Drugs

, Volume 74, Issue 3, pp 297–311 | Cite as

T-Cell Trafficking and Anti-Adhesion Strategies in Inflammatory Bowel Disease: Current and Future Prospects

  • Mahmoud H. Mosli
  • Jesus Rivera-Nieves
  • Brian G. Feagan
Review Article

Abstract

The medical management of idiopathic inflammatory bowel disease (IBD) has historically been based upon the use of broad-spectrum anti-inflammatory drugs such as corticosteroids and thiopurines. Recently, the identification of novel mechanisms central to the pathophysiology of IBD has provided more specific targets, including inhibition of leukocyte trafficking to the gut. In this article, we discuss the molecular biology of intestinal leukocyte trafficking and review the emerging therapies that target this process, including vedolizumab, natalizumab, etrolizumab, PF-547659, alicaforsen, efalizumab, and emerging members of this class.

Notes

Disclosure

BG Feagan has received consulting fees from Millennium Takeda. MH Mosli, J Rivera-Nieves, and BG Feagan have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was provided in the preparation of this manuscript.

References

  1. 1.
    Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361(21):2066–78.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Kucharzik T, Maaser C, Lugering A, Kagnoff M, Mayer L, Targan S, et al. Recent understanding of IBD pathogenesis: implications for future therapies. Inflamm Bowel Dis. 2006;12(11):1068–83.PubMedCrossRefGoogle Scholar
  3. 3.
    Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448(7152):427–34.PubMedCrossRefGoogle Scholar
  4. 4.
    Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet. 2007;369(9573):1641–57 (*A comprehensive review of recently developed therapies for IBD).Google Scholar
  5. 5.
    Cottone M, Renna S, Orlando A, Mocciaro F. Medical management of Crohn’s disease. Expert Opin Pharmacother. 2011;12(16):2505–25.PubMedCrossRefGoogle Scholar
  6. 6.
    Cohen RD. Evolving medical therapies for ulcerative colitis. Current Gastroenterol Rep. 2002;4(6):497–505.CrossRefGoogle Scholar
  7. 7.
    Ohkura N, Kitagawa Y, Sakaguchi S. Development and maintenance of regulatory T cells. Immunity. 2013;38(3):414–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Hogan SP, Waddell A, Fulkerson PC. Eosinophils in infection and intestinal immunity. Current Opin Gastroenterol. 2013;29(1):7–14.CrossRefGoogle Scholar
  9. 9.
    Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Rev Immunol. 2011;11(8):519–31.CrossRefGoogle Scholar
  10. 10.
    Skapenko A, Leipe J, Lipsky PE, Schulze-Koops H. The role of the T cell in autoimmune inflammation. Arthritis Res Therapy. 2005;7(Suppl 2):S4–14.CrossRefGoogle Scholar
  11. 11.
    McGeachy MJ, Cua DJ. Th17 cell differentiation: the long and winding road. Immunity. 2008;28(4):445–53.PubMedCrossRefGoogle Scholar
  12. 12.
    Troncone E, Marafini I, Pallone F, Monteleone G. Th17 cytokines in inflammatory bowel diseases: discerning the good from the bad. Int Rev Immunol. 2013;32(5–6):526–33.PubMedCrossRefGoogle Scholar
  13. 13.
    Boden EK, Snapper SB. Regulatory T cells in inflammatory bowel disease. Current Opin Gastroenterol. 2008;24(6):733–41.CrossRefGoogle Scholar
  14. 14.
    Izcue A, Coombes JL, Powrie F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol Rev. 2006;212:256–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Bruewer M, Luegering A, Kucharzik T, Parkos CA, Madara JL, Hopkins AM, et al. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol. 2003;171(11):6164–72.PubMedGoogle Scholar
  16. 16.
    Salmi M, Jalkanen S. Cell-surface enzymes in control of leukocyte trafficking. Nature Rev Immunol. 2005;5(10):760–71.CrossRefGoogle Scholar
