, Volume 77, Issue 7, pp 721–732 | Cite as

Management of Chronic Obstructive Pulmonary Disease in Patients with Cardiovascular Diseases

  • Mario Cazzola
  • Luigino Calzetta
  • Barbara Rinaldi
  • Clive Page
  • Giuseppe Rosano
  • Paola Rogliani
  • Maria Gabriella Matera
Leading Article


Chronic obstructive pulmonary disease (COPD) and cardiovascular diseases often coexist. The mechanistic links between these two diseases are complex, multifactorial and not entirely understood, but they can influence the therapeutic approach. Therapy can be primarily directed towards treating the respiratory symptoms and reducing lung inflammation. Smoking cessation, bronchodilators and inhaled corticosteroids are central to this therapeutic approach. The underlying pathophysiological mechanisms that are responsible for the increased cardiovascular risk in COPD remain unclear, but might include arterial stiffness, inflammation and endothelial dysfunction as a consequence of systemic exposure to chemicals in cigarette smoke or airborne pollution. Therefore, it is plausible that treatment of cardiovascular co-morbidities might reduce morbidity and mortality in patients with COPD and, consequently, therapy of COPD should be shifted to the treatment of cardiovascular diseases and systemic inflammation. In support of this approach, early data suggest that patients with COPD treated with angiotensin-converting enzyme inhibitors, angiotensin II type 1 receptor blockers, statins, anti-platelet drugs or β-adrenoceptor blockers may have improved survival and reduced hospitalisation from acute exacerbations of COPD. In this review, the potential impact of traditional therapies for COPD that are centred on treating the lungs and newer strategies potentially able to affect and mitigate cardiovascular risks in patients with COPD are discussed.


  1. 1.
    Cazzola M, Rogliani P, Matera MG. Cardiovascular disease in patients with COPD. Lancet Respir Med. 2015;3(8):593–5. doi:10.1016/S2213-2600(15)00279-9.PubMedCrossRefGoogle Scholar
  2. 2.
    Cazzola M, Calzetta L, Bettoncelli G, et al. Cardiovascular disease in asthma and COPD: a population-based retrospective cross-sectional study. Respir Med. 2012;106(2):249–56. doi:10.1016/j.rmed.2011.07.021.PubMedCrossRefGoogle Scholar
  3. 3.
    Chen W, Thomas J, Sadatsafavi M, FitzGerald JM. Risk of cardiovascular comorbidity in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Lancet Respir Med. 2015;3(8):631–9. doi:10.1016/S2213-2600(15)00241-6.PubMedCrossRefGoogle Scholar
  4. 4.
    Decramer M, Janssens W. Chronic obstructive pulmonary disease and comorbidities. Lancet Respir Med. 2013;1(1):73–83. doi:10.1016/S2213-2600(12)70060-7.PubMedCrossRefGoogle Scholar
  5. 5.
    Thomsen M, Dahl M, Lange P, et al. Inflammatory biomarkers and comorbidities in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186(10):982–8. doi:10.1164/rccm.201206-1113OC.PubMedCrossRefGoogle Scholar
  6. 6.
    MacNee W. Systemic inflammatory biomarkers and co-morbidities of chronic obstructive pulmonary disease. Ann Med. 2013;45(3):291–300. doi:10.3109/07853890.2012.732703.PubMedCrossRefGoogle Scholar
  7. 7.
    van Eeden S, Leipsic J, Man SP, Sin DD. The relationship between lung inflammation and cardiovascular disease. Am J Respir Crit Care Med. 2012;186(1):11–6. doi:10.1164/rccm.201203-0455PP.PubMedCrossRefGoogle Scholar
  8. 8.
    Fabbri LM, Rabe KF. From COPD to chronic systemic inflammatory syndrome? Lancet. 2007;370(9589):797–9. doi:10.1016/S0140-6736(07)61383-X.PubMedCrossRefGoogle Scholar
  9. 9.
