Advertisement

Drugs

, Volume 74, Issue 1, pp 31–51 | Cite as

Ceftolozane/Tazobactam: A Novel Cephalosporin/β-Lactamase Inhibitor Combination with Activity Against Multidrug-Resistant Gram-Negative Bacilli

  • George G. ZhanelEmail author
  • Phillip Chung
  • Heather Adam
  • Sheryl Zelenitsky
  • Andrew Denisuik
  • Frank Schweizer
  • Philippe R. S. Lagacé-Wiens
  • Ethan Rubinstein
  • Alfred S. Gin
  • Andrew Walkty
  • Daryl J. Hoban
  • Joseph P. Lynch3rd
  • James A. Karlowsky
Review Article

Abstract

Ceftolozane is a novel cephalosporin currently being developed with the β-lactamase inhibitor tazobactam for the treatment of complicated urinary tract infections (cUTIs), complicated intra-abdominal infections (cIAIs), and ventilator-associated bacterial pneumonia (VABP). The chemical structure of ceftolozane is similar to that of ceftazidime, with the exception of a modified side-chain at the 3-position of the cephem nucleus, which confers potent antipseudomonal activity. As a β-lactam, its mechanism of action is the inhibition of penicillin-binding proteins (PBPs). Ceftolozane displays increased activity against Gram-negative bacilli, including those that harbor classical β-lactamases (e.g., TEM-1 and SHV-1), but, similar to other oxyimino-cephalosporins such as ceftazidime and ceftriaxone, it is compromised by extended-spectrum β-lactamases (ESBLs) and carbapenemases. The addition of tazobactam extends the activity of ceftolozane to include most ESBL producers as well as some anaerobic species. Ceftolozane is distinguished from other cephalosporins by its potent activity versus Pseudomonas aeruginosa, including various drug-resistant phenotypes such as carbapenem, piperacillin/tazobactam, and ceftazidime-resistant isolates, as well as those strains that are multidrug-resistant (MDR). Its antipseudomonal activity is attributed to its ability to evade the multitude of resistance mechanisms employed by P. aeruginosa, including efflux pumps, reduced uptake through porins and modification of PBPs. Ceftolozane demonstrates linear pharmacokinetics unaffected by the coadministration of tazobactam; specifically, it follows a two-compartmental model with linear elimination. Following single doses, ranging from 250 to 2,000 mg, over a 1-h intravenous infusion, ceftolozane displays a mean plasma half-life of 2.3 h (range 1.9–2.6 h), a steady-state volume of distribution that ranges from 13.1 to 17.6 L, and a mean clearance of 102.4 mL/min. It demonstrates low plasma protein binding (20 %), is primarily eliminated via urinary excretion (≥92 %), and may require dose adjustments in patients with a creatinine clearance <50 mL/min. Time-kill experiments and animal infection models have demonstrated that the pharmacokinetic–pharmacodynamic index that is best correlated with ceftolozane’s in vivo efficacy is the percentage of time in which free plasma drug concentrations exceed the minimum inhibitory concentration of a given pathogen (%fT >MIC), as expected of β-lactams. Two phase II clinical trials have been conducted to evaluate ceftolozane ± tazobactam in the settings of cUTIs and cIAIs. One trial compared ceftolozane 1,000 mg every 8 h (q8h) versus ceftazidime 1,000 mg q8h in the treatment of cUTI, including pyelonephritis, and demonstrated similar microbiologic and clinical outcomes, as well as a similar incidence of adverse effects after 7–10 days of treatment, respectively. A second trial has been conducted comparing ceftolozane/tazobactam 1,000/500 mg and metronidazole 500 mg q8h versus meropenem 1,000 mg q8h in the treatment of cIAI. A number of phase I and phase II studies have reported ceftolozane to possess a good safety and tolerability profile, one that is consistent with that of other cephalosporins. In conclusion, ceftolozane is a new cephalosporin with activity versus MDR organisms including P. aeruginosa. Tazobactam allows the broadening of the spectrum of ceftolozane versus β-lactamase-producing Gram-negative bacilli including ESBLs. Potential roles for ceftolozane/tazobactam include empiric therapy where infection by a resistant Gram-negative organism (e.g., ESBL) is suspected, or as part of combination therapy (e.g., with metronidazole) where a polymicrobial infection is suspected. In addition, ceftolozane/tazobactam may represent alternative therapy to the third-generation cephalosporins after treatment failure or for documented infections due to Gram-negative bacilli producing ESBLs. Finally, the increased activity of ceftolozane/tazobactam versus P. aeruginosa, including MDR strains, may lead to the treatment of suspected and documented P. aeruginosa infections with this agent. Currently, ceftolozane/tazobactam is being evaluated in three phase III trials for the treatment of cUTI, cIAI, and VABP.

