Drugs

, Volume 73, Issue 13, pp 1431–1450

HIV-Associated Lipodystrophy: Impact of Antiretroviral Therapy

  • Giovanni Guaraldi
  • Chiara Stentarelli
  • Stefano Zona
  • Antonella Santoro
Review Article

Abstract

In the late 1990s, reports of unusual changes in body fat distribution named ‘lipodystrophy’ (LD) began to appear in HIV patients mitigating the enormous enthusiasm about improvement of survival and quality of life provided by the combinations of antiretroviral (ARV) drug classes, the so-called highly active antiretroviral therapy (HAART), which had just become available at that time. The objective of this paper is to critically review the literature on LD and to discuss the impact of newer ARV agents, namely atazanavir, darunavir and raltegravir, as well as strategies of the late HAART era, including single-tablet regimens and nucleoside-sparing regimens. Studies in which LD was measured by dual-energy x-ray absorptiometry or by abdominal computed tomography or magnetic resonance imaging scan only, were included. We were unable to identify studies depicting a negative impact of drugs or ARV regimens on limb fat loss. On the contrary, a few studies identified a negative impact of atazanavir/ritonavir or darunavir/ritonavir on trunk fat increase. It should be noted that this anthropometric measure is a poor instrument since it cannot distinguish between subcutaneous and visceral fat. We conclude that presumably the body fat changes currently observed in HIV-infected patients is the net result of competing phenomena: on one side the natural history of lipohypertrophy as a result of HIV and HAART impact, and on the other side the physiological body fat changes observed in the aging population.

References

  1. 1.
    Mocroft A, Ledergerber B, Katlama C, Kirk O, Reiss P, D’Arminio Monforte A, et al. Decline in the AIDS and death rates in the EuroSIDA study: an observational study. Lancet. 2003;362(9377):22–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 1998;338(13):853–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Bhaskaran K, Hamouda O, Sannes M, Boufassa F, Johnson AM, Lambert PC, et al. Changes in the risk of death after HIV seroconversion compared with mortality in the general population. JAMA. 2008;300(1):51–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Carr A, Samaras K, Burton S, Law M, Freund J, Chisholm DJ, et al. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS. 1998;12(7):F51–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Carr A, Miller J, Law M, Cooper DA. A syndrome of lipoatrophy, lactic acidaemia and liver dysfunction associated with HIV nucleoside analogue therapy: contribution to protease inhibitor-related lipodystrophy syndrome. AIDS. 2000;14(3):F25–32.PubMedCrossRefGoogle Scholar
  6. 6.
    Engelson ES, Kotler DP, Tan Y, Agin D, Wang J, Pierson RN Jr, et al. Fat distribution in HIV-infected patients reporting truncal enlargement quantified by whole-body magnetic resonance imaging. Am J Clin Nutr. 1999;69(6):1162–9.PubMedGoogle Scholar
  7. 7.
    Miller KD, Jones E, Yanovski JA, Shankar R, Feuerstein I, Falloon J. Visceral abdominal-fat accumulation associated with use of indinavir. Lancet. 1998;351(9106):871–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Freedland ES. Role of a critical visceral adipose tissue threshold (CVATT) in metabolic syndrome: implications for controlling dietary carbohydrates: a review. Nutr Metab (Lond). 2004;1(1):12.CrossRefGoogle Scholar
  9. 9.
    Vigano A, Mora S, Manzoni P, Schneider L, Beretta S, Molinaro M, et al. Effects of recombinant growth hormone on visceral fat accumulation: pilot study in human immunodeficiency virus-infected adolescents. J Clin Endocrinol Metab. 2005;90(7):4075–80.PubMedCrossRefGoogle Scholar
  10. 10.
    Yin MT, Glesby MJ. Recombinant human growth hormone therapy in HIV-associated wasting and visceral adiposity. Expert Rev Anti Infect Ther. 2005;3(5):727–38.PubMedCrossRefGoogle Scholar
  11. 11.
    Lo JC, Mulligan K, Tai VW, Algren H, Schambelan M. “Buffalo hump” in men with HIV-1 infection. Lancet. 1998;351(9106):867–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Roth VR, Kravcik S, Angel JB. Development of cervical fat pads following therapy with human immunodeficiency virus type 1 protease inhibitors. Clin Infect Dis. 1998;27(1):65–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Torres RA, Unger KW, Cadman JA, Kassous JY. Recombinant human growth hormone improves truncal adiposity and ‘buffalo humps’ in HIV-positive patients on HAART. AIDS. 1999;13(17):2479–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Carr A, Samaras K, Thorisdottir A, Kaufmann GR, Chisholm DJ, Cooper DA. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet. 1999;353(9170):2093–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Gervasoni C, Ridolfo AL, Trifiro G, Santambrogio S, Norbiato G, Musicco M, et al. Redistribution of body fat in HIV-infected women undergoing combined antiretroviral therapy. AIDS. 1999;13(4):465–71.PubMedCrossRefGoogle Scholar
  16. 16.
    Carter VM, Hoy JF, Bailey M, Colman PG, Nyulasi I, Mijch AM. The prevalence of lipodystrophy in an ambulant HIV-infected population: it all depends on the definition. HIV Med. 2001;2(3):174–80.PubMedCrossRefGoogle Scholar
  17. 17.
