Drugs

, Volume 76, Issue 9, pp 925–945 | Cite as

Cancer Treatment with Anti-PD-1/PD-L1 Agents: Is PD-L1 Expression a Biomarker for Patient Selection?

  • Lucia Festino
  • Gerardo Botti
  • Paul Lorigan
  • Giuseppe V. Masucci
  • Jason D. Hipp
  • Christine E. Horak
  • Ignacio Melero
  • Paolo A. Ascierto
Review Article
Part of the following topical collections:
  1. Topical Collection on Immuno-Oncology

Abstract

Strategies to help improve the efficacy of the immune system against cancer represent an important innovation, with recent attention having focused on anti-programmed death (PD)-1/PD-ligand 1 (L1) monoclonal antibodies. Clinical trials have shown objective clinical activity of these agents (e.g., nivolumab, pembrolizumab) in several malignancies, including melanoma, non-small-cell lung cancer, bladder cancer, squamous head and neck cancer, renal cell cancer, ovarian cancer, microsatellite-unstable colorectal cancer, and Hodgkin’s lymphoma. Expression of PD-L1 in the tumor microenvironment appears to be crucial for therapeutic activity, and initial trials suggested positive PD-L1 tumor expression was associated with higher response rates. However, subsequent observations have questioned the prospect of using PD-L1 expression as a biomarker for selecting patients for therapy, especially since many patients considered PD-L1-negative experience a benefit from treatment. Importantly, there is not yet a definitive test for determination of PD-L1 and a cut-off reference for PD-L1-positive status has not been established. Immunohistochemistry with different antibodies and different thresholds has been used to define PD-L1 positivity (1–50 %), with no clear superiority of one threshold over another for identifying which patients respond. Moreover, the type of cells on which PD-L1 expression is most relevant is not yet clear, with immune infiltrate cells and tumor cells both being used. In conclusion, while PD-L1 expression is often a predictive factor for treatment response, it must be complemented by other biomarkers or histopathologic features, such as the composition and amount of inflammatory cells in the tumor microenvironment and their functional status. Multi-parameter quantitative or semi-quantitative algorithms may become useful and reliable tools to guide patient selection.

References

  1. 1.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.CrossRefPubMedGoogle Scholar
  2. 2.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.CrossRefPubMedGoogle Scholar
  4. 4.
    Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–44.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hamid O, Sosman JA, Lawrence DP, Sullivan RJ, Ibrahim N, Kluger HM, et al. Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic melanoma (mM). J Clin Oncol. 2013;31(15_suppl):9010 (ASCO meeting abstracts, 17 June 2013: abstract 9010).Google Scholar
  6. 6.
    Ribas A, Hodi FS, Kefford R, Hamid O, Daud A, Jedd D. Wolchok, et al. Efficacy and safety of the anti-PD-1 monoclonalantibody MK-3475 in 411 patients (pts) with melanoma (MEL). J Clin Oncol. 2014;suppl:abstr LBA9000.Google Scholar
  7. 7.
    Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32:1020–30.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.CrossRefPubMedGoogle Scholar
  11. 11.
    Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540–50.CrossRefPubMedGoogle Scholar
  12. 12.
    Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515:558–62.CrossRefPubMedGoogle Scholar
  13. 13.
    Sznol M, Kluger HM, Callahan MK, Postow MA, Gordon RA, Segal NH, et al. Survival, response duration, and activity by BRAF mutation (MT) status of nivolumab (NIVO, anti-PD-1, BMS-936558, ONO-4538) and ipilimumab (IPI) concurrent therapy in advanced melanoma (MEL). J Clin Oncol. 2014;suppl:abstr LBA9003^(32).Google Scholar
  14. 14.
    Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.CrossRefPubMedGoogle Scholar
  15. 15.
    Plimack ER, Hammers HJ, Rini BI, McDermott DF, Redman B, Kuzel T, et al. Updated survival results from a randomized, dose-ranging phase II study of nivolumab (NIVO) in metastatic renal cell carcinoma (mRCC). J Clin Oncol. 2015;33(15_suppl):4553 (ASCO meeting abstracts, 18 May 2015: abstract 4553).Google Scholar
  16. 16.
    Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF, Ernstoff M, et al. Expanded cohort results from CheckMate 016: a phase I study of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma (mRCC). J Clin Oncol. 2015;33(15_suppl):4516 (ASCO meeting abstracts, 18 May 2015: abstract 4516).Google Scholar
  17. 17.