  17. 17.
    Panes J, Granger DN. Leukocyte-endothelial cell interactions: molecular mechanisms and implications in gastrointestinal disease. Gastroenterology. 1998;114(5):1066–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Mora JR, von Andrian UH. T-cell homing specificity and plasticity: new concepts and future challenges. Trends Immunol. 2006;27(5):235–43.PubMedCrossRefGoogle Scholar
  19. 19.
    Bargatze RF, Jutila MA, Butcher EC. Distinct roles of l-selectin and integrins alpha 4 beta 7 and LFA-1 in lymphocyte homing to Peyer’s patch-HEV in situ: the multistep model confirmed and refined. Immunity. 1995;3(1):99–108.PubMedCrossRefGoogle Scholar
  20. 20.
    Brownlie RJ, Zamoyska R. T cell receptor signalling networks: branched, diversified and bounded. Nature Rev Immunol. 2013;13(4):257–69.CrossRefGoogle Scholar
  21. 21.
    Schmidt S, Moser M, Sperandio M. The molecular basis of leukocyte recruitment and its deficiencies. Mol Immunol. 2013;55(1):49–58.PubMedCrossRefGoogle Scholar
  22. 22.
    Sundd P, Pospieszalska MK, Cheung LS, Konstantopoulos K, Ley K. Biomechanics of leukocyte rolling. Biorheology. 2011;48(1):1–35.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Hunt SW 3rd, Harris ES, Kellermann SA, Shimizu Y. T-lymphocyte interactions with endothelium and extracellular matrix. Crit Rev Oral Biol Med Off Publ Am Assoc Oral Biol. 1996;7(1):59–86.CrossRefGoogle Scholar
  24. 24.
    Rao RM, Shaw SK, Kim M, Luscinskas FW. Emerging topics in the regulation of leukocyte transendothelial migration. Microcirculation. 2005;12(1):83–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Takuwa Y, Okamoto Y, Yoshioka K, Takuwa N. Sphingosine-1-phosphate signaling in physiology and diseases. Biofactors. 2012;38(5):329–37.PubMedCrossRefGoogle Scholar
  26. 26.
    Edmonds Y, Milstien S, Spiegel S. Development of small-molecule inhibitors of sphingosine-1-phosphate signaling. Pharmacol Ther. 2011;132(3):352–60.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Soler D, Chapman T, Yang LL, Wyant T, Egan R, Fedyk ER. The binding specificity and selective antagonism of vedolizumab, an anti-alpha4beta7 integrin therapeutic antibody in development for inflammatory bowel diseases. The Journal of pharmacology and experimental therapeutics. 2009;330(3):864–75 (**This article is a very useful reference to help understand the pharmacological aspects of vedolizumab action).Google Scholar
  28. 28.
    Hesterberg PE, Winsor-Hines D, Briskin MJ, Soler-Ferran D, Merrill C, Mackay CR, et al. Rapid resolution of chronic colitis in the cotton-top tamarin with an antibody to a gut-homing integrin alpha 4 beta 7. Gastroenterology. 1996;111(5):1373–80.PubMedCrossRefGoogle Scholar
  29. 29.
    Thomas S, Baumgart DC. Targeting leukocyte migration and adhesion in Crohn’s disease and ulcerative colitis. Inflammopharmacology. 2012;20(1):1–18.PubMedCrossRefGoogle Scholar
  30. 30.
    von Andrian UH, Engelhardt B. Alpha4 integrins as therapeutic targets in autoimmune disease. N Engl J Med. 2003;348(1):68–72.CrossRefGoogle Scholar
  31. 31.
    Balcer LJ, Galetta SL, Calabresi PA, Confavreux C, Giovannoni G, Havrdova E, et al. Natalizumab reduces visual loss in patients with relapsing multiple sclerosis. Neurology. 2007;68(16):1299–304.PubMedCrossRefGoogle Scholar
  32. 32.
    Miller DH, Khan OA, Sheremata WA, Blumhardt LD, Rice GP, Libonati MA, et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2003;348(1):15–23.PubMedCrossRefGoogle Scholar
  33. 33.
    O’Connor PW, Goodman A, Willmer-Hulme AJ, Libonati MA, Metz L, Murray RS, et al. Randomized multicenter trial of natalizumab in acute MS relapses: clinical and MRI effects. Neurology. 2004;62(11):2038–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):899–910.PubMedCrossRefGoogle Scholar