    Bacchetti P, Gripshover B, Grunfeld C, Heymsfield S, McCreath H, Osmond D, et al. Fat distribution in men with HIV infection. J Acquir Immune Defic Syndr. 2005;40(2):121–31.PubMedCrossRefGoogle Scholar
  18. 18.
    Lichtenstein KA, Delaney KM, Armon C, Ward DJ, Moorman AC, Wood KC, et al. Incidence of and risk factors for lipoatrophy (abnormal fat loss) in ambulatory HIV-1-infected patients. J Acquir Immune Defic Syndr. 2003;32(1):48–56.PubMedCrossRefGoogle Scholar
  19. 19.
    Martin A, Mallon PW. Therapeutic approaches to combating lipoatrophy: do they work? J Antimicrob Chemother. 2005;55(5):612–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Parruti G, Toro GM. Persistence of lipoatrophy after a four-year long interruption of antiretroviral therapy for HIV1 infection: case report. BMC Infect Dis. 2005;5:80.PubMedCrossRefGoogle Scholar
  21. 21.
    Ribera E, Paradineiro JC, Curran A, Sauleda S, Garcia-Arumi E, Castella E, et al. Improvements in subcutaneous fat, lipid profile, and parameters of mitochondrial toxicity in patients with peripheral lipoatrophy when stavudine is switched to tenofovir (LIPOTEST study). HIV Clin Trials. 2008;9(6):407–17.PubMedCrossRefGoogle Scholar
  22. 22.
    Kitahata MM, Gange SJ, Abraham AG, Merriman B, Saag MS, Justice AC, et al. Effect of early versus deferred antiretroviral therapy for HIV on survival. N Engl J Med. 2009;360(18):1815–26.PubMedCrossRefGoogle Scholar
  23. 23.
    Nguyen A, Calmy A, Schiffer V, Bernasconi E, Battegay M, Opravil M, et al. Lipodystrophy and weight changes: data from the Swiss HIV Cohort Study, 2000–2006. HIV Med. 2008;9(3):142–50.PubMedCrossRefGoogle Scholar
  24. 24.
    Mutimura E, Stewart A, Rheeder P, Crowther NJ. Metabolic function and the prevalence of lipodystrophy in a population of HIV-infected African subjects receiving highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2007;46(4):451–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Mercier S, Gueye NF, Cournil A, Fontbonne A, Copin N, Ndiaye I, et al. Lipodystrophy and metabolic disorders in HIV-1-infected adults on 4- to 9-year antiretroviral therapy in Senegal: a case-control study. J Acquir Immune Defic Syndr. 2009;51(2):224–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Miller J, Carr A, Smith D, Emery S, Law MG, Grey P, et al. Lipodystrophy following antiretroviral therapy of primary HIV infection. AIDS. 2000;14(15):2406–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Martinez E, Mocroft A, Garcia-Viejo MA, Perez-Cuevas JB, Blanco JL, Mallolas J, et al. Risk of lipodystrophy in HIV-1-infected patients treated with protease inhibitors: a prospective cohort study. Lancet. 2001;357(9256):592–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Study of Fat R, Metabolic Change in HIVI. Fat distribution in women with HIV infection. J Acquir Immune Defic Syndr. 2006;42(5):562–71.CrossRefGoogle Scholar
  29. 29.
    Wohl D, Scherzer R, Heymsfield S, Simberkoff M, Sidney S, Bacchetti P, et al. The associations of regional adipose tissue with lipid and lipoprotein levels in HIV-infected men. J Acquir Immune Defic Syndr. 2008;48(1):44–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Grunfeld C, Rimland D, Gibert CL, Powderly WG, Sidney S, Shlipak MG, et al. Association of upper trunk and visceral adipose tissue volume with insulin resistance in control and HIV-infected subjects in the FRAM study. J Acquir Immune Defic Syndr. 2007;46(3):283–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Lichtenstein KA, Ward DJ, Moorman AC, Delaney KM, Young B, Palella FJ Jr, et al. Clinical assessment of HIV-associated lipodystrophy in an ambulatory population. AIDS. 2001;15(11):1389–98.PubMedCrossRefGoogle Scholar
  32. 32.
    Brinkman K, ter Hofstede HJ, Burger DM, Smeitink JA, Koopmans PP. Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway. AIDS. 1998;12(14):1735–44.PubMedCrossRefGoogle Scholar
  33. 33.
    Blanch J, Rousaud A, Martinez E, De Lazzari E, Milinkovic A, Peri JM, et al. Factors associated with severe impact of lipodystrophy on the quality of life of patients infected with HIV-1. Clin Infect Dis. 2004;38(10):1464–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Blanch J, Rousaud A, Martinez E, De Lazzari E, Peri JM, Milinkovic A, et al. Impact of lipodystrophy on the quality of life of HIV-1-infected patients. J Acquir Immune Defic Syndr. 2002;31(4):404–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Collins E, Wagner C, Walmsley S. Psychosocial impact of the lipodystrophy syndrome in HIV infection. AIDS Read. 2000;10(9):546–50.PubMedGoogle Scholar
  36. 36.
    Martin A, Smith DE, Carr A, Ringland C, Amin J, Emery S, et al. Reversibility of lipoatrophy in HIV-infected patients 2 years after switching from a thymidine analogue to abacavir: the MITOX Extension Study. AIDS. 2004;18(7):1029–36.PubMedCrossRefGoogle Scholar
  37. 37.