    McDermott DF, Sosman JA, Sznol M, Massard C, Gordon MS, Hamid O, et al. Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long-term safety, clinical activity, and immune correlates from a phase ia study. J Clin Oncol. 2016;34:833–42.CrossRefPubMedGoogle Scholar
  18. 18.
    Amin A, Plimack ER, Infante JR, Ernstoff M, Rini BI, McDermott DF, et al. Nivolumab (n) (anti-pd-1; bms-936558, ono-4538) in combination with sunitinib (s) or pazopanib (p) in patients (pts) with metastatic renal cell carcinoma (mrcc). Ann Oncol. 2014;25(Supplement 4):iv361–372.Google Scholar
  19. 19.
    Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res. 1970;13:1–27.CrossRefPubMedGoogle Scholar
  20. 20.
    Sawnn JB, Smyth MJ. Immune surveillance of tumors. J Clin Investig. 2007;117:1137–46.CrossRefGoogle Scholar
  21. 21.
    Mapara MY, Sykes M. Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. J Clin Oncol. 2004;22:1136–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Eggermont AM, Chiarion-Sileni V, Grob JJ, Dummer R, Wolchok JD, Schmidt H, et al. Ipilimumab versus placebo after complete resection of stage III melanoma: efficacy and safety results from the EORTC 18071 phase III trial. Asia Pac J Clin Oncol. 2014;10:175.CrossRefGoogle Scholar
  24. 24.
    Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res. 2013;1:32–42.CrossRefPubMedGoogle Scholar
  25. 25.
    Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med. 2013;210:1695–710.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.CrossRefPubMedGoogle Scholar
  27. 27.
    Linsley PS, Clark EA, Ledbetter JA. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci. 1990;87:5031–5.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Apetoh L, Smyth MJ, Drake CG, Abastado JP, Apte RN, Ayyoub M, et al. Consensus nomenclature for CD8 T cell phenotypes in cancer. Oncoimmunology. 2015;4:e998538.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5:1365–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–34.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Habicht A, Dada S, Jurewicz M, Fife BT, Yagita H, Azuma M, et al. A link between PDL1 and T regulatory cells in fetomaternal tolerance. J Immunol. 2007;179:5211–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 2014;211:781–90.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33:1889–94. doi:10.1200/JCO.2014.56.2736.CrossRefPubMedGoogle Scholar
  34. 34.
    Weber JS, Minor DR, D’Angelo S, Hodi FS, Gutzmer R, Neyns B, et al. A phase 3 randomized, open-label study of nivolumab (anti-pd-1; bms-936558;ono4538) versus investigator’s choice chemotherapy (icc) in patients with advanced melanoma after prior anti-CTLA- 4 therapy. Ann Oncol. 2014;25 (suppl 4).Google Scholar
  35. 35.
    Patnaik A, Kang SP, Tolcher AW, Rasco DW, Papadopoulos KP, Beeram M, et al. Phase I study of MK-3475 (anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. J Clin Oncol. 2012;30(15).Google Scholar
  36. 36.
    Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med. 2015;372:2521–32.CrossRefPubMedGoogle Scholar
  37. 37.
    Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28.CrossRefPubMedGoogle Scholar
  38. 38.
    Soria J-C, Gettinger S, Gordon M, Heist RS, Horn L, Spigel DR, et al. Biomarkers associated with clinical activity ofpd-l1 blockade in non-small cell lung cancer(nsclc) patients (pts) in a phase i study of MPDL3280A. Ann Oncol. 2014;5(Supplement 4):iv426–470.Google Scholar
  39. 39.
    Rizvi NA, Brahmer JR, Ou SHI, Segal NH, Khleif S, Hwu W-J, et al. Safety and clinical activity of MEDI4736, an anti-programmed cell death-ligand 1 (PD-L1) antibody, in patients with non-small cell lung cancer (NSCLC). J Clin Oncol. 2015;33(15_suppl):8032 (ASCO meeting abstracts, 18 May 2015: abstract 8032).Google Scholar
  40. 40.
    Joaquim Bellmunt, Shilpa Gupta, Raanan Berger, Robert B. Montgomery, Karl Heath,  Jonathan Juco, et al. Pembrolizumab (MK-3475) for advanced urothelial cancer: updated results and biomarker analysis from KEYNOTE-012. J Clin Oncol. 2015;33(15_suppl):4502 (ASCO meeting abstracts, 18 May 2015: abstract 4502).Google Scholar
  41. 41.
