Advertisement

Drugs

, Volume 74, Issue 11, pp 1165–1176 | Cite as

Glutamate Receptor Antagonists in the Management of Migraine

  • Kayi Chan
  • Antoinette MaassenVanDenBrinkEmail author
Leading Article

Abstract

Migraine is a neurovascular disorder that is associated with severe headache and neurologic symptoms. The pathogenesis of migraine is believed to involve trigeminovascular system activation with the primary dysfunction located in brainstem. Glutamate, the major excitatory neurotransmitter in the central nervous system, and its receptors have since long been suggested in migraine pathophysiology. Different preclinical studies have confirmed their potential role in migraine. Moreover, several glutamate receptor modulators have been studied in clinical studies, some with promising results. In this review, we will give an overview of what is known about the role of glutamate in the pathogenesis of migraine, which will be followed by an overview of available efficacy, safety and tolerability data for glutamate receptor inhibitors in clinical development for the treatment of migraine.

Keywords

Migraine Botulinum Toxin Lamotrigine Topiramate Sumatriptan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Conflict of interest

Kayi Chan declares that there are no conflicts of interest.

Antoinette MaassenVanDenBrink declares that there are no conflicts of interest. She was supported by the Netherlands Organization for Scientific Research (Vidi grant 917.11.349). No funding was received specifically for writing the review.