    McComsey GA, Ward DJ, Hessenthaler SM, Sension MG, Shalit P, Lonergan JT, et al. Improvement in lipoatrophy associated with highly active antiretroviral therapy in human immunodeficiency virus-infected patients switched from stavudine to abacavir or zidovudine: the results of the TARHEEL study. Clin Infect Dis. 2004;38(2):263–70.PubMedCrossRefGoogle Scholar
  38. 38.
    Moyle GJ, Sabin CA, Cartledge J, Johnson M, Wilkins E, Churchill D, et al. A randomized comparative trial of tenofovir DF or abacavir as replacement for a thymidine analogue in persons with lipoatrophy. AIDS. 2006;20(16):2043–50.PubMedCrossRefGoogle Scholar
  39. 39.
    Mallon PW, Wand H, Law M, Miller J, Cooper DA, Carr A, et al. Buffalo hump seen in HIV-associated lipodystrophy is associated with hyperinsulinemia but not dyslipidemia. J Acquir Immune Defic Syndr. 2005;38(2):156–62.PubMedCrossRefGoogle Scholar
  40. 40.
    He Q, Engelson ES, Ionescu G, Glesby MJ, Albu JB, Kotler DP. Insulin resistance, hepatic lipid and adipose tissue distribution in HIV-infected men. Antivir Ther. 2008;13(3):423–8.PubMedGoogle Scholar
  41. 41.
    Lo J, Abbara S, Rocha-Filho JA, Shturman L, Wei J, Grinspoon SK. Increased epicardial adipose tissue volume in HIV-infected men and relationships to body composition and metabolic parameters. AIDS. 2010;24(13):2127–30.PubMedCrossRefGoogle Scholar
  42. 42.
    Albu JB, Kenya S, He Q, Wainwright M, Berk ES, Heshka S, et al. Independent associations of insulin resistance with high whole-body intermuscular and low leg subcutaneous adipose tissue distribution in obese HIV-infected women. Am J Clin Nutr. 2007;86(1):100–6.PubMedGoogle Scholar
  43. 43.
    Torriani M, Thomas BJ, Barlow RB, Librizzi J, Dolan S, Grinspoon S. Increased intramyocellular lipid accumulation in HIV-infected women with fat redistribution. J Appl Physiol. 2006;100(2):609–14.PubMedCrossRefGoogle Scholar
  44. 44.
    Caron-Debarle M, Lagathu C, Boccara F, Vigouroux C, Capeau J. HIV-associated lipodystrophy: from fat injury to premature aging. Trends Mol Med. 2010;16(5):218–29.PubMedCrossRefGoogle Scholar
  45. 45.
    Lewis CE, Jacobs DR Jr, McCreath H, Kiefe CI, Schreiner PJ, Smith DE, et al. Weight gain continues in the 1990s: 10-year trends in weight and overweight from the CARDIA study. Coronary Artery Risk Development in Young Adults. Am J Epidemiol. 2000;151(12):1172–81.PubMedCrossRefGoogle Scholar
  46. 46.
    Appay V, Boutboul F, Autran B. The HIV infection and immune activation: “to fight and burn”. Curr Infect Dis Rep. 2005;7(6):473–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Caron M, Auclairt M, Vissian A, Vigouroux C, Capeau J. Contribution of mitochondrial dysfunction and oxidative stress to cellular premature senescence induced by antiretroviral thymidine analogues. Antivir Ther. 2008;13(1):27–38.PubMedGoogle Scholar
  48. 48.
    Clarke SG. HIV protease inhibitors and nuclear lamin processing: getting the right bells and whistles. Proc Natl Acad Sci USA. 2007;104(35):13857–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Coffinier C, Hudon SE, Farber EA, Chang SY, Hrycyna CA, Young SG, et al. HIV protease inhibitors block the zinc metalloproteinase ZMPSTE24 and lead to an accumulation of prelamin A in cells. Proc Natl Acad Sci USA. 2007;104(33):13432–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Coffinier C, Hudon SE, Lee R, Farber EA, Nobumori C, Miner JH, et al. A potent HIV protease inhibitor, darunavir, does not inhibit ZMPSTE24 or lead to an accumulation of farnesyl-prelamin A in cells. J Biol Chem. 2008;283(15):9797–804.PubMedCrossRefGoogle Scholar
  51. 51.
  52. 52.
    Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–97.Google Scholar
  53. 53.
    Guaraldi G, Murri R, Orlando G, Squillace N, Stentarelli C, Zona S, et al. Lipodystrophy and quality of life of HIV-infected persons. AIDS Rev. 2008;10(3):152–61.PubMedGoogle Scholar
  54. 54.
    Palella FJ Jr, Cole SR, Chmiel JS, Riddler SA, Visscher B, Dobs A, et al. Anthropometrics and examiner-reported body habitus abnormalities in the multicenter AIDS cohort study. Clin Infect Dis. 2004;38(6):903–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Guaraldi G, Orlando G, Murri R, Vandelli M, De Paola M, Beghetto B, et al. Quality of life and body image in the assessment of psychological impact of lipodystrophy: validation of the Italian version of assessment of body change and distress questionnaire. Qual Life Res. 2006;15(1):173–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Plank LD. Dual-energy X-ray absorptiometry and body composition. Curr Opin Clin Nutr Metab Care. 2005;8(3):305–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Joy T, Keogh HM, Hadigan C, Dolan SE, Fitch K, Liebau J, et al. Relation of body composition to body mass index in HIV-infected patients with metabolic abnormalities. J Acquir Immune Defic Syndr. 2008;47(2):174–84.PubMedCrossRefGoogle Scholar
  58. 58.