    Seiwert TY, Haddad RI, Gupta S, Mehra R, Tahara M, Berger R, et al. Antitumor activity and safety of pembrolizumab in patients (pts) with advanced squamous cell carcinoma of the head and neck (SCCHN): preliminary results from KEYNOTE-012 expansion cohort. J Clin Oncol. 2015;33(15_suppl):LBA6008 (ASCO meeting abstracts, 18 May 2015: abstract LBA6008).Google Scholar
  42. 42.
    Fury SIO, A. Balmanoukian, A. Hansen, E. Massarelli, A. Blake-Haskins, X. Li, et al. Clinical activity and safety of medi4736, an anti-pd-l1 antibody, in patients with head and neck cancer. Ann Oncol. 2014;25(Supplement 4):iv340–356.Google Scholar
  43. 43.
    Amin A, Plimack ER, Infante JR, Ernstoff M, Rini BI, McDermott DF, et al. Nivolumab (n) (anti-pd-1; bms-936558, ono-4538) in combination with sunitinib (s) or pazopanib (p) in patients (pts) with metastatic renal cell carcinoma (mrcc). Ann Oncol. 2014;25(suppl 4):iv362–3.Google Scholar
  44. 44.
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.CrossRefPubMedGoogle Scholar
  45. 45.
    Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 2005;65:1089–96.PubMedGoogle Scholar
  47. 47.
    Hodi FS, Sznol M, Kluger HM, McDermott DF, Carvajal RD, Lawrence DP, et al. Long-term survival of ipilimumab-naive patients (pts) with advanced melanoma (MEL) treated with nivolumab (anti-PD-1, BMS-936558, ONO-4538) in a phase I trial. J Clin Oncol. 2014;32:5s, (suppl; abstr 9002).Google Scholar
  48. 48.
    Weber JS, Kudchadkar RR, Yu B, Gallenstein D, Horak CE, Inzunza HD, et al. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol. 2013;31:4311–8.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA, et al. overall survival and long-term safety of nivolumab (anti–programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non–small-cell lung cancer. J Clin Oncol. 2015;33:2004–12.Google Scholar
  50. 50.
    Gettinger SN, Hellmann MD, Shepherd FA, Antonia SJ, Brahmer JR, Quan Man Chow L, et al First-line monotherapy with nivolumab (NIVO; anti-programmed death-1 [PD-1]) in advanced non-small cell lung cancer (NSCLC): Safety, efficacy and correlation of outcomes with PD-1 ligand (PD-L1) expression. J Clin Oncol. 2015;33(suppl):abstr 8025.Google Scholar
  51. 51.
    Rizvi NA, Mazières J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16:257–65.CrossRefPubMedGoogle Scholar
  52. 52.
    Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.CrossRefPubMedGoogle Scholar
  53. 53.
    Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39.CrossRefPubMedGoogle Scholar
  54. 54.
    Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–13.CrossRefPubMedGoogle Scholar
  55. 55.
    Hamanishi J, Mandai M, Ikeda T, Minami M, Kawaguchi A, Matsumura N, et al. Durable tumor remission in patients with platinum-resistant ovarian cancer receiving nivolumab. J Clin Oncol. 2015;33(15_suppl):5570 (ASCO meeting abstracts, 18 May 2015: abstract 5570).Google Scholar
  56. 56.
    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.CrossRefPubMedGoogle Scholar
  57. 57.
    Hodi FS, Gibney G, Sullivan R, Sosman JA, Slingluff CL Jr, Lawrence DP, Logan TF, Schuchter LM, Nair S, Fecher L, Buchbinder E, Ruisi M, Kong G, Horak C, Weber JS. 23LBA An open-label, randomized, phase 2 study of nivolumab (NIVO) given sequentially with ipilimumab (IPI) in patients with advanced melanoma (CheckMate 064). Eur J Cancer. 2015;51(suppl 3):S721.CrossRefGoogle Scholar
  58. 58.
    Antonia SJ, Gettinger SN, Quan MCL, Juergens RA, Borghaei H, Shen Y, et al. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) and ipilimumab in first-line NSCLC: Interim phase I results. J Clin Oncol. 2014;32:5s, (suppl; abstr 8023).Google Scholar
  59. 59.