Keywords

Minimum Inhibitory Concentration Ceftazidime Imipenem Meropenem AmpC 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Conflict of interest

Drs Zhanel and Hoban have both received research grants from Cubist Pharmaceuticals, Inc. Drs Chung, Adam, Zelenitsky, Schweizer, Lagacé-Weins, Rubinstein, Gin, Walkty, Lynch, and Karlowsky have no conflicts of interest to declare.

References

  1. 1.
    Carlet J, Jarlier V, Harbarth S, et al. Ready for a world without antibiotics? The Pensières antibiotic resistance call to action. Antimicrob Resist Infect Control. 2012;1(1):11.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Rice LB. Progress and challenges in implementing the research on ESKAPE pathogens. Infect Control Hosp Epidemiol. 2010;31(Suppl 1):S7–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Infectious Diseases Society of America. The 10 × ’20 initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis. 2010;50(8):1081–3.CrossRefGoogle Scholar
  4. 4.
    Boucher HW, Talbot GH, Benjamin DK Jr, et al. 10 × ’20 progress—development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(12):1685–94.PubMedCrossRefGoogle Scholar
  5. 5.
    Perletti G, Magri V, Wagenlehner FME, et al. CXA-101. Drugs Fut. 2010;35(12):977–86.CrossRefGoogle Scholar
  6. 6.
    Riera E, Macia MD, Mena A, et al. Anti-biofilm and resistance suppression activities of CXA-101 against chronic respiratory infection phenotypes of Pseudomonas aeruginosa strain PAO1. J Antimicrob Chemother. 2010;65(7):1399–404.PubMedCrossRefGoogle Scholar
  7. 7.
    Mesaros N, Nordmann P, Plesiat P, et al. Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect. 2007;13(6):560–78.PubMedCrossRefGoogle Scholar
  8. 8.
    Moya B, Beceiro A, Cabot G, et al. Pan-beta-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother. 2012;56(9):4771–8.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Breidenstein EB, de la Fuente-Nunez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011;19(8):419–26.PubMedCrossRefGoogle Scholar
  10. 10.
    Juan C, Zamorano L, Pérez JL, et al. Activity of a new antipseudomonal cephalosporin, CXA-101 (FR264205), against carbapenem-resistant and multidrug-resistant Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother. 2010;54(2):846–51.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Bulik CC, Christensen H, Nicolau DP. In vitro potency of CXA-101, a novel cephalosporin, against Pseudomonas aeruginosa displaying various resistance phenotypes, including multidrug resistance. Antimicrob Agents Chemother. 2010;54(1):557–9.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Livermore DM, Mushtaq S, Ge Y, et al. Activity of cephalosporin CXA-101 (FR264205) against Pseudomonas aeruginosa and Burkholderia cepacia group strains and isolates. Int J Antimicrob Agents. 2009;34(5):402–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Takeda S, Nakai T, Wakai Y, et al. In vitro and in vivo activities of a new cephalosporin, FR264205, against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2007;51(3):826–30.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Takeda S, Ishii Y, Hatano K, et al. Stability of FR264205 against AmpC beta-lactamase of Pseudomonas aeruginosa. Int J Antimicrob Agents. 2007;30(5):443–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Zamorano L, Juan C, Fernández-Olmos A, et al. Activity of the new cephalosporin CXA-101 (FR264205) against Pseudomonas aeruginosa isolates from chronically-infected cystic fibrosis patients. Clin Microbiol Infect. 2010;16(9):1482–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Sader HS, Rhomberg PR, Farrell DJ, et al. Antimicrobial activity of CXA-101, a novel cephalosporin tested in combination with tazobactam against Enterobacteriaceae, Pseudomonas aeruginosa, and Bacteroides fragilis strains having various resistance phenotypes. Antimicrob Agents Chemother. 2011;55(5):2390–4.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Beale J. Antibacterial antibiotics. In: Beale J, Block J, editors. Wilson and Gisvold’s textbook of organic medicinal and pharmaceutical chemistry. 12th ed. Baltimore: Lippincott Williams & Wilkins; 2011. p. 258–329.Google Scholar
  18. 18.