    Kaul S, Rothney MP, Peters DM, Wacker WK, Davis CE, Shapiro MD, et al. Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity (Silver Spring). 2012;20(6):1313–8.CrossRefGoogle Scholar
  59. 59.
    Ross R, Shaw KD, Martel Y, de Guise J, Avruch L. Adipose tissue distribution measured by magnetic resonance imaging in obese women. Am J Clin Nutr. 1993;57(4):470–5.PubMedGoogle Scholar
  60. 60.
    Ross R, Leger L, Morris D, de Guise J, Guardo R. Quantification of adipose tissue by MRI: relationship with anthropometric variables. J Appl Physiol. 1992;72(2):787–95.PubMedGoogle Scholar
  61. 61.
    Ross R, Shaw KD, Martel Y, de Guise J, Hudson R, Avruch L. Determination of total and regional adipose tissue distribution by magnetic resonance imaging in android women. Basic Life Sci. 1993;60:177–80.PubMedGoogle Scholar
  62. 62.
    Koester RS, Hunter GR, Snyder S, Khaled MA, Berland LL. Estimation of computerized tomography derived abdominal fat distribution. Int J Obes Relat Metab Disord. 1992;16(8):543–54.PubMedGoogle Scholar
  63. 63.
    Liu KH, Chan YL, Chan WB, Kong WL, Kong MO, Chan JC. Sonographic measurement of mesenteric fat thickness is a good correlate with cardiovascular risk factors: comparison with subcutaneous and preperitoneal fat thickness, magnetic resonance imaging and anthropometric indexes. Int J Obes Relat Metab Disord. 2003;27(10):1267–73.PubMedCrossRefGoogle Scholar
  64. 64.
    Abate N, Burns D, Peshock RM, Garg A, Grundy SM. Estimation of adipose tissue mass by magnetic resonance imaging: validation against dissection in human cadavers. J Lipid Res. 1994;35(8):1490–6.PubMedGoogle Scholar
  65. 65.
    He Q, Engelson ES, Wang J, Kenya S, Ionescu G, Heymsfield SB, et al. Validation of an elliptical anthropometric model to estimate visceral compartment area. Obes Res. 2004;12(2):250–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Yang GZ, Myerson S, Chabat F, Pennell DJ, Firmin DN. Automatic MRI adipose tissue mapping using overlapping mosaics. MAGMA. 2002;14(1):39–44.PubMedGoogle Scholar
  67. 67.
    Poll LW, Wittsack HJ, Koch JA, Willers R, Scherer A, Kapitza C, et al. Quantification of total abdominal fat volumes using magnetic resonance imaging. Eur J Med Res. 2002;7(8):347–52.PubMedGoogle Scholar
  68. 68.
    Freitas P, Santos AC, Carvalho D, Pereira J, Marques R, Martinez E, et al. Fat mass ratio: an objective tool to define lipodystrophy in HIV-infected patients under antiretroviral therapy. J Clin Densitom. 2010;13(2):197–203.PubMedCrossRefGoogle Scholar
  69. 69.
    O’Neil T, Ross R, Zona S, Orlando G, Carli F, Garlassi E, et al. Combined use of waist and thigh circumference to identify high-risk, abdominally obese HIV+ patients. J Int AIDS Soc Abstract Supplement n P37, pag 43, 11th International Congress on Drug Therapy in HIV infection, 11-15 Nov 2012, Glasgow, UK. 2012.Google Scholar
  70. 70.
    Carr DB, Utzschneider KM, Hull RL, Kodama K, Retzlaff BM, Brunzell JD, et al. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes. 2004;53(8):2087–94.PubMedCrossRefGoogle Scholar
  71. 71.
    Marques MD, Santos RD, Parga JR, Rocha-Filho JA, Quaglia LA, Miname MH, et al. Relation between visceral fat and coronary artery disease evaluated by multidetector computed tomography. Atherosclerosis. 2010;209(2):481–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Miller J, Carr A, Emery S, Law M, Mallal S, Baker D, et al. HIV lipodystrophy: prevalence, severity and correlates of risk in Australia. HIV Med. 2003;4(3):293–301.PubMedCrossRefGoogle Scholar
  73. 73.
    Mallon PW. Antiretroviral therapy-induced lipid alterations: in-vitro, animal and human studies. Curr Opin HIV AIDS. 2007;2(4):282–92.PubMedCrossRefGoogle Scholar
  74. 74.
    van Leuven SI, Sankatsing RR, Vermeulen JN, Kastelein JJ, Reiss P, Stroes ES. Atherosclerotic vascular disease in HIV: it is not just antiretroviral therapy that hurts the heart! Curr Opin HIV AIDS. 2007;2(4):324–31.PubMedCrossRefGoogle Scholar
  75. 75.
    Saves M, Raffi F, Capeau J, Rozenbaum W, Ragnaud JM, Perronne C, et al. Factors related to lipodystrophy and metabolic alterations in patients with human immunodeficiency virus infection receiving highly active antiretroviral therapy. Clin Infect Dis. 2002;34(10):1396–405.PubMedCrossRefGoogle Scholar
  76. 76.