    Rizvi NA, Quan Man Chow L, Borghaei H, Shen Y, Harbison C, Alaparthy S, et al. Safety and response with nivolumab (anti-PD-1; BMS-936558, ONO-4538) plus erlotinib in patients (pts) with epidermal growth factor receptor mutant (EGFR MT) advanced NSCLC. J Clin Oncol. 2014;32:5s, (suppl; abstr 8022).Google Scholar
  60. 60.
    Gettinger S, Rizvi N, Chow LQ, Borghaei H, Brahmer JR, Juergens R, et al. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with platinum-based doublet chemotherapy (PT-DC) or erlotinib (ERL) in advanced non-small cell lung cancer (NSCLC). Ann Oncol. 2014;25(Supplement 4):iv361–372.Google Scholar
  61. 61.
    Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384(9948):1109–17.Google Scholar
  62. 62.
    Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16:908–18.CrossRefPubMedGoogle Scholar
  63. 63.
    Patnaik A, Socinski MA, Gubens MA, Gandhi L, Stevenson J, Bachman RD, et al. Phase 1 study of pembrolizumab (pembro; MK-3475) plus ipilimumab (IPI) as second-line therapy for advanced non-small cell lung cancer (NSCLC): KEYNOTE-021 cohort D. J Clin Oncol. 2015;33(15_suppl):8011 (ASCO meeting abstracts, 18 May 2015: abstract 8011).Google Scholar
  64. 64.
    Papadimitrakopoulou V, Patnaik A, Borghaei H, Stevenson J, Gandhi L, Gubens MA, et al. Pembrolizumab (pembro; MK-3475) plus platinum doublet chemotherapy (PDC) as front-line therapy for advanced non-small cell lung cancer (NSCLC): KEYNOTE-021 Cohorts A and C. J Clin Oncol. 2015;33(suppl):abstr 8031.Google Scholar
  65. 65.
    Ott PA, Elez Fernandez MA, Hiret S, Kim D-W, Moss RA, Winser T, et al. Pembrolizumab (MK-3475) in patients (pts) with extensive-stage small cell lung cancer (SCLC): Preliminary safety and efficacy results from KEYNOTE-028. J ClinOncol. 2015;33(15_suppl):7502 (ASCO meeting abstracts, 18 May 2015: abstract 7502).Google Scholar
  66. 66.
    Alley EW, Rhoda Molife L, Santoro A, Beckey K, Yuan S, Cheng JD, Piperdi B, et al. Abstract CT103: Clinical safety and efficacy of pembrolizumab (MK-3475) in patients with malignant pleural mesothelioma: preliminary results from KEYNOTE-028. Cancer Res. 2015;75:CT103. doi:10.1158/1538-7445.AM2015-CT103.CrossRefGoogle Scholar
  67. 67.
    Doi T, Piha-Paul SA, Jalal SA, Mai-Dang H, Yuan S, Koshiji M, Csiki I, et al. Pembrolizumab (MK-3475) for patients (pts) with advanced esophageal carcinoma: preliminary results from KEYNOTE-028. J Clin Oncol. 2015;33(15_suppl):4010 (ASCO meeting abstracts, 18 May 2015: abstract 4010).Google Scholar
  68. 68.
    Bang JY, Chung HC, Shankaran V, Geva R, Virgil D, Catenacci T, et al. Relationship between PD-L1 expression and clinical outcomes in patients with advanced gastric cancer treated with the anti-PD-1 monoclonal antibody pembrolizumab (MK-3475) in KEYNOTE-012. J Clin Oncol. 2015;33(15_suppl):4001 (ASCO meeting abstracts, 18 May 2015: abstract 4001).Google Scholar
  69. 69.
    Varga A, Piha-Paul SA, Ott PA, Mehnert JM, Berton-Rigaud D, Johnson EA, et al. Antitumor activity and safety of pembrolizumab in patients (pts) with PD-L1-positive advanced ovarian cancer: Interim results from a phase Ib study. J Clin Oncol. 2015;33(15_suppl):5510 (ASCO meeting abstracts, 18 May 2015: abstract 4001).Google Scholar
  70. 70.
    Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, et al. Abstract S1-09: a phase Ib study of pembrolizumab (MK-3475) in patients with advanced triple-negative breast cancer. Cancer Res. 2015;75(9 Supplement):S1–09.CrossRefGoogle Scholar
  71. 71.