    Zhanel GG, Lawson CD, Adam H, et al. Ceftazidime–avibactam: a novel cephalosporin/beta-lactamase inhibitor combination. Drugs. 2013;73(2):159–77.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhanel GG, Sniezek G, Schweizer F, et al. Ceftaroline: a novel broad-spectrum cephalosporin with activity against methicillin-resistant Staphylococcus aureus. Drugs. 2009;69(7):809–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Toda A, Ohki H, Yamanaka T, et al. Synthesis and SAR of novel parenteral anti-pseudomonal cephalosporins: discovery of FR264205. Bioorg Med Chem Lett. 2008;18(17):4849–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Murano K, Yamanaka T, Toda A, et al. Structural requirements for the stability of novel cephalosporins to AmpC beta-lactamase based on 3D-structure. Bioorg Med Chem. 2008;16(5):2261–75.PubMedCrossRefGoogle Scholar
  22. 22.
    Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010;23(1):160–201.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Yang Y, Rasmussen BA, Shlaes DM. Class A beta-lactamases—enzyme-inhibitor interactions and resistance. Pharmacol Ther. 1999;83(2):141–51.PubMedCrossRefGoogle Scholar
  24. 24.
    Goo KS, Sim TS. Designing new beta-lactams: implications from their targets, resistance factors and synthesizing enzymes. Curr Comput Aided Drug Des. 2011;7(1):53–80.PubMedCrossRefGoogle Scholar
  25. 25.
    Sauvage E, Kerff F, Terrak M, et al. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev. 2008;32(2):234–58.PubMedCrossRefGoogle Scholar
  26. 26.
    Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev. 2008;32(2):361–85.PubMedCrossRefGoogle Scholar
  27. 27.
    Moya B, Zamorano L, Juan C, et al. Affinity of the new cephalosporin CXA-101 to penicillin-binding proteins of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54(9):3933–7.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Moya B, Dotsch A, Juan C, et al. Beta-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein. PLoS Pathog. 2009;5(3):e1000353.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Bush K, Macalintal C, Rasmussen BA, et al. Kinetic interactions of tazobactam with beta-lactamases from all major structural classes. Antimicrob Agents Chemother. 1993;37(4):851–8.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Moulds N, Lister P. Impact of characterized resistance mechanisms on the susceptibility of Pseudomonas aeruginosa to CXA-101 [abstract no. C1-1415 plus poster]. 50th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2010; Boston.Google Scholar
  31. 31.
    Moya B, Zamorano L, Juan C, et al. Activity of a new cephalosporin, CXA-101 (FR264205), against beta-lactam-resistant Pseudomonas aeruginosa mutants selected in vitro and after antipseudomonal treatment of intensive care unit patients. Antimicrob Agents Chemother. 2010;54(3):1213–7.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Lujan AM, Macia MD, Yang L, et al. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators. PLoS One. 2011;6(11):e27842.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Farrell DJ, Flamm RK, Sader HS, et al. Antimicrobial activity of ceftolozane/tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in US hospitals (2011–2012). Antimicrob Agents Chemother. 2013;57(12):6305–10.Google Scholar
  34. 34.