    Calmy A, Hirschel B, Cooper DA, Carr A. A new era of antiretroviral drug toxicity. Antivir Ther. 2009;14(2):165–79.PubMedGoogle Scholar
  77. 77.
    Raffi F, Rachlis A, Stellbrink HJ, Hardy WD, Torti C, Orkin C, et al. Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study. Lancet. 2013;381(9868):735–43.PubMedCrossRefGoogle Scholar
  78. 78.
  79. 79.
  80. 80.
    Molina JM, Andrade-Villanueva J, Echevarria J, Chetchotisakd P, Corral J, David N, et al. Once-daily atazanavir/ritonavir compared with twice-daily lopinavir/ritonavir, each in combination with tenofovir and emtricitabine, for management of antiretroviral-naive HIV-1-infected patients: 96-week efficacy and safety results of the CASTLE study. J Acquir Immune Defic Syndr. 2010;53(3):323–32.PubMedCrossRefGoogle Scholar
  81. 81.
    Jemsek JG, Arathoon E, Arlotti M, Perez C, Sosa N, Pokrovskiy V, et al. Body fat and other metabolic effects of atazanavir and efavirenz, each administered in combination with zidovudine plus lamivudine, in antiretroviral-naive HIV-infected patients. Clin Infect Dis. 2006;42(2):273–80.PubMedCrossRefGoogle Scholar
  82. 82.
    McComsey G, Rightmire A, Wirtz V, Yang R, Mathew M, McGrath D. Changes in body composition with ritonavir-boosted and unboosted atazanavir treatment in combination with Lamivudine and Stavudine: a 96-week randomized, controlled study. Clin Infect Dis. 2009;48(9):1323–6.PubMedCrossRefGoogle Scholar
  83. 83.
    McComsey GA, Kitch D, Sax PE, Tebas P, Tierney C, Jahed NC, et al. Peripheral and central fat changes in subjects randomized to abacavir-lamivudine or tenofovir-emtricitabine with atazanavir-ritonavir or efavirenz: ACTG Study A5224 s. Clin Infect Dis. 2011;53(2):185–96.PubMedCrossRefGoogle Scholar
  84. 84.
    Vrouenraets SM, Wit FW, Fernandez Garcia E, Moyle GJ, Jackson AG, Allavena C, et al. Randomized comparison of metabolic and renal effects of saquinavir/r or atazanavir/r plus tenofovir/emtricitabine in treatment-naive HIV-1-infected patients. HIV Med. 2011;12(10):620–31.PubMedCrossRefGoogle Scholar
  85. 85.
    Mills AM, Nelson M, Jayaweera D, Ruxrungtham K, Cassetti I, Girard PM, et al. Once-daily darunavir/ritonavir vs. lopinavir/ritonavir in treatment-naive, HIV-1-infected patients: 96-week analysis. AIDS. 2009;23(13):1679–88.PubMedCrossRefGoogle Scholar
  86. 86.
    Aberg JA, Tebas P, Overton ET, Gupta SK, Sax PE, Landay A, et al. Metabolic effects of darunavir/ritonavir versus atazanavir/ritonavir in treatment-naive, HIV type 1-infected subjects over 48 weeks. AIDS Res Hum Retrovir. 2012;28(10):1184–95.PubMedCrossRefGoogle Scholar
  87. 87.
    Lennox JL, Dejesus E, Berger DS, Lazzarin A, Pollard RB, Ramalho Madruga JV, et al.; STARTMRK Investigators. Raltegravir versus Efavirenz regimens in treatment-naive HIV-1-infected patients: 96-week efficacy, durability, subgroup, safety, and metabolic analyses [Erratum appears in J Acquir Immune Defic Syndr. 2011;58(4):e120]. J Acquir Immune Defic Syndr. 2010;55(1):39–48.Google Scholar
  88. 88.
    Rockstroh JK, Lennox JL, Dejesus E, Saag MS, Lazzarin A, Wan H, et al. Long-term treatment with raltegravir or efavirenz combined with tenofovir/emtricitabine for treatment-naive human immunodeficiency virus-1-infected patients: 156-week results from STARTMRK. Clin Infect Dis. 2011;53(8):807–16.PubMedCrossRefGoogle Scholar
  89. 89.
    Reynes J, Trinh R, Pulido F, Soto-Malave R, Gathe J, Qaqish R, et al. Lopinavir/ritonavir combined with raltegravir or tenofovir/emtricitabine in antiretroviral-naive subjects: 96-week results of the PROGRESS study. AIDS Res Hum Retrovir. 2013;29(2):256–65.PubMedGoogle Scholar
  90. 90.
    Carr A, Ritzhaupt A, Zhang W, Zajdenverg R, Workman C, Gatell JM, et al. Effects of boosted tipranavir and lopinavir on body composition, insulin sensitivity and adipocytokines in antiretroviral-naive adults. AIDS. 2008;22(17):2313–21.PubMedCrossRefGoogle Scholar
  91. 91.
    Joly V, Fagard C, Grondin C, Descamps D, Yazdanpanah Y, Charpentier C, et al. Intensification of antiretroviral therapy through addition of enfuvirtide in naive HIV-1-infected patients with severe immunosuppression does not improve immunological response: results of a randomized multicenter trial (ANRS 130 Apollo). Antimicrob Agents Chemother. 2013;57(2):758–65.PubMedCrossRefGoogle Scholar
  92. 92.