References

  1. 1.
    Goadsby PJ, Lipton RB, Ferrari MD. Migraine: current understanding and treatment. N Engl J Med. 2002;346(4):257–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Olesen J, Burstein R, Ashina M, Tfelt-Hansen P. Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol. 2009;8(7):679–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Menken M, Munsat TL, Toole JF. The global burden of disease study: implications for neurology. Arch Neurol. 2000;57(3):418–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Andlin-Sobocki P, Jonsson B, Wittchen HU, Olesen J. Cost of disorders of the brain in Europe. Eur J Neurol. 2005;12(Suppl 1):1–27. doi: 10.1111/j.1468-1331.2005.01202.x.PubMedCrossRefGoogle Scholar
  5. 5.
    Pietrobon D, Striessnig J. Neurobiology of migraine. Nat Rev Neurosci. 2003;4(5):386–98. doi: 10.1038/nrn1102nrn1102.PubMedCrossRefGoogle Scholar
  6. 6.
    Pollack MA, French JH. Hypothesis: glutamic acid in migraine. Headache. 1975;15(2):114–47.PubMedCrossRefGoogle Scholar
  7. 7.
    Ramadan NM. Glutamate and migraine: from Ikeda to the 21st century. Cephalalgia. 2014;34(2):86–9. doi: 10.1177/0333102413499646.PubMedCrossRefGoogle Scholar
  8. 8.
    Monaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol. 1989;29:365–402.PubMedCrossRefGoogle Scholar
  9. 9.
    Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–96. doi: 10.1124/pr.109.002451.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Busija DW, Bari F, Domoki F, Louis T. Mechanisms involved in the cerebrovascular dilator effects of N-methyl-d-aspartate in cerebral cortex. Brain Res Rev. 2007;56(1):89–100.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Bhardwaj A, Northington FJ, Ichord RN, Hanley DF, Traystman RJ, Koehler RC. Characterization of ionotropic glutamate receptor-mediated nitric oxide production in vivo in rats. Stroke. 1997;28(4):850–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Montana MC, Gereau RW. Metabotropic glutamate receptors as targets for analgesia: antagonism, activation, and allosteric modulation. Curr Pharm Biotechnol. 2011;12(10):1681–8 BSP/CPB/E-Pub/000124-12-10.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Vikelis M, Mitsikostas DD. The role of glutamate and its receptors in migraine. CNS Neurol Disord Drug Targets. 2007;6(4):251–7.PubMedCrossRefGoogle Scholar
  14. 14.
    do Carmo RJ, Martins-Ferreira H. Glutamate-K + interactions with relation to spreading cortical depression. An Acad Bras Cienc 1979;3(51):579.Google Scholar
  15. 15.
    Gorji A, Scheller D, Straub H, Tegtmeier F, Kohling R, Hohling JM, et al. Spreading depression in human neocortical slices. Brain Res. 2001;906(1–2):74–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Kai-Kai MA, Howe R. Glutamate-immunoreactivity in the trigeminal and dorsal root ganglia, and intraspinal neurons and fibres in the dorsal horn of the rat. Histochem J. 1991;23(4):171–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Xiao Y, Richter JA, Hurley JH. Release of glutamate and CGRP from trigeminal ganglion neurons: role of calcium channels and 5-HT1 receptor signaling. Mol Pain. 2008;16:4–12.Google Scholar
  18. 18.
    Oshinsky ML, Luo J. Neurochemistry of trigeminal activation in an animal model of migraine. Headache. 2006;46(Suppl 1):S39–44.PubMedCrossRefGoogle Scholar
  19. 19.
    Salt TE. Glutamate receptor functions in sensory relay in the thalamus. Philos Trans R Soc Lond B Biol Sci. 2002;357(1428):1759–66. doi: 10.1098/rstb.2002.1165.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Hill RG, Salt TE. An ionophoretic study of the responses of rat caudal trigeminal nucleus neurones to non-noxious mechanical sensory stimuli. J Physiol. 1982;327:65–78.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Tallaksen-Greene SJ, Young AB, Penney JB, Beitz AJ. Excitatory amino acid binding sites in the trigeminal principal sensory and spinal trigeminal nuclei of the rat. Neurosci Lett. 1992;141(1):79–83 0304-3940(92)90339-9.PubMedCrossRefGoogle Scholar
  22. 22.
    Halpain S, Wieczorek CM, Rainbow TC. Localization of L-glutamate receptors in rat brain by quantitative autoradiography. J Neurosci. 1984;4(9):2247–58.PubMedGoogle Scholar
  23. 23.
    Sahara Y, Noro N, Iida Y, Soma K, Nakamura Y. Glutamate receptor subunits GluR5 and KA-2 are coexpressed in rat trigeminal ganglion neurons. J Neurosci. 1997;17(17):6611–20.PubMedGoogle Scholar
  24. 24.
    Ferrari A, Spaccapelo L, Pinetti D, Tacchi R, Bertolini A. Effective prophylactic treatments of migraine lower plasma glutamate levels. Cephalalgia. 2009;29(4):423–9. doi: 10.1111/j.1468-2982.2008.01749.x.PubMedCrossRefGoogle Scholar
  25. 25.
    Vieira DS, Naffah-Mazzacoratti Mda G, Zukerman E, Senne Soares CA, Cavalheiro EA, Peres MF. Glutamate levels in cerebrospinal fluid and triptans overuse in chronic migraine. Headache. 2007;47(6):842–7. doi: 10.1111/j.1526-4610.2007.00812.x.
  26. 26.
    Baad-Hansen L, Cairns B, Ernberg M, Svensson P. Effect of systemic monosodium glutamate (MSG) on headache and pericranial muscle sensitivity. Cephalalgia. 2010;30(1):68–76. doi: 10.1111/j.1468-2982.2009.01881.x.PubMedGoogle Scholar
  27. 27.
    Shimada A, Cairns BE, Vad N, Ulriksen K, Pedersen AM, Svensson P, et al. Headache and mechanical sensitization of human pericranial muscles after repeated intake of monosodium glutamate (MSG). J Headache Pain. 2013;14(1):2. doi: 10.1186/1129-2377-14-2.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil BJ, Bajwa ZH. An association between migraine and cutaneous allodynia. Ann Neurol. 2000;47(5):614–24.PubMedCrossRefGoogle Scholar
  29. 29.
    Burstein R. Deconstructing migraine headache into peripheral and central sensitization. Pain. 2001;89(2–3):107–10 S0304395900004784.PubMedCrossRefGoogle Scholar
  30. 30.
    Liang YC, Huang CC, Hsu KS. Characterization of long-term potentiation of primary afferent transmission at trigeminal synapses of juvenile rats: essential role of subtype 5 metabotropic glutamate receptors. Pain. 2005;114(3):417–28. doi: 10.1016/j.pain.2005.01.008.PubMedCrossRefGoogle Scholar
  31. 31.
    Jensen TS, Yaksh TL. The antinociceptive activity of excitatory amino acids in the rat brainstem: an anatomical and pharmacological analysis. Brain Res. 1992;569(2):255–67 0006-8993(92)90637-O.PubMedCrossRefGoogle Scholar
  32. 32.
    Andreou A, Goadsby PJ. LY466195, a clinically active compound in the acute treatment of migraine, inhibits activation in trigeminocervical complex and ventroposteromedial thalamus after nociceptive trigeminovascular activation. Cephalalgia. 2009;29:133.Google Scholar
  33. 33.
    Andreou AP, Goadsby PJ. Therapeutic potential of novel glutamate receptor antagonists in migraine. Expert Opin Investig Drugs. 2009;18(6):789–803.PubMedCrossRefGoogle Scholar
  34. 34.
    Classey JD, Knight YE, Goadsby PJ. The NMDA receptor antagonist MK-801 reduces Fos-like immunoreactivity within the trigeminocervical complex following superior sagittal sinus stimulation in the cat. Brain Res. 2001;907(1–2):117–24.PubMedCrossRefGoogle Scholar
  35. 35.
    Goadsby PJ, Classey JD. Glutamatergic transmission in the trigeminal nucleus assessed with local blood flow. Brain Res. 2000;875(1–2):119–24.PubMedCrossRefGoogle Scholar
  36. 36.
    Storer RJ, Goadsby PJ. Trigeminovascular nociceptive transmission involves N-methyl-d-aspartate and non-N-methyl-d-aspartate glutamate receptors. Neuroscience. 1999;90(4):1371–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Storer RJ, Goadsby PJ. N-methyl-d-aspartate receptor channel complex blockers including memantine and magnesium inhibit nociceptive traffic in the trigeminocervical complex of the rat. Cephalalgia. 2009;29 Suppl 1:135.Google Scholar
  38. 38.
    Andreou AP, Holland PR, Goadsby PJ. Activation of iGluR5 kainate receptors inhibits neurogenic dural vasodilatation in an animal model of trigeminovascular activation. Br J Pharmacol. 2009;157:464–73.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Hattori Y, Watanabe M, Iwabe T, Tanaka E, Nishi M, Aoyama J, et al. Administration of MK-801 decreases c-Fos expression in the trigeminal sensory nuclear complex but increases it in the midbrain during experimental movement of rat molars. Brain Res. 2004;1021(2):183–91. doi: 10.1016/j.brainres.2004.06.048.PubMedCrossRefGoogle Scholar
  40. 40.
    Mitsikostas DD, Sánchez del Rio M, Waeber C, Huang Z, Cutrer FM, Moskowitz MA. Non-NMDA glutamate receptors modulate capsaicin induced c-fos expression within trigeminal nucleus caudalis. Br J Pharmacol. 1999;127(3):623–30.Google Scholar
  41. 41.
    Mitsikostas DD, Sánchez del Rio M, Waeber C, Moskowitz MA, Cutrer FM. The NMDA receptor antagonist MK-801 reduces capsaicin-induced c-fos expression within rat trigeminal nucleus caudalis. Pain. 1998;76(1–2):239–48.Google Scholar
  42. 42.
    Weiss B, Alt A, Ogden AM, Gates M, Dieckman DK, Clemens-Smith A, et al. Pharmacological characterization of the competitive GLUK5 receptor antagonist decahydroisoquinoline LY466195 in vitro and in vivo. J Pharmacol Exp Ther. 2006;318(2):772–81.PubMedCrossRefGoogle Scholar
  43. 43.
    Johnson KW, Dieckman DK, Phebus LA. GLUR5 antagonists as novel migraine therapies. Cephalalgia. 2001;21:268.Google Scholar
  44. 44.
    Lauritzen M, Hansen AJ. The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J Cereb Blood Flow Metab. 1992;12(2):223–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Nellgard B, Wieloch T. NMDA-receptor blockers but not NBQX, an AMPA-receptor antagonist, inhibit spreading depression in the rat brain. Acta Physiol Scand. 1992;146(4):497–503.PubMedCrossRefGoogle Scholar
  46. 46.
    Obrenovitch TP, Zilkha E. Inhibition of cortical spreading depression by L-701,324, a novel antagonist at the glycine site of the N-methyl-d-aspartate receptor complex. Br J Pharmacol. 1996;117(5):931–7.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Garry MG, Walton LP, Davis MA. Capsaicin-evoked release of immunoreactive calcitonin gene-related peptide from the spinal cord is mediated by nitric oxide but not by cyclic GMP. Brain Res. 2000;861(2):208–19.PubMedCrossRefGoogle Scholar
  48. 48.
    Chan KY, Vermeersch S, de Hoon J, Villalon CM, Maassenvandenbrink A. Potential mechanisms of prospective antimigraine drugs: a focus on vascular (side) effects. Pharmacol Ther. 2011;129(3):332–51. doi: 10.1016/j.pharmthera.2010.12.001.PubMedCrossRefGoogle Scholar
  49. 49.
    Chan KY, Gupta S, de Vries R, Danser AH, Villalon CM, Munoz-Islas E, et al. Effects of ionotropic glutamate receptor antagonists on rat dural artery diameter in an intravital microscopy model. Br J Pharmacol. 2010;160(6):1316–25. doi: 10.1111/j.1476-5381.2010.00733.x.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Andreou AP, Goadsby PJ. Topiramate in the treatment of migraine: a kainate (glutamate) receptor antagonist within the trigeminothalamic pathway. Cephalalgia. 2011;31(13):1343–58. doi: 10.1177/0333102411418259.PubMedCrossRefGoogle Scholar
  51. 51.
    Silberstein SD, Neto W, Schmitt J, Jacobs D. Topiramate in migraine prevention: results of a large controlled trial. Arch Neurol. 2004;61(4):490–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Sang CN, Ramadan NM, Wallihan RG, Chappell AS, Freitag FG, Smith TR, et al. LY293558, a novel AMPA/GluR5 antagonist, is efficacious and well-tolerated in acute migraine. Cephalalgia. 2004;24(7):596–602.PubMedCrossRefGoogle Scholar
  53. 53.
    Johnson KW, Nisenbaum ES, Johnson MP, Dieckman DK, Clemens-Smith A, Siuda ER. Innovative drug development for headache disorders: glutamate. In: Olesen J, Ramadan NM, editors. Frontiers in Headache Research. New York: Oxford; 2008. p. 185–94.Google Scholar
  54. 54.
    Gomez-Mancilla B, Brand R, Jurgens TP, Gobel H, Sommer C, Straube A, et al. Randomized, multicenter trial to assess the efficacy, safety and tolerability of a single dose of a novel AMPA receptor antagonist BGG492 for the treatment of acute migraine attacks. Cephalalgia. 2014;34(2):103–13. doi: 10.1177/0333102413499648.PubMedCrossRefGoogle Scholar
  55. 55.