    Matera MG, Calzetta L, Rinaldi B, Cazzola M. Treatment of COPD: moving beyond the lungs. Curr Opin Pharmacol. 2012;12(3):315–22. doi:10.1016/j.coph.2012.04.001.PubMedCrossRefGoogle Scholar
  10. 10.
    Global Initiative for Chronic Obstructive Lung Disease. Global strategy for diagnosis, management, and prevention of COPD: 2017 report. http://goldcopd.org/. Accessed 28 Dec 2016.
  11. 11.
    de Torres JP, Cordoba-Lanus E, Lopez-Aguilar C, et al. C-reactive protein levels and clinically important predictive outcomes in stable COPD patients. Eur Respir J. 2006;27(5):902–7. doi:10.1183/09031936.06.00109605.PubMedGoogle Scholar
  12. 12.
    Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med. 2009;360(23):2445–54. doi:10.1056/NEJMra0804752.PubMedCrossRefGoogle Scholar
  13. 13.
    Macie C, Wooldrage K, Manfreda J, Anthonisen N. Cardiovascular morbidity and the use of inhaled bronchodilators. Int J Chron Obstruct Pulmon Dis. 2008;3(1):163–9.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Cekici L, Valipour A, Kohansal R, Burghuber OC. Short-term effects of inhaled salbutamol on autonomic cardiovascular control in healthy subjects: a placebo-controlled study. Br J Clin Pharmacol. 2009;67(4):394–402. doi:10.1111/j.1365-2125.2009.03377.x.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Wilchesky M, Ernst P, Brophy JM, et al. Bronchodilator use and the risk of arrhythmia in COPD: part 2: reassessment in the larger Quebec cohort. Chest. 2012;142(2):305–11. doi:10.1378/chest.11-1597.PubMedCrossRefGoogle Scholar
  16. 16.
    Cazzola M, Imperatore F, Salzillo A, et al. Cardiac effects of formoterol and salmeterol in patients suffering from COPD with preexisting cardiac arrhythmias and hypoxemia. Chest. 1998;114(2):411–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Au DH, Lemaitre RN, Curtis JR, et al. The risk of myocardial infarction associated with inhaled β-adrenoceptor agonists. Am J Respir Crit Care Med. 2000;161(3 Pt 1):827–30. doi:10.1164/ajrccm.161.3.9904006.PubMedCrossRefGoogle Scholar
  18. 18.
    Au DH, Curtis JR, Every NR, et al. Association between inhaled beta-agonists and the risk of unstable angina and myocardial infarction. Chest. 2002;121(3):846–51.PubMedCrossRefGoogle Scholar
  19. 19.
    Xia N, Wang H, Nie X. Inhaled long-acting β2-agonists do not increase fatal cardiovascular adverse events in COPD: a meta-analysis. PLoS One. 2015;10(9):e0137904. doi:10.1371/journal.pone.0137904.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Au DH, Udris EM, Curtis JR, et al. ACQUIP Investigators. Association between chronic heart failure and inhaled β-2-adrenoceptor agonists. Am Heart J. 2004;148(5):915–20. doi:10.1016/j.ahj.2004.03.048.PubMedCrossRefGoogle Scholar
  21. 21.
    Bermingham M, O’Callaghan E, Dawkins I, et al. Are beta2-agonists responsible for increased mortality in heart failure? Eur J Heart Fail. 2011;13(8):885–91. doi:10.1093/eurjhf/hfr063.PubMedCrossRefGoogle Scholar
  22. 22.
    Minasian AG, van den Elshout FJJ, Dekhuijzen PNR, et al. Using the lower limit of normal instead of the conventional cutoff values to define predictors of pulmonary function impairment in subjects with chronic heart failure. Respir Care. 2016;61(2):173–83. doi:10.4187/respcare.04101.PubMedCrossRefGoogle Scholar
  23. 23.