    Lalezari JP, DeJesus E, Northfelt DW, Richmond G, Wolfe P, Haubrich R, et al. A controlled Phase II trial assessing three doses of enfuvirtide (T-20) in combination with abacavir, amprenavir, ritonavir and efavirenz in non-nucleoside reverse transcriptase inhibitor-naive HIV-infected adults. Antivir Ther. 2003;8(4):279–87.PubMedGoogle Scholar
  93. 93.
    van Lunzen J, Maggiolo F, Arribas JR, Rakhmanova A, Yeni P, Young B, et al. Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naive adults with HIV: planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial. Lancet Infect Dis. 2012;12(2):111–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Mills A, Mildvan D, Podzamczer D, Fatkenheuer G, Leal M, Than S, et al. Maraviroc once-daily nucleoside analog-sparing regimen in treatment-naive patients: randomized, open-label pilot study. J Acquir Immune Defic Syndr. 2013;62(2):164–70.PubMedCrossRefGoogle Scholar
  95. 95.
    Cooper DA, Heera J, Goodrich J, Tawadrous M, Saag M, Dejesus E, et al. Maraviroc versus efavirenz, both in combination with zidovudine-lamivudine, for the treatment of antiretroviral-naive subjects with CCR5-tropic HIV-1 infection. J Infect Dis. 2010;201(6):803–13.PubMedCrossRefGoogle Scholar
  96. 96.
    Molina JM, Clumeck N, Orkin C, Rimsky L, Vanveggel S, Stevens M. Rilpivirine efficacy, virology and safety in ARV treatment-naive patients with viral load</=100,000 HIV-1 RNA c/mL: ECHO and THRIVE 96-week results. J Int AIDS Soc. 2012;15(6):18250.Google Scholar
  97. 97.
    Cohen C, Wohl D, Arribas J, Henry K, Van Lunzen J, Bloch M, et al. STAR Study: single tablet regimen emtricitabine/rilpivirine/tenofovir DF is non-inferior to efavirenz/emtricitabine/tenofovir DF in ART-naive adults. J Int AIDS Soc. 2012;15(6):18221.Google Scholar
  98. 98.
    Cohen CJ, Molina JM, Cassetti I, Chetchotisakd P, Lazzarin A, Orkin C et al.; ECHO, THRIVE study groups. Week 96 efficacy and safety of rilpivirine in treatment-naive, HIV-1 patients in two Phase III randomized trials. AIDS. 2013;27(6):939–50.Google Scholar
  99. 99.
    Molina JM, Cahn P, Grinsztejn B, Lazzarin A, Mills A, Saag M, et al. Rilpivirine versus efavirenz with tenofovir and emtricitabine in treatment-naive adults infected with HIV-1 (ECHO): a phase 3 randomised double-blind active-controlled trial. Lancet. 2011;378(9787):238–46.PubMedCrossRefGoogle Scholar
  100. 100.
    Cohen CJ, Andrade-Villanueva J, Clotet B, Fourie J, Johnson MA, Ruxrungtham K, et al. Rilpivirine versus efavirenz with two background nucleoside or nucleotide reverse transcriptase inhibitors in treatment-naive adults infected with HIV-1 (THRIVE): a phase 3, randomised, non-inferiority trial. Lancet. 2011;378(9787):229–37.PubMedCrossRefGoogle Scholar
  101. 101.
    Pozniak AL, Morales-Ramirez J, Katabira E, Steyn D, Lupo SH, Santoscoy M, et al. Efficacy and safety of TMC278 in antiretroviral-naive HIV-1 patients: week 96 results of a phase IIb randomized trial. AIDS. 2010;24(1):55–65.PubMedCrossRefGoogle Scholar
  102. 102.
    Vernazza P, Wang C, Pozniak A, Weil E, Pulik P, Cooper DA et al. Efficacy and safety of lersivirine (UK-453,061) versus efavirenz in antiretroviral treatment-naive HIV-1-infected patients: week 48 primary analysis results from an ongoing, multicenter, randomized, double-blind, phase IIb trial. J Acquir Immune Defic Syndr. 2013;62(2):171–9.Google Scholar
  103. 103.
    Vernazza P, Wang C, Pozniak A, Weil E, Pulik P, Cooper DA, et al. Efficacy and safety of lersivirine (UK-453,061) versus efavirenz in antiretroviral treatment-naive HIV-1-infected patients: week 48 primary analysis results from an ongoing, multicenter, randomized, double-blind, phase IIb trial. J Acquir Immune Defic Syndr. 2013;62(2):171–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Fatkenheuer G, Duvivier C, Rieger A, Durant J, Rey D, Schmidt W, et al. Lipid profiles for etravirine versus efavirenz in treatment-naive patients in the randomized, double-blind SENSE trial. J Antimicrob Chemother. 2012;67(3):685–90.PubMedCrossRefGoogle Scholar
  105. 105.
    Sax PE, Tierney C, Collier AC, Daar ES, Mollan K, Budhathoki C, et al. Abacavir/lamivudine versus tenofovir DF/emtricitabine as part of combination regimens for initial treatment of HIV: final results. J Infect Dis. 2011;204(8):1191–201.PubMedCrossRefGoogle Scholar
  106. 106.
    Daar ES, Tierney C, Fischl MA, Sax PE, Mollan K, Budhathoki C, et al. Atazanavir plus ritonavir or efavirenz as part of a 3-drug regimen for initial treatment of HIV-1. Ann Intern Med. 2011;154(7):445–56.PubMedCrossRefGoogle Scholar
  107. 107.
    Puls RL, Srasuebkul P, Petoumenos K, Boesecke C, Duncombe C, Belloso WH, et al. Efavirenz versus boosted atazanavir or zidovudine and abacavir in antiretroviral treatment-naive, HIV-infected subjects: week 48 data from the Altair study. Clin Infect Dis. 2010;51(7):855–64.PubMedCrossRefGoogle Scholar
  108. 108.
    Elion R, Cohen C, Gathe J, Shalit P, Hawkins T, Liu HC, et al. Phase 2 study of cobicistat versus ritonavir each with once-daily atazanavir and fixed-dose emtricitabine/tenofovir df in the initial treatment of HIV infection. AIDS. 2011;25(15):1881–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Sax PE, DeJesus E, Mills A, Zolopa A, Cohen C, Wohl D, et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3 trial, analysis of results after 48 weeks. Lancet. 2012;379(9835):2439–48.PubMedCrossRefGoogle Scholar
  110. 110.
    DeJesus E, Rockstroh JK, Henry K, Molina JM, Gathe J, Ramanathan S, et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir disoproxil fumarate versus ritonavir-boosted atazanavir plus co-formulated emtricitabine and tenofovir disoproxil fumarate for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3, non-inferiority trial. Lancet. 2012;379(9835):2429–38.PubMedCrossRefGoogle Scholar
  111. 111.
    Rockstroh JK, DeJesus E, Henry K, Molina JM, Gathe J, Ramanathan S et al.; GS-236-0103 Study Team. A randomized, double-blind comparison of coformulated elvitegravir/cobicistat/emtricitabine/tenofovir DF vs ritonavir-boosted atazanavir plus coformulated emtricitabine and tenofovir DF for initial treatment of HIV-1 infection: analysis of week 96 results. J Acquir Immune Defic Syndr. 2013;62(5):483–6.Google Scholar
  112. 112.
    Cohen C, Elion R, Ruane P, Shamblaw D, DeJesus E, Rashbaum B, et al. Randomized, phase 2 evaluation of two single-tablet regimens elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate versus efavirenz/emtricitabine/tenofovir disoproxil fumarate for the initial treatment of HIV infection. AIDS. 2011;25(6):F7–12.PubMedCrossRefGoogle Scholar
  113. 113.
    Zolopa A, Sax PE, DeJesus E, Mills A, Cohen C, Wohl D et al.; GS US-236-0102 Study Team. A randomized double-blind comparison of coformulated elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate versus efavirenz/emtricitabine/tenofovir disoproxil fumarate for initial treatment of HIV-1 infection: analysis of week 96 results. J Acquir Immune Defic Syndr. 2013;63(1):96–100.Google Scholar
  114. 114.
    Bernardini C, Maggiolo F. Triple-combination rilpivirine, emtricitabine, and tenofovir (Complera/Eviplera) in the treatment of HIV infection. Patient Prefer Adherence. 2013;7:531–42.PubMedGoogle Scholar
  115. 115.
    Moyle G, Hardy H, Hu W, Yang R, Wirtz V, DeGrosky M, et al. Incidence of hypertriglyceridemic waist (HTW) phenotype in a randomized prospective trial comparing atazanavir/ritonavir (ATV/r) and lopinavir/ritonavir (LPV/r) each in combination with tenofovir DF/emtricitabine (TDF/FTC) in antiretroviral naive HIV-1 infected subjects, a sub-study of CASTLE. In: 14th International workshop on co-morbidities and adverse drug reactions (IWCADR), 19–21 July 2012, Washington. 2012.Google Scholar
  116. 116.
    Moyle GJ, Andrade-Villanueva J, Girard PM, Antinori A, Salvato P, Bogner JR, et al. A randomized comparative 96-week trial of boosted atazanavir versus continued boosted protease inhibitor in HIV-1 patients with abdominal adiposity. Antivir Ther. 2012;17(4):689–700.PubMedCrossRefGoogle Scholar
  117. 117.
    Stanley TL, Joy T, Hadigan CM, Liebau JG, Makimura H, Chen CY, et al. Effects of switching from lopinavir/ritonavir to atazanavir/ritonavir on muscle glucose uptake and visceral fat in HIV-infected patients. AIDS. 2009;23(11):1349–57.PubMedCrossRefGoogle Scholar
  118. 118.
    Curran A, Martinez E, Saumoy M, del Rio L, Crespo M, Larrousse M, et al. Body composition changes after switching from protease inhibitors to raltegravir: SPIRAL-LIP substudy. AIDS. 2012;26(4):475–81.PubMedCrossRefGoogle Scholar
  119. 119.
    Lake JE, McComsey GA, Hulgan TM, Wanke CA, Mangili A, Walmsley SL, et al. A randomized trial of Raltegravir replacement for protease inhibitor or non-nucleoside reverse transcriptase inhibitor in HIV-infected women with lipohypertrophy. AIDS Patient Care STDS. 2012;26(9):532–40.PubMedCrossRefGoogle Scholar
  120. 120.
    Cooper DA, Cordery DV, Reiss P, Henry K, Nelson M, O’Hearn M, et al. The effects of enfuvirtide therapy on body composition and metabolic parameters over 48 weeks in the TORO body imaging substudy. HIV Med. 2011;12(1):31–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Valantin MA, Kolta S, Flandre P, Algarte Genin M, Meynard JL, Ponscarme D, et al. Body fat distribution in HIV-infected patients treated for 96 weeks with darunavir/ritonavir monotherapy versus darunavir/ritonavir plus nucleoside reverse transcriptase inhibitors: the MONOI-ANRS136 substudy. HIV Med. 2012;13(8):505–15.PubMedGoogle Scholar
  122. 122.
    Guaraldi G, Zona S, Cossarizza A, Vernacotola L, Carli F, Lattanzi A, et al. Impact of switching to darunavir/ritonavir monotherapy vs. triple-therapy on Body fat redistribution and bone mass in virologically suppressed HIV-infected adults. The MONARCH randomized controlled trial. European AIDS Conference, Belgrade, Serbia, October 2011 [abstr PE75/4]. 2011.Google Scholar
  123. 123.
    Ofotokun I, Sheth AN, Sanford SE, Easley KA, Shenvi N, White K, et al. A switch in therapy to a reverse transcriptase inhibitor sparing combination of lopinavir/ritonavir and raltegravir in virologically suppressed HIV-infected patients: a pilot randomized trial to assess efficacy and safety profile: the KITE study. AIDS Res Hum Retrovir. 2012;28(10):1196–206.PubMedCrossRefGoogle Scholar
  124. 124.
    Gallant JE, DeJesus E, Arribas JR, Pozniak AL, Gazzard B, Campo RE, et al. Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV. N Engl J Med. 2006;354(3):251–60.PubMedCrossRefGoogle Scholar
  125. 125.
    Pozniak AL, Gallant JE, DeJesus E, Arribas JR, Gazzard B, Campo RE, et al. Tenofovir disoproxil fumarate, emtricitabine, and efavirenz versus fixed-dose zidovudine/lamivudine and efavirenz in antiretroviral-naive patients: virologic, immunologic, and morphologic changes—a 96-week analysis. J Acquir Immune Defic Syndr. 2006;43(5):535–40.PubMedGoogle Scholar
  126. 126.
    Madruga JR, Cassetti I, Suleiman JM, Etzel A, Zhong L, Holmes CB, et al. The safety and efficacy of switching stavudine to tenofovir df in combination with lamivudine and efavirenz in HIV-1-infected patients: three-year follow-up after switching therapy. HIV Clin Trials. 2007;8(6):381–90.PubMedCrossRefGoogle Scholar
  127. 127.
    Fisher M, Moyle GJ, Shahmanesh M, Orkin C, Kingston M, Wilkins E, et al. A randomized comparative trial of continued zidovudine/lamivudine or replacement with tenofovir disoproxil fumarate/emtricitabine in efavirenz-treated HIV-1-infected individuals. J Acquir Immune Defic Syndr. 2009;51(5):562–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Cameron DW, da Silva BA, Arribas JR, Myers RA, Bellos NC, Gilmore N, et al. A 96-week comparison of lopinavir-ritonavir combination therapy followed by lopinavir-ritonavir monotherapy versus efavirenz combination therapy. J Infect Dis. 2008;198(2):234–40.PubMedCrossRefGoogle Scholar
  129. 129.
    Kolta S, Flandre P, Van PN, Cohen-Codar I, Valantin MA, Pintado C, et al. Fat tissue distribution changes in HIV-infected patients treated with lopinavir/ritonavir. Results of the MONARK trial. Curr HIV Res. 2011;9(1):31–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Meynard JL, Bouteloup V, Landman R, Bonnard P, Baillat V, Cabie A, et al. Lopinavir/ritonavir monotherapy versus current treatment continuation for maintenance therapy of HIV-1 infection: the KALESOLO trial. J Antimicrob Chemother. 2010;65(11):2436–44.PubMedCrossRefGoogle Scholar
  131. 131.
    Bernardino JI, Pulido F, Martinez E, Arrizabalaga J, Domingo P, Portilla J et al.; GESIDA-6008-KRETA Study Group. Switching to lopinavir/ritonavir with or without abacavir/lamivudine in lipoatrophic patients treated with zidovudine/abacavir/lamivudine. J Antimicrob Chemother. 2013;68(6):1373–81.Google Scholar
  132. 132.
    Martinez E, Milinkovic A, Bianchi L, Gatell JM. Considerations about the value of sonography for the measurement of regional body fat. AIDS. 2006;20(3):465–6.PubMedCrossRefGoogle Scholar
  133. 133.
    Cavalcanti RB, Cheung AM, Raboud J, Walmsley S. Reproducibility of DXA estimations of body fat in HIV lipodystrophy: implications for clinical research. J Clin Densitom. 2005 Fall;8(3):293–7.Google Scholar
  134. 134.
    Scherzer R, Heymsfield SB, Lee D, Powderly WG, Tien PC, Bacchetti P, et al. Decreased limb muscle and increased central adiposity are associated with 5-year all-cause mortality in HIV infection. AIDS. 2011;25(11):1405–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Giovanni Guaraldi
    • 1
  • Chiara Stentarelli
    • 1
  • Stefano Zona
    • 1
  • Antonella Santoro
    • 1
  1. 1.Department of Medical and Surgical Sciences for Children & AdultsUniversisty of Modena and Reggio EmiliaModenaItaly

Personalised recommendations