    Goadsby PJ, Keywood C. Investigation of the role of mGluR5 inhibition in migraine: a proof of concept study of ADX10059 in acute migraine treatment. Cephalalgia. 2009;29(Suppl 1):7.Google Scholar
  56. 56.
    Charles A, Flippen C, Romero Reyes M, Brennan KC. Memantine for prevention of migraine: a retrospective study of 60 cases. J Headache Pain. 2007;8(4):248–50. doi: 10.1007/s10194-007-0406-7.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Bigal M, Rapoport A, Sheftell F, Tepper D, Tepper S. Memantine in the preventive treatment of refractory migraine. Headache. 2008;48(9):1337–42.PubMedCrossRefGoogle Scholar
  58. 58.
    Taverna S, Sancini G, Mantegazza M, Franceschetti S, Avanzini G. Inhibition of transient and persistent Na+ current fractions by the new anticonvulsant topiramate. J Pharmacol Exp Ther. 1999;288(3):960–8.PubMedGoogle Scholar
  59. 59.
    Zhang X, Velumian AA, Jones OT, Carlen PL. Modulation of high-voltage-activated calcium channels in dentate granule cells by topiramate. Epilepsia. 2000;41(Suppl 1):S52–60.PubMedCrossRefGoogle Scholar
  60. 60.
    White HS, Brown SD, Woodhead JH, Skeen GA, Wolf HH. Topiramate enhances GABA-mediated chloride flux and GABA-evoked chloride currents in murine brain neurons and increases seizure threshold. Epilepsy Res. 1997;28(3):167–79 S0920-1211(97)00045-4.PubMedCrossRefGoogle Scholar
  61. 61.
    Herrero AI, Del Olmo N, Gonzalez-Escalada JR, Solis JM. Two new actions of topiramate: inhibition of depolarizing GABA(A)-mediated responses and activation of a potassium conductance. Neuropharmacology. 2002;42(2):210–20 S002839080100171X.PubMedCrossRefGoogle Scholar
  62. 62.
    Edwards KR, Potter DL, Wu SC, Kamin M, Hulihan J. Topiramate in the preventive treatment of episodic migraine: a combined analysis from pilot, double-blind, placebo-controlled trials. CNS Spectr. 2003;8(6):428–32.PubMedGoogle Scholar
  63. 63.
    Peres MF, Mercante JP, Tanuri FC, Nunes M, Zukerman E. Chronic migraine prevention with topiramate. J Headache Pain. 2006;7(4):185–7. doi: 10.1007/s10194-006-0339-6.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Bartolini M, Silvestrini M, Taffi R, Lanciotti C, Luconi R, Capecci M, et al. Efficacy of topiramate and valproate in chronic migraine. Clin Neuropharmacol. 2005;28(6):277–9 00002826-200511000-00006.PubMedCrossRefGoogle Scholar
  65. 65.
    Silvestrini M, Bartolini M, Coccia M, Baruffaldi R, Taffi R, Provinciali L. Topiramate in the treatment of chronic migraine. Cephalalgia. 2003;23(8):820–4 592.PubMedCrossRefGoogle Scholar
  66. 66.
    Diener HC, Bussone G, Van Oene JC, Lahaye M, Schwalen S, Goadsby PJ, et al. Topiramate reduces headache days in chronic migraine: a randomized, double-blind, placebo-controlled study. Cephalalgia. 2007;27(7):814–23. doi: 10.1111/j.1468-2982.2007.01326.x.PubMedCrossRefGoogle Scholar
  67. 67.
    Silberstein SD, Lipton RB, Dodick DW, Freitag FG, Ramadan N, Mathew N, et al. Efficacy and safety of topiramate for the treatment of chronic migraine: a randomized, double-blind, placebo-controlled trial. Headache. 2007;47(2):170–80. doi: 10.1111/j.1526-4610.2006.00684.x.PubMedCrossRefGoogle Scholar
  68. 68.
    Silberstein S, Lipton R, Dodick D, Freitag F, Mathew N, Brandes J, et al. Topiramate treatment of chronic migraine: a randomized, placebo-controlled trial of quality of life and other efficacy measures. Headache. 2009;49(8):1153–62. doi: 10.1111/j.1526-4610.2009.01508.x.PubMedCrossRefGoogle Scholar
  69. 69.
    Steiner TJ, Findley LJ, Yuen AW. Lamotrigine versus placebo in the prophylaxis of migraine with and without aura. Cephalalgia. 1997;17(2):109–12.PubMedCrossRefGoogle Scholar
  70. 70.
    Dolly O. Synaptic transmission: inhibition of neurotransmitter release by botulinum toxins. Headache. 2003;43(Suppl 1):S16–24 hed03162.PubMedCrossRefGoogle Scholar
  71. 71.
    Aurora SK, Gawel M, Brandes JL, Pokta S, Vandenburgh AM; BOTOX North American Episodic Migraine Study Group. Botulinum toxin type a prophylactic treatment of episodic migraine: a randomized, double-blind, placebo-controlled exploratory study. Headache. 2007;47(4):486–99. doi: 10.1111/j.1526-4610.2006.00624.x.