    Minasian AG, van den Elshout FJ, Dekhuijzen PN, et al. Bronchodilator responsiveness in patients with chronic heart failure. Heart Lung. 2013;42(3):208–14. doi:10.1016/j.hrtlng.2012.11.007.PubMedCrossRefGoogle Scholar
  24. 24.
    Rutten FH, Cramer MJ, Lammers JW, et al. Heart failure and chronic obstructive pulmonary disease: an ignored combination? Eur J Heart Fail. 2006;8(7):706–11. doi:10.1016/j.ejheart.2006.01.010.PubMedCrossRefGoogle Scholar
  25. 25.
    Gariani K, Delabays A, Perneger TV, Agoritsas T. Use of brain natriuretic peptide to detect previously unknown left ventricular dysfunction in patients with acute exacerbation of chronic obstructive pulmonary disease. Swiss Med Wkly. 2011;141(13):13298–300. doi:10.4414/smw.2011.13298.Google Scholar
  26. 26.
    Segreti A, Fiori E, Calzetta L, et al. The effect of indacaterol during an acute exacerbation of COPD. Pulm Pharmacol Ther. 2013;26(6):630–4. doi:10.1016/j.pupt.2013.03.020.PubMedCrossRefGoogle Scholar
  27. 27.
    Singh S, Loke YK, Furberg CD. Inhaled anticholinergics and risk of major adverse cardiovascular events in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. JAMA. 2008;300(12):1439–50. doi:10.1001/jama.300.12.1439.PubMedCrossRefGoogle Scholar
  28. 28.
    Halpin DMG, Dahl R, Hallmann C, et al. Tiotropium HandiHaler® and Respimat® in COPD: a pooled safety analysis. Int J Chron Obstruct Pulmon Dis. 2015;10:239–59. doi:10.2147/COPD.S75146.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Dong YH, Lin HH, Shau WY, et al. Comparative safety of inhaled medications in patients with chronic obstructive pulmonary disease: systematic review and mixed treatment comparison meta-analysis of randomised controlled trials. Thorax. 2013;68(1):48–56. doi:10.1136/thoraxjnl-2012-201926.PubMedCrossRefGoogle Scholar
  30. 30.
    Cazzola M, Calzetta L, Rogliani P, Matera MG. Tiotropium formulations and safety: a network meta-analysis. Ther Adv Drug Saf. 2017;8(1):17–30. doi:10.1177/2042098616667304.PubMedCrossRefGoogle Scholar
  31. 31.
    Wise RA, Anzueto A, Cotton D, et al. Tiotropium Respimat inhaler and the risk of death in COPD. N Engl J Med. 2013;369(16):1491–501. doi:10.1056/NEJMoa1303342.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee CH, Choi S, Jang EJ, et al. Inhaled bronchodilators and the risk of tachyarrhythmias. Int J Cardiol. 2015;190:133–9. doi:10.1016/j.ijcard.2015.04.129.PubMedCrossRefGoogle Scholar
  33. 33.
    Calzetta L, Rogliani P, Matera MG, Cazzola M. A systematic review with meta-analysis of dual bronchodilation with LAMA/LABA for the treatment of stable COPD. Chest. 2016;149(5):1181–96. doi:10.1016/j.chest.2016.02.646.PubMedCrossRefGoogle Scholar
  34. 34.
    Sin DD, Van Eeden SF, Man SF. Slaying the CVD dragon with steroids. Eur Respir J. 2010;36(3):466–8. doi:10.1183/09031936.00082510.PubMedCrossRefGoogle Scholar
  35. 35.
    Huiart L, Ernst P, Ranouil X, Suissa S. Low-dose inhaled corticosteroids and the risk of acute myocardial infarction in COPD. Eur Respir J. 2005;25(4):634–9. doi:10.1183/09031936.05.00079004.PubMedCrossRefGoogle Scholar
  36. 36.
    Lofdahl CG, Postma DS, Pride NB, et al. Possible protection by inhaled budesonide against ischaemic cardiac events in mild COPD. Eur Respir J. 2007;29(6):1115–9. doi:10.1183/09031936.00128806.PubMedCrossRefGoogle Scholar
  37. 37.