    Brown NP, Pillar CM, Sahm DF, et al. Activity profile of CXA-101 and CXA-101/tazobactam against target Gram-positive and Gram-negative pathogens [abstract no. F1-1986 plus poster]. 49th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2009; San Francisco.Google Scholar
  35. 35.
    Zhanel GG, Adam HJ, Walkty A, et al. In vitro activity of ceftolozane/tazobactam tested against 1,705 Gram-negative pathogens isolated from patients in Canadian hospitals in 2011: CANWARD Surveillance Study [abstract no. E-200 plus poster]. 52nd Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 9–12 Sep 2012; San Francisco.Google Scholar
  36. 36.
    Brown NP, Pillar CM, Draghi DC, et al. Activity Profile of CXA-101 against Gram-positive and Gram-negative pathogens by Broth and Agar dilution [abstract no. F1-354 plus poster]. 48th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 25–28 Oct 2008; Washington, DC.Google Scholar
  37. 37.
    Livermore DM, Mushtaq S, Ge Y, et al. Activity of cephalosporin CXA-101 (FR264205) vs. P. aeruginosa [abstract no. F1-355 plus poster]. 48th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 25–28 Oct 2008; Washington, DC.Google Scholar
  38. 38.
    Sader HS, Flamm RK, Jones RN. Activity of the novel antimicrobial combination ceftolozane/tazobactam, tested against bacterial isolates in USA hospitals from patients with pneumonia (2011) [abstract no. 856 plus poster]. IDWeek 2012: a joint meeting of IDSA, SHEA, HIVMA, and PIDS; 17–21 Oct 2012; San Diego.Google Scholar
  39. 39.
    Sader HS, Flamm RK, Farrell DJ, et al. Activity of the novel antimicrobial ceftolozane/tazobactam (CXA-201) tested against contemporary clinical strains from European hospitals [abstract no. P1446]. Clin Microbiol Infect. 2012;18(Suppl. 3):382 (Plus poster presented at 22nd European Congress of Clinical Microbiology and Infectious Diseases; 31 Mar–3 Apr 2012; London).Google Scholar
  40. 40.
    Sader HS, Putnam SD, Jones RN. Activity of the novel cephalosporin CXA-101 tested in combination with tazobactam against cephalosporin-resistant Enterobacteriaceae, P. aeruginosa and B. fragilis [abstract no. F1-1992 plus poster]. 49th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2009; San Francisco.Google Scholar
  41. 41.
    Livermore DM, Mushtaq S. Chequerboard titrations of cephalosporin CXA-101 (FR264205) and tazobactam vs. β-lactamase-producing Enterobacteriaceae [abstract no. F1-1994 plus poster]. 49th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2009; San Francisco.Google Scholar
  42. 42.
    Brown NP, Pillar CM, Sahm DF, et al. Disk diffusion testing of CXA-101 and CXA-101 in combination with tazobactam against target pathogens [abstract no. F1-1998 plus poster]. 49th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2009; San Francisco.Google Scholar
  43. 43.
    Titelman E, Karlsson IM, Ge Y, et al. In vitro activity of CXA-101 plus tazobactam (CXA-201) against CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae. Diagn Microbiol Infect Dis. 2011;70(1):137–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Titelman E, Karlsson IM, Ge Y, et al. Activity of CXA-101 plus tazobactam against ESBL-producing Escherichia coli and Klebsiella pneumoniae [abstract no. F1-1993 plus poster]. 49th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2009; San Francisco.Google Scholar
  45. 45.
    Killian SB, Knapp CC, Holliday NM, et al. An equivalency study of a sensititre dried MIC plate compared with the CLSI Broth microdilution reference method for CXA-201 and comparator antimicrobials [abstract no. D-691A plus poster]. 51st Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 17–20 Sep 2011; Chicago.Google Scholar
  46. 46.
    Moya B, Zamorano L, Juan C, et al. Activity of CXA-101 against Pseudomonas aeruginosa β-lactam resistance mechanisms: ampD, ampDh2, ampDh3, dacB (PBP4), and oprD mutations [abstract no. F1-1989 plus poster]. 49th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2009; San Francisco.Google Scholar
  47. 47.