  35. 35.
    Berger JR. Progressive multifocal leukoencephalopathy and newer biological agents. Drug Safety Int J Med Toxicol Drug Exp. 2010;33(11):969–83.CrossRefGoogle Scholar
  36. 36.
    Van Assche G, Van Ranst M, Sciot R, Dubois B, Vermeire S, Noman M, et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. N Engl J Med. 2005;353(4):362–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Ghosh S, Goldin E, Gordon FH, Malchow HA, Rask-Madsen J, Rutgeerts P, et al. Natalizumab for active Crohn’s disease. N Engl J Med. 2003;348(1):24–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Gordon FH, Hamilton MI, Donoghue S, Greenlees C, Palmer T, Rowley-Jones D, et al. A pilot study of treatment of active ulcerative colitis with natalizumab, a humanized monoclonal antibody to alpha-4 integrin. Aliment Pharmacol Ther. 2002;16(4):699–705.PubMedCrossRefGoogle Scholar
  39. 39.
    Gordon FH, Lai CW, Hamilton MI, Allison MC, Srivastava ED, Fouweather MG, et al. A randomized placebo-controlled trial of a humanized monoclonal antibody to alpha4 integrin in active Crohn’s disease. Gastroenterology. 2001;121(2):268–74.PubMedCrossRefGoogle Scholar
  40. 40.
    Sandborn WJ, Colombel JF, Enns R, Feagan BG, Hanauer SB, Lawrance IC, et al. Natalizumab induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2005;353(18):1912–25.PubMedCrossRefGoogle Scholar
  41. 41.
    Feagan BG, McDonald JW, Rochon J, Laupacis A, Fedorak RN, Kinnear D, et al. Low-dose cyclosporine for the treatment of Crohn’s disease. The Canadian Crohn’s Relapse Prevention Trial Investigators. N Engl J Med. 1994;330(26):1846–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Targan SR, Feagan BG, Fedorak RN, Lashner BA, Panaccione R, Present DH, et al. Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE Trial. Gastroenterology. 2007;132(5):1672–83 (**An important study for readers to review regarding the efficacy of natalizumab).Google Scholar
  43. 43.
    Tysabri. The TYSABRI TOUCH® Prescribing Program. 2013 [cited 2013 Septmeber 29]. http://www.tysabri.com/safety-with-tysabri.xml.
  44. 44.
    Trampe AK, Hemmelmann C, Stroet A, Haghikia A, Hellwig K, Wiendl H, et al. Anti-JC virus antibodies in a large German natalizumab-treated multiple sclerosis cohort. Neurology. 2012;78(22):1736–42.PubMedCrossRefGoogle Scholar
  45. 45.
    Pinto M, Dobson S. BK and JC virus: a review. J Infect. 2013;68 Suppl 1: S2-8.Google Scholar
  46. 46.
    Comar M, Delbue S, Lepore L, Martelossi S, Radillo O, Ronfani L, et al. Latent viral infections in young patients with inflammatory diseases treated with biological agents: prevalence of JC virus genotype 2. J Med Virol. 2013;85(4):716–22.PubMedCrossRefGoogle Scholar
  47. 47.
    Kleinschmidt-Demasters BK, Miravalle A, Schowinsky J, Corboy J, Vollmer T. Update on PML and PML-IRIS occurring in multiple sclerosis patients treated with natalizumab. J Neuropathol Exp Neurol. 2012;71(7):604-17.Google Scholar
  48. 48.
    Kane SV, Horst S, Sandborn WJ, Becker B, Neis B, Moscandrew M, et al. Natalizumab for moderate to severe Crohn’s disease in clinical practice: the Mayo Clinic Rochester experience. Inflamm Bowel Dis. 2012;18(12):2203-8.Google Scholar
  49. 49.
    Takazoe M, Watanabe M, Kawaguchi T, Matsumoto T, Oshitani N, Hiwatashi N, Hibi T. Oral alpha-4 integrin inhibitor (AJM300) in patients with active Crohn’s disease—a randomized, double-blind, placebo-controlled trial. DDW, AGA. 2009;S1066.Google Scholar
  50. 50.