  72. 72.
    Relja M, Poole AC, Schoenen J, Pascual J, Lei X, Thompson C, et al. A multicentre, double-blind, randomized, placebo-controlled, parallel group study of multiple treatments of botulinum toxin type A (BoNTA) for the prophylaxis of episodic migraine headaches. Cephalalgia. 2007;27(6):492–503. doi: 10.1111/j.1468-2982.2007.01315.x.PubMedCrossRefGoogle Scholar
  73. 73.
    Durham PL, Cady R. Insights into the mechanism of onabotulinumtoxinA in chronic migraine. Headache. 2011;51(10):1573–7. doi: 10.1111/j.1526-4610.2011.02022.x.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Aurora SK, Dodick DW, Turkel CC, DeGryse RE, Silberstein SD, Lipton RB, et al. OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 1 trial. Cephalalgia. 2010;30(7):793–803. doi: 10.1177/0333102410364676.PubMedCrossRefGoogle Scholar
  75. 75.
    Diener HC, Dodick DW, Aurora SK, Turkel CC, DeGryse RE, Lipton RB, et al. OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 2 trial. Cephalalgia. 2010;30(7):804–14. doi: 10.1177/0333102410364677.PubMedCrossRefGoogle Scholar
  76. 76.
    Dodick DW, Turkel CC, DeGryse RE, Aurora SK, Silberstein SD, Lipton RB, et al. OnabotulinumtoxinA for treatment of chronic migraine: pooled results from the double-blind, randomized, placebo-controlled phases of the PREEMPT clinical program. Headache. 2010;50(6):921–36. doi: 10.1111/j.1526-4610.2010.01678.x.PubMedCrossRefGoogle Scholar
  77. 77.
    Lipton RB, Varon SF, Grosberg B, McAllister PJ, Freitag F, Aurora SK, et al. OnabotulinumtoxinA improves quality of life and reduces impact of chronic migraine. Neurology. 2011;77(15):1465–72. doi: 10.1212/WNL.0b013e318232ab65.PubMedCrossRefGoogle Scholar
  78. 78.
    Aurora SK, Dodick DW, Diener HC, DeGryse RE, Turkel CC, Lipton RB, et al. OnabotulinumtoxinA for chronic migraine: efficacy, safety, and tolerability in patients who received all five treatment cycles in the PREEMPT clinical program. Acta Neurol Scand. 2014;129(1):61–70. doi: 10.1111/ane.12171.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Kaube H, Herzog J, Kaufer T, Dichgans M, Diener HC. Aura in some patients with familial hemiplegic migraine can be stopped by intranasal ketamine. Neurology. 2000;55(1):139–41.PubMedCrossRefGoogle Scholar
  80. 80.
    Afridi SK, Giffin NJ, Kaube H, Goadsby PJ. A randomized controlled trial of intranasal ketamine in migraine with prolonged aura. Neurology. 2013;80(7):642–7. doi: 10.1212/WNL.0b013e3182824e66.PubMedCrossRefGoogle Scholar
  81. 81.
    Lampl C, Buzath A, Klinger D, Neumann K. Lamotrigine in the prophylactic treatment of migraine aura: a pilot study. Cephalalgia. 1999;19(1):58–63.PubMedCrossRefGoogle Scholar
  82. 82.
    D’Andrea G, Granella F, Cadaldini M, Manzoni GC. Effectiveness of lamotrigine in the prophylaxis of migraine with aura: an open pilot study. Cephalalgia. 1999;19(1):64–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Lampl C, Katsarava Z, Diener HC, Limmroth V. Lamotrigine reduces migraine aura and migraine attacks in patients with migraine with aura. J Neurol Neurosurg Psychiatry. 2005;76(12):1730–2.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Zain S, Khan M, Alam R, Zafar I, Ahmed S. Comparison of efficacy and safety of topiramate with gabapentin in migraine prophylaxis: randomized open label control trial. J Pak Med Assoc. 2013;63(1):3–7.PubMedGoogle Scholar
  85. 85.
    Olney JW, Labruyere J, Wang G, Wozniak DF, Price MT, Sesma MA. NMDA antagonist neurotoxicity: mechanism and prevention. Science. 1991;254(5037):1515–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Starr MS. Antiparkinsonian actions of glutamate antagonists—alone and with l-DOPA: a review of evidence and suggestions for possible mechanisms. J Neural Transm Park Dis Dement Sect. 1995;10(2–3):141–85.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Internal Medicine, Division of PharmacologyErasmus Medical CenterRotterdamThe Netherlands

Personalised recommendations