    Calverley PM, Anderson JA, Celli B, et al. Cardiovascular events in patients with COPD: TORCH study results. Thorax. 2010;65(8):719–25. doi:10.1136/thx.2010.136077.PubMedCrossRefGoogle Scholar
  38. 38.
    Vestbo J, Anderson JA, Brook RD, et al. Fluticasone furoate and vilanterol and survival in chronic obstructive pulmonary disease with heightened cardiovascular risk (SUMMIT): a double-blind randomised controlled trial. Lancet. 2016;387(10030):1817–26. doi:10.1016/S0140-6736(16)30069-1.PubMedCrossRefGoogle Scholar
  39. 39.
    Mancini GB, Etminan M, Zhang B, et al. Reduction of morbidity and mortality by statins, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers in patients with chronic obstructive pulmonary disease. J Am Coll Cardiol. 2006;47(12):2554–60. doi:10.1016/j.jacc.2006.04.039.PubMedCrossRefGoogle Scholar
  40. 40.
    Podowski M, Calvi C, Metzger S, et al. Angiotensin receptor blockade attenuates cigarette smoke-induced lung injury and rescues lung architecture in mice. J Clin Invest. 2012;122(1):229–40. doi:10.1172/JCI46215.PubMedCrossRefGoogle Scholar
  41. 41.
    Petersen H, Sood A, Meek PM, et al. Rapid lung function decline in smokers is a risk factor for COPD and is attenuated by angiotensin-converting enzyme inhibitor use. Chest. 2014;145(4):695–703. doi:10.1378/chest.13-0799.PubMedCrossRefGoogle Scholar
  42. 42.
    Mortensen EM, Copeland LA, Pugh MJ, et al. Impact of statins and ACE inhibitors on mortality after COPD exacerbations. Respir Res. 2009;10:45. doi:10.1186/1465-9921-10-45.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kim J, Lee JK, Heo EY, et al. The association of renin-angiotensin system blockades and pneumonia requiring admission in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:2159–66. doi:10.2147/COPD.S104097.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Curtis KJ, Meyrick VM, Mehta B, et al. Angiotensin-converting enzyme inhibition as an adjunct to pulmonary rehabilitation in COPD. Am J Respir Crit Care Med. 2016;194(11):1349–57. doi:10.1164/rccm.201601-0094OC.PubMedCrossRefGoogle Scholar
  45. 45.
    Shrikrishna D, Tanner RJ, Lee JY, et al. A randomized controlled trial of angiotensin-converting enzyme inhibition for skeletal muscle dysfunction in COPD. Chest. 2014;146(4):932–40. doi:10.1378/chest.13-2483.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lee T-M, Lin M-S, Chang N-C. Usefulness of C-reactive protein and interleukin-6 as predictors of outcomes in patients with chronic obstructive pulmonary disease receiving pravastatin. Am J Cardiol. 2008;101(4):530–5. doi:10.1016/j.amjcard.2007.09.102.PubMedCrossRefGoogle Scholar
  47. 47.
    Cazzola M, Calzetta L, Page CP, et al. Protein prenylation contributes to the effects of LPS on EFS-induced responses in human isolated bronchi. Am J Respir Cell Mol Biol. 2011;45(4):704–10. doi:10.1165/rcmb.2010-0306OC.PubMedCrossRefGoogle Scholar
  48. 48.
    Criner GJ, Connett JE, Aaron SD, et al. Simvastatin for the prevention of exacerbations in moderate-to-severe COPD. N Engl J Med. 2014;370(23):2201–10. doi:10.1056/NEJMoa1403086.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Citgez E, van der Palen J, Koehorst-Ter Huurne K, et al. Statins and morbidity and mortality in COPD in the COMIC study: a prospective COPD cohort study. BMJ Open Respir Res. 2016;3(1):e000142. doi:10.1136/bmjresp-2016-000142.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Rossi A, Inciardi RM, Rossi A, et al. Prognostic effects of rosuvastatin in patients with co-existing chronic obstructive pulmonary disease and chronic heart failure: a sub-analysis of GISSI-HF trial. Pulm Pharmacol Ther. 2017. doi:10.1016/j.pupt.2017.03.001 (Epub ahead of print).
  51. 51.
    Neukamm A, Hoiseth AD, Einvik G, et al. Rosuvastatin treatment in stable chronic obstructive pulmonary disease (RODEO): a randomized controlled trial. J Intern Med. 2015;278(1):59–67. doi:10.1111/joim.12337.PubMedCrossRefGoogle Scholar
  52. 52.
    Hawkins NM, Wang D, Petrie MC, et al. Baseline characteristics and outcomes of patients with heart failure receiving bronchodilators in the CHARM programme. Eur J Heart Fail. 2010;12(6):557–65. doi:10.1093/eurjhf/hfq040.PubMedCrossRefGoogle Scholar
  53. 53.
    Matera MG, Martuscelli E, Cazzola M. Pharmacological modulation of β-adrenoceptor function in patients with coexisting chronic obstructive pulmonary disease and chronic heart failure. Pulm Pharmacol Ther. 2010;23(1):1–8. doi:10.1016/j.pupt.2009.10.001.PubMedCrossRefGoogle Scholar
  54. 54.
    Rinaldi B, Capuano A, Gritti G, et al. Effects of chronic administration of β-blockers on airway responsiveness in a murine model of heart failure. Pulm Pharmacol Ther. 2014;28(2):109–13. doi:10.1016/j.pupt.2014.04.005.PubMedCrossRefGoogle Scholar
  55. 55.
    Rinaldi B, Donniacuo M, Sodano L, et al. Effects of chronic treatment with the new ultra-long-acting β2-adrenoceptor agonist indacaterol alone or in combination with the β1-adrenoceptor blocker metoprolol on cardiac remodelling. Br J Pharmacol. 2015;172(14):3627–37. doi:10.1111/bph.13148.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Khan M, Mohsin S, Avitabile D, et al. β-Adrenergic regulation of cardiac progenitor cell death versus survival and proliferation. Circ Res. 2013;112(3):476–86. doi:10.1161/CIRCRESAHA.112.280735.PubMedCrossRefGoogle Scholar
  57. 57.
    Rutten FH, Hoes AW. Chronic obstructive pulmonary disease: a slowly progressive cardiovascular disease masked by its pulmonary effects? Eur J Heart Fail. 2012;14(4):348–50. doi:10.1093/eurjhf/hfs022.PubMedCrossRefGoogle Scholar
  58. 58.
    Lin R, Peng H, Nguyen LP, et al. Changes in β2-adrenoceptor and other signaling proteins produced by chronic administration of ‘β-blockers’ in a murine asthma model. Pulm Pharmacol Ther. 2008;21(1):115–24. doi:10.1016/j.pupt.2007.06.003.PubMedCrossRefGoogle Scholar
  59. 59.
    Du Q, Sun Y, Ding N, et al. Beta-blockers reduced the risk of mortality and exacerbation in patients with COPD: a meta-analysis of observational studies. PLoS One. 2014;9(11):e113048. doi:10.1371/journal.pone.0113048.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ekström MP, Hermansson AB, Strom KE. Effects of cardiovascular drugs on mortality in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187(7):715–20. doi:10.1164/rccm.201208-1565OC.PubMedCrossRefGoogle Scholar
  61. 61.
    Bhatt SP, Wells JM, Kinney GL, et al. β-Blockers are associated with a reduction in COPD exacerbations. Thorax. 2016;71(1):8–14. doi:10.1136/thoraxjnl-2015-207251.PubMedCrossRefGoogle Scholar
  62. 62.
    Puente-Maestu L, Álvarez-Sala LA, de Miguel-Díez J. β-blockers in patients with chronic obstructive disease and coexistent cardiac illnesses. COPD Res Pract. 2015;1:11. doi:10.1186/s40749-015-0013-y.CrossRefGoogle Scholar
  63. 63.
    Andell P, Erlinge D, Smith JG, et al. β-Blocker use and mortality in COPD patients after myocardial infarction: a Swedish nationwide observational study. J Am Heart Assoc. 2015;4(4):e001611. doi:10.1161/JAHA.114.001611.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Farland MZ, Peters CJ, Williams JD, et al. β-Blocker use and incidence of chronic obstructive pulmonary disease exacerbations. Ann Pharmacother. 2013;47(5):651–6. doi:10.1345/aph.1R600.PubMedCrossRefGoogle Scholar
  65. 65.
    Kubota Y, Asai K, Furuse E, et al. Impact of β-blocker selectivity on long-term outcomes in congestive heart failure patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2015;10:515–23. doi:10.2147/COPD.S79942.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Maclay JD, McAllister DA, Johnston S, et al. Increased platelet activation in patients with stable and acute exacerbation of COPD. Thorax. 2011;66(9):769–74. doi:10.1136/thx.2010.157529.PubMedCrossRefGoogle Scholar
  67. 67.
    Malerba M, Olivini A, Radaeli A, et al. Platelet activation and cardiovascular comorbidities in patients with chronic obstructive pulmonary disease. Curr Med Res Opin. 2016;32(5):885–91. doi:10.1185/03007995.2016.1149054.PubMedCrossRefGoogle Scholar
  68. 68.
    Cui H, Liu L, Wei Z, et al. Clinical value of mean platelet volume for impaired cardiopulmonary function in very old male patients with chronic obstructive pulmonary disease. Arch Gerontol Geriatr. 2012;54(2):e109–12. doi:10.1016/j.archger.2011.09.013.PubMedCrossRefGoogle Scholar
  69. 69.
    Harrison MT, Short P, Williamson PA, et al. Thrombocytosis is associated with increased short and long term mortality after exacerbation of chronic obstructive pulmonary disease: a role for antiplatelet therapy? Thorax. 2014;69(7):609–15. doi:10.1136/thoraxjnl-2013-203996.PubMedCrossRefGoogle Scholar
  70. 70.
    Idzko M, Pitchford S, Page C. Role of platelets in allergic airway inflammation. J Allergy Clin Immunol. 2015;135(6):1416–23. doi:10.1016/j.jaci.2015.04.028.PubMedCrossRefGoogle Scholar
  71. 71.
    Pavasini R, Biscaglia S, d’Ascenzo F, et al. Antiplatelet treatment reduces all-cause mortality in COPD patients: a systematic review and meta-analysis. COPD. 2016;13(4):509–14. doi:10.3109/15412555.2015.1099620.PubMedCrossRefGoogle Scholar
  72. 72.
    Søyseth V, Brekke PH, Smith P, Omland T. Statin use is associated with reduced mortality in COPD. Eur Respir J. 2007;29(2):279–83. doi:10.1183/09031936.00106406.PubMedCrossRefGoogle Scholar
  73. 73.
    Sheng X, Murphy MJ, MacDonald TM, et al. Effect of statins on total cholesterol concentrations, cardiovascular morbidity, and all-cause mortality in chronic obstructive pulmonary disease: a population based cohort study. Clin Ther. 2012;34(2):374–84. doi:10.1016/j.clinthera.2011.12.014.PubMedCrossRefGoogle Scholar
  74. 74.
    Campo G, Pavasini R, Pollina A, et al. On-treatment platelet reactivity in patients with chronic obstructive pulmonary disease undergoing percutaneous coronary intervention. Thorax. 2014;69(1):80–1. doi:10.1136/thoraxjnl-2013-203608.PubMedCrossRefGoogle Scholar
  75. 75.
    Roversi S, Fabbri LM, Sin DD, et al. Chronic obstructive pulmonary disease and cardiac diseases: an urgent need for integrated care. Am J Respir Crit Care Med. 2016;194(11):1319–36. doi:10.1164/rccm.201604-0690SO.PubMedCrossRefGoogle Scholar
  76. 76.
    Jaiswal A, Chichra A, Nguyen VQ, et al. Challenges in the management of patients with chronic obstructive pulmonary disease and heart failure with reduced ejection fraction. Curr Heart Fail Rep. 2016;13(1):30–6. doi:10.1007/s11897-016-0278-8.PubMedCrossRefGoogle Scholar
  77. 77.
    Campo G, Pavasini R, Malagu M, et al. Chronic obstructive pulmonary disease and ischemic heart disease comorbidity: overview of mechanisms and clinical management. Cardiovasc Drugs Ther. 2015;29(2):147–57. doi:10.1007/s10557-014-6569-y.PubMedCrossRefGoogle Scholar
  78. 78.
    Cazzola M, Calzetta L, Matera MG. The cardiovascular risk of tiotropium: is it real? Expert Opin Drug Saf. 2010;9(5):783–92. doi:10.1517/14740338.2010.500611.PubMedCrossRefGoogle Scholar
  79. 79.
    Caldeira D, David C, Sampaio C. Tolerability of angiotensin-receptor blockers in patients with intolerance to angiotensin-converting enzyme inhibitors: a systematic review and meta-analysis. Am J Cardiovasc Drugs. 2012;12(4):263–77. doi:10.2165/11599990-000000000-00000.PubMedCrossRefGoogle Scholar
  80. 80.
    Matera MG, Calzetta L, Cazzola M. β-Adrenoceptor modulation in chronic obstructive pulmonary disease: present and future perspectives. Drugs. 2013;73(15):1653–63. doi:10.1007/s40265-013-0120-5.PubMedCrossRefGoogle Scholar
  81. 81.
    Lipworth B, Skinner D, Devereux G, et al. Underuse of β-blockers in heart failure and chronic obstructive pulmonary disease. Heart. 2016;102(23):1909–14. doi:10.1136/heartjnl-2016-309458.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    McMurray JJ, Adamopoulos S, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: 2012. The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14(8):803–69. doi:10.1093/eurjhf/hfs105.PubMedCrossRefGoogle Scholar
  83. 83.
    Smith SC Jr, Allen J, Blair SN, et al. AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute. Circulation. 2006;113(19):2363–72. doi:10.1161/CIRCULATIONAHA.106.174516.PubMedCrossRefGoogle Scholar
  84. 84.
    Mancia G, De Backer G, Dominiczak A, et al. 2007 ESH-ESC practice guidelines for the management of arterial hypertension: ESH-ESC Task Force on the Management of Arterial Hypertension. J Hypertens. 2007;25(9):1751–62. doi:10.1097/HJH.0b013e3282f0580f.PubMedCrossRefGoogle Scholar
  85. 85.
    Rutten FH, Zuithoff NP, Hak E, et al. β-Blockers may reduce mortality and risk of exacerbations in patients with chronic obstructive pulmonary disease. Arch Intern Med. 2010;170(10):880–7. doi:10.1001/archinternmed.2010.112.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Mario Cazzola
    • 1
  • Luigino Calzetta
    • 1
  • Barbara Rinaldi
    • 2
  • Clive Page
    • 3
  • Giuseppe Rosano
    • 4
    • 5
  • Paola Rogliani
    • 1
  • Maria Gabriella Matera
    • 2
  1. 1.Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
  2. 2.Department of Experimental MedicineUniversity of Campania Luigi VanvitelliNaplesItaly
  3. 3.Sackler Institute of Pulmonary PharmacologyKing’s College LondonLondonUK
  4. 4.Cardiovascular and Cell Science Institute, St George’s Hospital NHS TrustUniversity of LondonLondonUK
  5. 5.Department of Medical SciencesIRCCS San RaffaeleRomeItaly

Personalised recommendations