    Juan C, Zamorano L, Pérez JL, et al. Activity of the new cephalosporin CXA-101 (CXA) against carbapenem-resistant Pseudomonas aeruginosa (CR-PA) isolates from a Spanish Multicenter Study [abstract no. F1-1987 plus poster]. 49th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2009; San Francisco.Google Scholar
  48. 48.
    Walkty A, Baxter M, Adam H, et al. In vitro activity of ceftolozane/tazobactam (CXA-201) versus Pseudomonas aeruginosa isolates obtained from patients in Canadian hospitals: CANWARD 2011 [abstract no. 1616 plus poster]. IDWeek 2012: a joint meeting of IDSA, SHEA, HIVMA, and PIDS; 17–21 Oct 2012; San Diego.Google Scholar
  49. 49.
    Cabot G, Macia MD, Gozalo M, et al. Activity of CXA-101 against a large collection of P. aeruginosa blood stream isolates overexpressing AmpC and the major efflux pumps [abstract no. E-816 plus poster]. 50th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2010; Boston.Google Scholar
  50. 50.
    Brown SD, Traczewski MM. Quality control parameters for CXA-101 Broth microdilution susceptibility tests [abstract no. F1-1997 plus poster]. 49th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2009; San Francisco.Google Scholar
  51. 51.
    Giske CG, Karlsson IM, Ge Y. CXA-101 (CXA) has high activity against clinical isolates of Pseudomonas aeruginosa including ceftazidime-resistant isolates [abstract no. F1-1988 plus poster]. 49th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2009; San Francisco.Google Scholar
  52. 52.
    Zamorano L, Juan C, Fernández-Olmos A, et al. Activity of the new cephalosporin CXA-101 against P. aeruginosa (PA) isolates from chronically infected cystic fibrosis patients [abstract no. F1-1991 plus poster]. 49th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2009; San Francisco.Google Scholar
  53. 53.
    Snydman DR, Jacobus NV, McDermott LA. Activity of ceftolozane/tazobactam (CXA-201) against 270 recent isolates from the Bacteroides group [abstract no. P1445]. Clin Microbiol Infect. 2012; 18(Suppl.3):382 (Plus poster presented at 22nd European Congress of Clinical Microbiology and Infectious Diseases; 31 Mar–3 Apr 2012; London).Google Scholar
  54. 54.
    Bulik CC, Christensen H, Nicolau DP. In vitro activity of CXA-101, a novel cephalosporin, against resistant phenotypes of Pseudomonas aeruginosa (PSA) [abstract no. 209 plus poster]. 47th Infectious Disease Society of America annual meeting; 29 Oct–1 Nov 2009; Philadelphia.Google Scholar
  55. 55.
    Mushtaq S, Warner M, Ge J, et al. Activity of cephalosporin CXA-101 (FR264205) with β-lactamase inhibitors vs. Enterobacteriaceae [abstract no. F1-356 plus poster]. 48th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 25–28 Oct 2008; Washington, DC.Google Scholar
  56. 56.
    Craig WA, Andes DA. In vivo activity of CXA-101 plus a 2:1, 4:1, or 8:1 ratio of tazobactam against various Enterobacteriaceae (ENT) producing extended-spectrum beta-lactamases (ESBLs) in the thighs of neutropenic mice [abstract no. F1-1999 plus poster]. 49th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2009; San Francisco.Google Scholar
  57. 57.