    Moskowitz CH, Ribrag V, Michot J-M, Martinelli G, Zinzani PL, Martin G. PD-1 Blockade with the monoclonal antibody pembrolizumab (MK-3475) in patients with classical hodgkin lymphoma after brentuximab vedotin failure: preliminary results from a phase 1b study (KEYNOTE-013). Blood. 2014;124(21):abstract 290.Google Scholar
  72. 72.
    Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen YB, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol. 2013;31:4199–206.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Atkins MB, Kudchadkar R, Mario S, et al. Phase 2, multicenter, safety and efficacy study of pidilizumab in patients with metastatic melanoma). J Clin Oncol 2014;32:5s, (suppl; abstr 9001).Google Scholar
  74. 74.
    Herbst RS, Gordon MS, Fine GD, Sosman JA, Soria J-C, Hamid O, et al. A study of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic tumors. J Clin Oncol. 2013;31(15_suppl):3000 (ASCO meeting abstracts, 17 June 2015: abstract 3000).Google Scholar
  75. 75.
    Horn L, Spigel DR, Gettinger SN, Antonia SJ, Gordon MS, Herbst RS, et al. Clinical activity, safety and predictive biomarkers of the engineered antibody MPDL3280A (anti-PDL1) in non-small cell lung cancer (NSCLC): update from a phase Ia study. J Clin Oncol. 2015;33(15_suppl):8029 (ASCO meeting abstracts, 18 May 2015: abstract 8029).Google Scholar
  76. 76.
    Spira AI, Park K, Mazières J, Vansteenkiste JF, Rittmeyer A, Ballinger M, et al. Efficacy, safety and predictive biomarker results from a randomized phase II study comparing MPDL3280A vs docetaxel in 2L/3L NSCLC (POPLAR). J Clin Oncol. 2015;33(15_suppl):8010 (ASCO meeting abstracts, 18 May 2015: abstract 8010).Google Scholar
  77. 77.
    Petrylak DP, Powles T, Bellmunt J, Braiteh FS, Loriot Y, Zambrano CC, et al. phase Ia study of MPDL3280A (anti-PDL1): Updated response and survival data in urothelial bladder cancer (UBC). J Clin Oncol. 2015;33(15_suppl):4501 (ASCO meeting abstracts, 18 May 2015: abstract 4501).Google Scholar
  78. 78.
    Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20.CrossRefPubMedGoogle Scholar
  79. 79.
    McDermott DF, Sznol M, Sosman JA, Soria J-C, Gordon MS, Hamid O, et al. Immune correlates and long term follow up of a phase ia study of mpdl3280a, an engineered pd-l1 antibody, in patients with metastatic renal cell carcinoma (mrcc). Ann Oncol. 2014;25(Supplement 4):280–304.Google Scholar
  80. 80.
    Lieu C, Bendell J, Powderly JD, Pishvaian MJ, Hochster H, Eckhardt SG, et al. Safety and efficacy of mpdl3280a (anti-pdl1) in combination with bevacizumab (bev) and/or chemotherapy (chemo) in patients (pts) wit locally advanced or metastatic solid tumors. Ann Oncol. 2014;25(Supplement 4):iv361–372.Google Scholar
  81. 81.
    Segal H, Ou S-HI, Balmanoukian AS, Fury MG, Massarelli E, Brahmer JR, et al. Blake-Haskins, Marcus O. Butler. Safety and efficacy of MEDI4736, an anti-PD-L1 antibody, in patients from a squamous cell carcinoma of the head and neck (SCCHN) expansion cohort. J Clin Oncol. 2015;33(15_suppl):3011 (ASCO meeting abstracts, 18 May 2015: abstract 3011).Google Scholar
  82. 82.
    Segal NH, Antonia SJ, Brahmer JR, Maio M, Blake-Haskins A, Xia Li JV, et al. Preliminary data from a multi-arm expansion study of MEDI4736, an anti-PD-L1 antibody. J Clin Oncol. 2014;32:5s, (suppl; abstr 3002^).Google Scholar
  83. 83.
    Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20:5064–74.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4:127ra37.Google Scholar
  86. 86.
    Madore J, Vilain RE, Menzies AM, Kakavand H, Wilmott JS, Hyman J, et al. PD-L1 expression in melanoma shows marked heterogeneity within and between patients: implications for anti-PD-1/PD-L1 clinical trials. Pigment Cell Melanoma Res. 2014. doi:10.1111/pcmr.12340.
  87. 87.
    Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Topalian SL, Sznol M, Brahmer JR, McDermott DF, Smith DC, Gettinger SN, et al. Nivolumab (anti-PD-1; BMS-936558; ONO-4538) in patients with advanced solid tumors: survival and long-term safety in a phase I trial. J Clin Oncol. 2013;31(15_suppl):3002 (ASCO meeting abstracts, 17 June 2015: abstract 3002).Google Scholar
  89. 89.
    Grosso J, Horak CE, Inzunza D, Cardona DM, Simon JS, Gupta AK, et al. Association of tumor PD-L1 expression and immune biomarkers with clinical activity in patients (pts) with advanced solid tumors treated with nivolumab (anti-PD-1; BMS-936558; ONO-4538). J Clin Oncol. 2013;31(15_suppl):3016 (ASCO meeting abstracts, 17 June 2015: abstract 3016).Google Scholar
  90. 90.
    Kefford R, Ribas A, Hamid O, Robert C, Daud A, Wolchok JD, et al. Clinical efficacy and correlation with tumor PD-L1 expression in patients (pts) with melanoma (MEL) treated with the anti-PD-1 monoclonal antibody MK-3475. J Clin Oncol. 2014;32:5s, (suppl; abstr 3005^).Google Scholar
  91. 91.
    Spigel DR, Gettinger SN, Horn L, Herbst RS, Gandhi L, Gordon MS, et al. Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC). J Clin Oncol. 2013;31(15_suppl):8008 (ASCO meeting abstracts, 17 June 2015: abstract 8008).Google Scholar
  92. 92.
    Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–46.CrossRefPubMedGoogle Scholar
  93. 93.
    Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:793–800 [Erratum, Nat Med 2002;8:1039].Google Scholar
  94. 94.
    Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci. 2002;99:12293–7.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8:467–77.CrossRefPubMedGoogle Scholar
  96. 96.
    Fife BT, Pauken KE, Eagar TN, et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol. 2009;10:1185–92.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14:1014–22.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Mu CY, Huang JA, Chen Y, Chen C, Zhang XG. High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol. 2011;28:682–8.CrossRefPubMedGoogle Scholar
  99. 99.
    Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS, et al. Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci. 2004;101:17174–9.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Gadiot J, Hooijkaas AI, Kaiser AD, van Tinteren H, van Boven H, Blank C. Overall survival and PD-L1 expression in metastasized malignant melanoma. Cancer. 2011;117:2192–201.CrossRefPubMedGoogle Scholar
  101. 101.
    Sage PT, Francisco LM, Carman CV, Sharpe AH. The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nat Immunol. 2013;14:152–61.CrossRefPubMedGoogle Scholar
  102. 102.
    Maldonado RA, von Andrian UH. How tolerogenic dendritic cells induce regulatory T cells. Adv Immunol. 2010;108:111–65.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009;206:3015–29.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Pedoeem A, Azoulay-Alfaguter I, Strazza M, Silverman GJ, Mor A. Programmed death-1 pathway in cancer and autoimmunity. Clin Immunol. 2014;153:145–52.CrossRefPubMedGoogle Scholar
  105. 105.
    Sznol M, Chen L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer–response. Clin Cancer Res. 2013;19(19):5542.CrossRefPubMedGoogle Scholar
  106. 106.
    Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515:577–81.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Spranger S, Bao R, Gajewski T. Melanoma-intrinsic b-catenin signaling prevents T cell infiltration and anti-tumor immunity. J Immunother Cancer. 2014;2(Suppl 3):O15.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lucia Festino
    • 1
  • Gerardo Botti
    • 1
  • Paul Lorigan
    • 2
  • Giuseppe V. Masucci
    • 3
  • Jason D. Hipp
    • 4
  • Christine E. Horak
    • 4
  • Ignacio Melero
    • 5
  • Paolo A. Ascierto
    • 1
  1. 1.Istituto Nazionale Tumori Fondazione “G. Pascale”NaplesItaly
  2. 2.University of Manchester/The Christie NHS Foundation TrustManchesterUK
  3. 3.Department of Oncology-PathologyKarolinska Institutet and HospitalStockholmSweden
  4. 4.Bristol-Myers SquibbPrincetonUSA
  5. 5.CIMA and CUN, University of NavarraPamplonaSpain

Personalised recommendations