/10.1016/j.ahj.2015.03.004.CrossRefPubMedGoogle Scholar
  79. 79.
    Cannon CP, Cariou B, Blom D, McKenney JM, Lorenzato C, Pordy R, et al. Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: The ODYSSEY COMBO II randomized controlled trial. Eur Heart J. 2015;36:1186–94.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    El Shahawy M, Cannon CP, Blom DJ, McKenney JM, Cariou B, Lecorps G, et al. Efficacy and safety of alirocumab versus ezetimibe over 2 years (from ODYSSEY COMBO II). Am J Cardiol. 2017. http://www.ncbi.nlm.nih.gov/pubmed/28750828.
  81. 81.
    Sabatine MS, Giugliano RP, Keech A, Honarpour N, Wang H, Liu T, et al. Rationale and design of the Further cardiovascular outcomes research with PCSK9 Inhibition in subjects with Elevated Risk trial. Am. Heart J. 2016;173:94–101. http://www.ncbi.nlm.nih.gov/pubmed/26920601.
  82. 82.
    Lambert G, Ancellin N, Charlton F, Comas D, Pilot J, Keech A, et al. Plasma PCSK9 concentrations correlate with LDL and total cholesterol in diabetic patients and are decreased by fenofibrate treatment. Clin Chem. 2008;54:1038–45.CrossRefPubMedGoogle Scholar
  83. 83.
    Mayne J, Dewpura T, Raymond A, Cousins M, Chaplin A, Lahey KA, et al. Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health Dis. 2008;7:22.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Eisenga MF, Zelle DM, Sloan JH, Gaillard CAJM, Bakker SJL, Dullaart RPF. High serum PCSK9 is associated with increased risk of new-onset diabetes after transplantation in renal transplant recipients. Diabetes Care. 2017;40:894–901. http://www.ncbi.nlm.nih.gov/pubmed/28461454.
  85. 85.
    Glerup S, Schulz R, Laufs U, Schlüter K-D. Physiological and therapeutic regulation of PCSK9 activity in cardiovascular disease. Basic Res Cardiol. 2017;112:132. http://www.ncbi.nlm.nih.gov/pubmed/28439730.
  86. 86.
    Farnier M, Colhoun HM, Sasiela WJ, Edelberg JM, Asset G, Robinson JG. Long-term treatment adherence to the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab in 6 ODYSSEY Phase III clinical studies with treatment duration of 1–2 years. J Clin Lipidol. 2017. http://www.ncbi.nlm.nih.gov/pubmed/28693998.
  87. 87.
    Vogt L, Laverman G, Dullaart R, Navis G. Lipid management in the proteinuric patient: do not overlook the importance of proteinuria reduction. Nephrol Dial Transpl. 2004;19:5–8.CrossRefGoogle Scholar
  88. 88.
    Stein EA, Giugliano RP, Koren MJ, Raal FJ, Roth EM, Weiss R, et al. Efficacy and safety of evolocumab (AMG 145), a fully human monoclonal antibody to PCSK9, in hyperlipidaemic patients on various background lipid therapies: pooled analysis of 1359 patients in four phase 2 trials. Eur Heart J. 2014;35:2249–59.CrossRefPubMedGoogle Scholar
  89. 89.
    Koren MJ, Roth EM, McKenney JM, Gipe D, Hanotin C, Ferrand AC, et al. Safety and efficacy of alirocumab 150 mg every 2 weeks, a fully human proprotein convertase subtilisin/kexin type 9 monoclonal antibody: a Phase II pooled analysis. Postgrad Med. 2015;127:125–32.CrossRefPubMedGoogle Scholar
  90. 90.
    Barter PJ, Brandrup-Wognsen G, Palmer MK, Nicholls SJ. Effect of statins on HDL-C: a complex process unrelated to changes in LDL-C: analysis of the VOYAGER Database. J Lipid Res. 2010;51:1546–53.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Descamps OS, Fraass U, Dent R, März W, Gouni-Berthold I. Anti-PCSK9 antibodies for hypercholesterolaemia: Overview of clinical data and implications for primary care. Int J Clin Pract. 2017;71. http://www.ncbi.nlm.nih.gov/pubmed/28750477.
  92. 92.
    Chaudhary R, Garg J, Shah N, Sumner A. PCSK9 inhibitors: a new era of lipid-lowering therapy. World J Cardiol. 2017;9:76–91. http://www.ncbi.nlm.nih.gov/pubmed/28289523.
  93. 93.
    Lee E, Gibbs J, Wasserman S, Block G, Emery M, Abosaleem B, et al. Pharmacokinetics and pharmacodynamics of evolocumab in patients with renal impairment. Eur Hear J. 2016;37(Abstract Supplement):343.Google Scholar
  94. 94.
    Kohli M, Patel K, MacMahon Z, Ramachandran R, Crook MA, Reynolds TM, et al. Pro-protein subtilisin kexin-9 (PCSK9) inhibition in practice: lipid clinic experience in 2 contrasting UK centres. Int J Clin Pract. 2017;71. http://www.ncbi.nlm.nih.gov/pubmed/28994502.
  95. 95.
    Kazi DS, Penko J, Coxson PG, Moran AE, Ollendorf DA, Tice JA, et al. Updated cost-effectiveness analysis of PCSK9 inhibitors based on the results of the FOURIER trial. JAMA. 2017;318:748–750. http://www.ncbi.nlm.nih.gov/pubmed/28829863.
  96. 96.
    Fonarow GC, Keech AC, Pedersen TR, Giugliano RP, Sever PS, Lindgren P, et al. Cost-effectiveness of evolocumab therapy for reducing cardiovascular events in patients with atherosclerotic cardiovascular disease. JAMA Cardiol. 2017;2:1069–1078. http://www.ncbi.nlm.nih.gov/pubmed/28832867.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dialysis Unit, School of MedicineIIS-Fundacion Jimenez Diaz, Universidad Autónoma de MadridMadridSpain
  2. 2.Fundacion Renal Iñigo Alvarez de Toledo-IRSIN and REDINRENMadridSpain

Personalised recommendations