    Craig WA, Andes DR. In vivo activities of ceftolozane, a new cephalosporin, with and without tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae, including strains with extended-spectrum beta-lactamases, in the thighs of neutropenic mice. Antimicrob Agents Chemother. 2013;57(4):1577–82.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Livermore DM, Mushtaq S, Ge Y. Chequerboard titration of cephalosporin CXA-101 (FR264205) and tazobactam versus beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother. 2010;65(9):1972–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Ge Y, Whitehouse MJ, Friedland I, et al. Pharmacokinetics and safety of CXA-101, a new antipseudomonal cephalosporin, in healthy adult male and female subjects receiving single- and multiple-dose intravenous infusions. Antimicrob Agents Chemother. 2010;54(8):3427–31.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Miller B, Hershberger E, Benziger D, et al. Pharmacokinetics and safety of intravenous ceftolozane–tazobactam in healthy adult subjects following single and multiple ascending doses. Antimicrob Agents Chemother. 2012;56(6):3086–91.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Miller B, Chandorkar G, Umeh O, et al. Safety and pharmacokinetics (PK) of intravenous (IV) ceftolozane/tazobactam (C/T) 3 g every 8 hours (q8h) and cumulative fraction of response (CFR) in plasma and epithelial lining fluid (ELF) in a simulated ventilator-associated pneumonia (VAP) population [abstract no. A-641 plus poster]. 52nd Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 9–12 Sep 2012; San Francisco.Google Scholar
  62. 62.
    Wise R, Logan M, Cooper M, et al. Pharmacokinetics and tissue penetration of tazobactam administered alone and with piperacillin. Antimicrob Agents Chemother. 1991;35(6):1081–4.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Hershberger E, Benziger D, Pheng LH, et al. Pharmacokinetics of CXA-101/tazobactam in subjects with mild or moderate renal impairment [abstract no. P1519]. Clin Microbiol Infect. 2011;17(Suppl.4):S433 (Plus poster presented at the 21st European Congress of Clinical Microbiology and Infectious Diseases; 7–10 May 2011; Milan).Google Scholar
  64. 64.
    Ge Y, Liao S. CXA-101 (CXA) population PK analysis and Monte Carlo (MC) Simulation for PK/PD target attainment and dose regimen selection [abstract no. F1-2003 plus poster]. 49th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2009; San Francisco.Google Scholar
  65. 65.
    Marier JF, Trinh M, Pheng LH, et al. Population PK analysis of intravenous CXA-101 in subjects with complicated urinary tract infection, including pyelonephritis [abstract no. PII-49 plus poster]. 112th annual meeting of the American Society for Clinical Pharmacology and Therapeutics; 2–5 Mar 2011; Dallas.Google Scholar
  66. 66.
    Chandorkar G, Huntington JA, Gotfried MH, et al. Intrapulmonary penetration of ceftolozane/tazobactam and piperacillin/tazobactam in healthy adult subjects. J Antimicrob Chemother. 2012;67(10):2463–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Ceftolozane. Lexington: Cubist Pharmaceuticals; (Data on file); 2013.Google Scholar
  68. 68.
    Brown NP, Pillar CM, Draghi DC, et al. Mode of action of CXA-101 based on minimum bactericidal concentration (MBC) analysis and Timekill kinetic (TK) analysis [abstract no. F1-358 plus poster]. 48th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 25–28 Oct 2008; Washington, DC.Google Scholar
  69. 69.
    Jacqueline C, Desessard C, Le Mabecque V, et al. In vitro assessment using Time-Kill curves of CXA-101 (CXA)/tazobactam (TAZ) against Escherichia coli (EC), Klebsiella pneumoniae (KP), and Pseudomonas aeruginosa (PA) strains [abstract no. F1-1996 plus poster]. 49th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2009; San Francisco.Google Scholar
  70. 70.
    Soon RL, Forrest A, Holden PN, et al. In vitro pharmacodynamics of ceftolozane/tazobactam against β-lactamase producing Escherichia coli (Ec) [abstract no. E-201 plus poster]. 52nd Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 9–12 Sep 2012; San Francisco.Google Scholar
  71. 71.
    Bulik CC, Tessier PR, Keel RA, et al. In vivo comparison of CXA-101 (FR264205) with and without tazobactam versus piperacillin–tazobactam using human simulated exposures against phenotypically diverse gram-negative organisms. Antimicrob Agents Chemother. 2012;56(1):544–9.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    VanScoy B, Mendes RE, Nicasio AM, et al. Pharmacokinetics–pharmacodynamics of tazobactam in combination with ceftolozane in an in vitro infection model. Antimicrob Agents Chemother. 2013;57(6):2809–14.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    VanScoy B, Mendes RE, Castanheira M, et al. Relationship between ceftolozane–tazobactam exposure and drug resistance amplification in a hollow-fiber infection model. Antimicrob Agents Chemother. 2013;57(9):4134–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Jacqueline C, Roquilly A, Desessard C, et al. Efficacy of ceftolozane in a murine model of Pseudomonas aeruginosa acute pneumonia: in vivo antimicrobial activity and impact on host inflammatory response. J Antimicrob Chemother. 2013;68(1):177–83.PubMedCrossRefGoogle Scholar
  75. 75.