    Feagan BG, McDonald J, Greenberg GR, Wild G, Pare P, Fedorak R, Landau SB, Brettman LR. An ascending dose trial of humanized A4B7 antibody in ulcerative colitis. Gastroenterology. 2000; 118(4 suppl 2): A874.Google Scholar
  51. 51.
    Feagan BG, Greenberg GR, Wild G, Fedorak RN, Pare P, McDonald JW, et al. Treatment of ulcerative colitis with a humanized antibody to the alpha4beta7 integrin. N Engl J Med. 2005;352(24):2499–507 (**The first study to examine the effects of inhibiting alpha4beta7 as a therapeutic target for inflammatory bowel disease. Epub 2005/06/17. **This is an important clinical trial that illustrated the efficacy of vedolizumab in the treatment of UC).Google Scholar
  52. 52.
    Feagan BG, Greenberg GR, Wild G, Fedorak RN, Pare P, McDonald JW, et al. Treatment of active Crohn’s disease with MLN0002, a humanized antibody to the alpha4beta7 integrin. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2008;6(12):1370–7 (**A pivotal phase-II study. Epub 2008/10/03).Google Scholar
  53. 53.
    Parikh A, Leach T, Wyant T, Scholz C, Sankoh S, Mould DR, et al. Vedolizumab for the treatment of active ulcerative colitis: a randomized controlled phase 2 dose-ranging study. Inflammatory bowel diseases. 2011;18(8):1470–9 (**An important phase-IIb study that provided significant insight into the pharmacological profile of vedolizumab. Epub 2011/12/08).Google Scholar
  54. 54.
    Parikh A, Fox I, Leach T, Xu J, Scholz C, Patella M, et al. Long-term clinical experience with vedolizumab in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2013;19(8):1691-9Google Scholar
  55. 55.
    Feagan BG, Rutgeerts P, Sands BE, Hanauer S, Colombel JF, Sandborn WJ, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369(8):699–710.PubMedCrossRefGoogle Scholar
  56. 56.
    Sandborn WJ, Feagan BG, Rutgeerts P, Hanauer S, Colombel JF, Sands BE, et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2013;369(8):711–21.PubMedCrossRefGoogle Scholar
  57. 57.
    Sands BE, Feagan BG, Rutgeerts P, Colombel J-F, Sandborn WJ, Sy R, D’Haens G, Ben-Horin S, Xu J, Rosario M, Fox I, Parikh A, Milch C, Hanauer S. Vedolizumab induction therapy for patients with Crohn’s disease who failed tumor necrosis factor antagonist treatment. 2013 (In Press).Google Scholar
  58. 58.
    Feagan B. Long-term safety of vedolizumab for the treatment of ulcerative colitis or Crohn’s disease. United Eur Gastroenterol Week (UEGW). 2013.Google Scholar
  59. 59.
    Cepek KL, Parker CM, Madara JL, Brenner MB. Integrin alpha E beta 7 mediates adhesion of T lymphocytes to epithelial cells. J Immunol. 1993;150(8 Pt 1):3459–70.PubMedGoogle Scholar
  60. 60.
    Rutgeerts PJ, Fedorak RN, Hommes DW, Sturm A, Baumgart DC, Bressler B, et al. A randomised phase I study of etrolizumab (rhuMAb beta7) in moderate to severe ulcerative colitis. Gut. 2013;62(8):1122-30Google Scholar
  61. 61.
    Vermeire S, Ghosh S, Panes J, Dahlerup JF, Luegering A, Sirotiakova J, et al. The mucosal address in cell adhesion molecule antibody PF-00547,659 in ulcerative colitis: a randomised study. Gut. 2011;60(8):1068–75.PubMedCrossRefGoogle Scholar
  62. 62.
    Philpott JR, Miner PB Jr. Antisense inhibition of ICAM-1 expression as therapy provides insight into basic inflammatory pathways through early experiences in IBD. Expert Opin Biol Ther. 2008;8(10):1627–32.PubMedCrossRefGoogle Scholar
  63. 63.
    Yacyshyn BR, Bowen-Yacyshyn MB, Jewell L, Tami JA, Bennett CF, Kisner DL, et al. A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn’s disease. Gastroenterology. 1998;114(6):1133–42.PubMedCrossRefGoogle Scholar
  64. 64.
    Schreiber S, Nikolaus S, Malchow H, Kruis W, Lochs H, Raedler A, et al. Absence of efficacy of subcutaneous antisense ICAM-1 treatment of chronic active Crohn’s disease. Gastroenterology. 2001;120(6):1339–46.PubMedCrossRefGoogle Scholar
  65. 65.
    Yacyshyn BR, Barish C, Goff J, Dalke D, Gaspari M, Yu R, et al. Dose ranging pharmacokinetic trial of high-dose alicaforsen (intercellular adhesion molecule-1 antisense oligodeoxynucleotide) (ISIS 2302) in active Crohn’s disease. Aliment Pharmacol Ther. 2002;16(10):1761–70.PubMedCrossRefGoogle Scholar
  66. 66.
    Yacyshyn BR, Chey WY, Goff J, Salzberg B, Baerg R, Buchman AL, et al. Double blind, placebo controlled trial of the remission inducing and steroid sparing properties of an ICAM-1 antisense oligodeoxynucleotide, alicaforsen (ISIS 2302), in active steroid dependent Crohn’s disease. Gut. 2002;51(1):30–6.PubMedCrossRefGoogle Scholar
  67. 67.
    van Deventer SJ, Wedel MK, Baker BF, Xia S, Chuang E, Miner PB Jr. A phase II dose ranging, double-blind, placebo-controlled study of alicaforsen enema in subjects with acute exacerbation of mild to moderate left-sided ulcerative colitis. Aliment Pharmacol Ther. 2006;23(10):1415–25.PubMedCrossRefGoogle Scholar
  68. 68.
    Miner PB Jr, Wedel MK, Xia S, Baker BF. Safety and efficacy of two dose formulations of alicaforsen enema compared with mesalazine enema for treatment of mild to moderate left-sided ulcerative colitis: a randomized, double-blind, active-controlled trial. Aliment Pharmacol Ther. 2006;23(10):1403–13.PubMedCrossRefGoogle Scholar
  69. 69.
    Miner P, Wedel M, Bane B, Bradley J. An enema formulation of alicaforsen, an antisense inhibitor of intercellular adhesion molecule-1, in the treatment of chronic, unremitting pouchitis. Aliment Pharmacol Ther. 2004;19(3):281–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Simmons DL. Anti-adhesion therapies. Curr Opin Pharmacol. 2005;5(4):398–404.PubMedCrossRefGoogle Scholar
  71. 71.
    Kothary N, Diak IL, Brinker A, Bezabeh S, Avigan M. Dal Pan G. Progressive multifocal leukoencephalopathy associated with efalizumab use in psoriasis patients. J Am Acad Dermatol. 2011;65(3):546–51.PubMedCrossRefGoogle Scholar
  72. 72.
    Eksteen B, Adams DH. GSK-1605786, a selective small-molecule antagonist of the CCR9 chemokine receptor for the treatment of Crohn’s disease. IDrugs Invest Drugs J. 2010;13(7):472–781.Google Scholar
  73. 73.
    ChemoCentryx. CCR9 Program. http://www.chemocentryx.com/product/CCR9.html: ChemoCentryx; 2012 (cited 2012 1/7/2012).
  74. 74.
    Release CP. ChemoCentryx announces GlaxoSmithKline’s release of top-line results from the SHIELD-1 Phase III study of vercirnon. 2013. http://ir.chemocentryx.com/releasedetail.cfm?ReleaseID=786941August; http://ir.chemocentryx.com/releasedetail.cfm?ReleaseID=786941.
  75. 75.
    Feagan BG, Sandborn W, D’Haens G, Lee SD, Allez M, Fedorak R, Seidler U, Vermeire S, Lawrance I, Jurgensen CH, Heath A, Chang DJ, For the SHIELD-1 Investigators. Vercirnon, an Oral CCR9 antagonist, as induction therapy in active Crohn’s disease: randomized, double-blind, placebo-controlled, Phase 3 Trial. San Deigo: ACG; 2013.Google Scholar
  76. 76.
    Wermers JD, McNamee EN, Wurbel MA, Jedlicka P, Rivera-Nieves J. The chemokine receptor CCR9 is required for the T-cell-mediated regulation of chronic ileitis in mice. Gastroenterology. 2011;140(5):1526–5 e3 (Epub 2011/02/09).Google Scholar
  77. 77.
    Wurbel MA, McIntire MG, Dwyer P, Fiebiger E. CCL25/CCR9 interactions regulate large intestinal inflammation in a murine model of acute colitis. PloS one. 2011;6(1):e16442 (Epub 2011/02/02).Google Scholar
  78. 78.
    Rojas-Lopez AE, Soldevila G, Meza-Perez S, Dupont G, Ostoa-Saloma P, Wurbel MA, et al. CCR9 + T cells contribute to the resolution of the inflammatory response in a mouse model of intestinal amoebiasis. Immunobiology. 2012;217(8):795–807.PubMedCrossRefGoogle Scholar
  79. 79.
    Mayer L, Sandborn WJ, Stepanov Y, Geboes K, Hardi R, Yellin M, et al. Anti-IP-10 antibody (BMS-936557) for ulcerative colitis: a phase II randomised study. Gut. 2013 (Epub 5 Mar).Google Scholar
  80. 80.
    ClinicalTrials.gov. A Phase IIa, double-blind, randomized, placebo-controlled study to evaluate the clinical efficacy and safety of induction and maintenance therapy with BMS-936557 in subjects with active Crohn’s disease. 2013 (cited 2013 June, 11). http://clinicaltrials.gov/ct2/show/NCT01466374?term=BMS-936557&rank=1.
  81. 81.
    ClinicalTrials.gov. A Phase IIb randomized, placebo-controlled study to evaluate the clinical efficacy and safety of induction and maintenance therapy with BMS-936557 in subjects with active ulcerative colitis (UC). 2013 (cited 2013 June, 11). http://clinicaltrials.gov/ct2/show/NCT01294410?term=BMS-936557&rank=2.
  82. 82.
    Melzer N, Meuth SG. Disease-modifying therapy in multiple sclerosis and chronic inflammatory demyelinating polyradiculoneuropathy: common and divergent current and future strategies. Clin Exp Immunol. 2013 (Epub 27 Aug).Google Scholar
  83. 83.
    Receptos. SPHINGOSINE-1-PHOSPHATE 1 (S1P1) RECEPTOR AGONISTS. Receptos.com2012 (cited 2012 October 29). http://www.receptos.com/clinical-pipeline-at-receptos.php.
  84. 84.
    Bloomgren G, Richman S, Hotermans C, Subramanyam M, Goelz S, Natarajan A, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med. 2012;366(20):1870–80.PubMedCrossRefGoogle Scholar
  85. 85.
    Major EO. Progressive multifocal leukoencephalopathy in patients on immunomodulatory therapies. Annu Rev Med. 2010;61:35–47.PubMedCrossRefGoogle Scholar
  86. 86.
    Erle DJ, Briskin MJ, Butcher EC, Garcia-Pardo A, Lazarovits AI, Tidswell M. Expression and function of the MAdCAM-1 receptor, integrin alpha 4 beta 7, on human leukocytes. J Immunol. 1994;153(2):517–28.PubMedGoogle Scholar
  87. 87.
    Parikh A FE, Soler D, Wyant T, Kadambi V, Leach T, Milch C, Fox I, (Millennium: The Takeda Oncology Company C, MA, US). Gastrointestinal selectivity of vedolizumab (MLN0002), a humanized monoclonal antibody to the alpha4beta7 integrin. CCF; Florida: Inflammatory Bowel Disease; 2008. p. S18 P–0025 (**An important study that highlights the gut selective properties of vedolizumab).Google Scholar
  88. 88.
    Leclerc M, Lesesve JF, Gaillard B, Troussard X, Tourbah A, Debouverie M, et al. Binucleated lymphocytes in patients with multiple sclerosis treated with natalizumab. Leukemia Lymphoma. 2011;52(5):910–2.PubMedCrossRefGoogle Scholar
  89. 89.
    Wyant TL, Sankoh S, Wang Y, Paolino J, Pasetti MF, Feagan BG, Parikh A. A phase 1, double-blind placebo-controlled single-dose study to determine the immune response to systemic and mucosal antigenic challenge in the presence of vedolizumab. ECCO. 2013;592 (abstract).Google Scholar
  90. 90.
    Rivera-Nieves J, Gorfu G, Ley K. Leukocyte adhesion molecules in animal models of inflammatory bowel disease. Inflamm Bowel Dis. 2008;14(12):1715–35.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mahmoud H. Mosli
    • 1
    • 3
    • 2
  • Jesus Rivera-Nieves
    • 4
  • Brian G. Feagan
    • 1
    • 2
  1. 1.Department of MedicineUniversity of Western OntarioLondonCanada
  2. 2.Robarts Clinical Trials Inc, Robarts Research InstituteUniversity of Western OntarioLondonCanada
  3. 3.Department of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Department of Medicine, Division of Gastroenterology, Inflammatory Bowel Disease CenterUniversity of CaliforniaSan DiegoUSA

Personalised recommendations