    Jacqueline C, Bretonniere C, Desessard C, et al. In vivo activity of CXA-101 against Pseudomonas aeruginosa (PA) in a rabbit experimental model of pneumonia: comparison with ceftazidime (CAZ), piperacillin/tazobactam (TZP), and imipenem (IMP) [abstract no. B-590 plus poster]. 51st Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 17–20 Sep 2011; Chicago.Google Scholar
  76. 76.
    Jacqueline C, Desessard C, Roquilly A, et al. 50% effective dose (ED50) determination of CXA-101 (CXA) alone or in combination with tazobactam (TAZ) for treating experimental peritonitis in mice due to extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (EC) strains: comparison with ceftazidime (CAZ) and piperacillin/tazobactam (TZP) [abstract no. F1-2000 plus poster]. 49th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2009; San Francisco.Google Scholar
  77. 77.
    Jacqueline C, Desessard C, Batard E, et al. ED50 determination of CXA-101 (CXA) alone and in combination with tazobactam (TAZ) for treating experimental peritonitis in mice due to ESBL-producing Klebsiella pneumoniae strains: comparison with ceftazidime (CAZ) and piperacillin/tazobactam (TZP) [abstract no. B-708 plus poster]. 50th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2010; Boston.Google Scholar
  78. 78.
    Umeh O, Cebrik D, Friedland I. A double-blind, randomized, phase 2 study to compare the safety and efficacy of intravenous CXA-101 (CXA) and intravenous ceftazidime (CTZ) in complicated urinary tract infection (cUTI) [abstract no. L1-361A plus poster]. 50th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 12–15 Sep 2010; Boston.Google Scholar
  79. 79.
    Lucasti Umeh O, Cebrik D, Friedland I. A multicenter double-blind, randomized, phase 2 study to assess safety and efficacy of ceftolozane/tazobactam (TOL/TAZ) plus metronidazole (MTZ) compared to meropenem (MER) in adult patients with complicated intra-abdominal infections (cIAI). [abstract no. K-1709 plus poster]. 53th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 10–13 Sep 2013; Denver.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • George G. Zhanel
    • 1
    • 4
    • 6
    Email author
  • Phillip Chung
    • 2
  • Heather Adam
    • 1
    • 6
  • Sheryl Zelenitsky
    • 2
  • Andrew Denisuik
    • 1
  • Frank Schweizer
    • 1
    • 3
  • Philippe R. S. Lagacé-Wiens
    • 1
    • 7
  • Ethan Rubinstein
    • 1
    • 4
  • Alfred S. Gin
    • 1
    • 2
    • 5
  • Andrew Walkty
    • 1
    • 4
  • Daryl J. Hoban
    • 1
    • 6
  • Joseph P. Lynch3rd
    • 8
  • James A. Karlowsky
    • 1
    • 7
  1. 1.Department of Medical Microbiology, Faculty of MedicineUniversity of ManitobaWinnipegCanada
  2. 2.Faculty of PharmacyUniversity of ManitobaWinnipegCanada
  3. 3.Department of Chemistry, Faculty of ScienceUniversity of ManitobaWinnipegCanada
  4. 4.Department of MedicineHealth Sciences CentreWinnipegCanada
  5. 5.Department of PharmacyHealth Sciences CentreWinnipegCanada
  6. 6.Department of Clinical MicrobiologyHealth Sciences CentreWinnipegCanada
  7. 7.Department of Clinical MicrobiologySaint-Boniface General HospitalWinnipegCanada
  8. 8.Division of Pulmonary, Critical Care, Allergy and Clinical ImmunologyThe David Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations