Drugs

, Volume 73, Issue 9, pp 893–905

HIV-Associated Neurocognitive Disorders: Perspective on Management Strategies

Therapy in Practice

Abstract

Potent combination antiretroviral therapy (ART) has resulted in dramatic improvements in AIDS-associated morbidity and mortality. Although combination ART has resulted in a significant reduction in HIV-associated dementia, the most severe of the HIV-associated neurocognitive disorders (HAND), the overall prevalence of HAND among this population is estimated at 40 %. It has been recognized that the central nervous system (CNS) serves as a reservoir for HIV, and neuronal damage begins at the time of acute infection and persists due to chronic infection of microglial and perivascular macrophages. Although combination ART has resulted in virologic control in the plasma compartment, virologic breakthrough can potentially ensue within the CNS compartment due to limited ART drug exposure. The purpose of this review is to discuss the definition, clinical spectrum, and risk factors associated with HAND, review the pathogenesis of HAND, and address the pharmacologic challenges associated with ART drug exposure in the CNS compartment.

References

  1. 1.
    WHO. HIV/AIDS: fact sheet no. 360; 2012. http://www.who.int/mediacentre/factsheets/fs360/en/index.html (cited 9 Jan 2013).
  2. 2.
    Cysique LA, Bain MP, Brew BJ, Murray JM. The burden of HIV-associated neurocognitive impairment in Australia and its estimates for the future. Sex Health. 2011;8(4):541–50.PubMedCrossRefGoogle Scholar
  3. 3.
    Letendre S, McClernon D, Ellis R, Munoz-Moreno J, Way L, Franklin D, Heaton R, Grant I. Persistent HIV in the central nervous system during treatment is associated with worse antiretroviral therapy penetration and cognitive impairment. Presented at: 16th Conference on Retroviruses and Opportunistic Infections; 2009 Feb 8–11; Montréal, Canada.Google Scholar
  4. 4.
    Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 2011;17(1):3–16.PubMedCrossRefGoogle Scholar
  5. 5.
    Canestri A, Lescure FX, Jaureguiberry S, Moulignier A, Amiel C, Marcelin AG, et al. Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis. 2010;50(5):773–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Gonzalez-Scarano F, Martin-Garcia J. The neuropathogenesis of AIDS. Nat Rev Immunol. 2005;5(1):69–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99.PubMedCrossRefGoogle Scholar
  8. 8.
    Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology. 2010;75(23):2087–96.PubMedCrossRefGoogle Scholar
  9. 9.
    Valcour V, Watters MR, Williams AE, Sacktor N, McMurtray A, Shikuma C. Aging exacerbates extrapyramidal motor signs in the era of highly active antiretroviral therapy. J Neurovirol. 2008;14(5):362–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Group TMEW. Assessment, diagnosis, and treatment of HIV-associated neurocognitive disorder: a consensus report of the mind exchange program. Clin Infect Dis. 2013;56:1004–17.CrossRefGoogle Scholar
  11. 11.
    Sevigny JJ, Albert SM, McDermott MP, McArthur JC, Sacktor N, Conant K, et al. Evaluation of HIV RNA and markers of immune activation as predictors of HIV-associated dementia. Neurology. 2004;63(11):2084–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Shapshak P, Kangueane P, Fujimura RK, Commins D, Chiappelli F, Singer E, et al. Editorial neuroAIDS review. AIDS. 2011;25(2):123–41.PubMedCrossRefGoogle Scholar
  13. 13.
    Brew BJ, Pemberton L, Cunningham P, Law MG. Levels of human immunodeficiency virus type 1 RNA in cerebrospinal fluid correlate with AIDS dementia stage. J Infect Dis. 1997;175(4):963–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Mind Exchange Working Group. Assessment, diagnosis, and treatment of HIV-associated neurocognitive disorder: a consensus report of the Mind Exchange program. Clin Infect Dis. 2013;56(7):1004–17.Google Scholar
  15. 15.
    Valcour V, Shikuma C, Shiramizu B, Watters M, Poff P, Selnes OA, et al. Age, apolipoprotein E4, and the risk of HIV dementia: the Hawaii Aging with HIV Cohort. J Neuroimmunol. 2004;157(1–2):197–202.PubMedCrossRefGoogle Scholar
  16. 16.
    Foley J, Ettenhofer M, Wright MJ, Siddiqi I, Choi M, Thames AD, et al. Neurocognitive functioning in HIV-1 infection: effects of cerebrovascular risk factors and age. Clin Neuropsychol. 2010;24(2):265–85.PubMedCrossRefGoogle Scholar
  17. 17.
    Kodl CT, Seaquist ER. Cognitive dysfunction and diabetes mellitus. Endocr Rev. 2008;29(4):494–511.PubMedCrossRefGoogle Scholar
  18. 18.
    McCutchan JA, Marquie-Beck JA, Fitzsimons CA, Letendre SL, Ellis RJ, Heaton RK, et al. Role of obesity, metabolic variables, and diabetes in HIV-associated neurocognitive disorder. Neurology. 2012;78(7):485–92.PubMedCrossRefGoogle Scholar
  19. 19.
    Vivithanaporn P, Nelles K, DeBlock L, Newman SC, Gill MJ, Power C. Hepatitis C virus co-infection increases neurocognitive impairment severity and risk of death in treated HIV/AIDS. J Neurol Sci. 2012;312(1–2):45–51.PubMedCrossRefGoogle Scholar
  20. 20.
    Staples CT Jr, Rimland D, Dudas D. Hepatitis C in the HIV (human immunodeficiency virus) Atlanta V.A. (Veterans Affairs Medical Center) Cohort Study (HAVACS): the effect of coinfection on survival. Clin Infect Dis. 1999;29(1):150–4.PubMedCrossRefGoogle Scholar
  21. 21.
    US Department of Health and Human Services, editor. HIV/AIDS surveillance report. Atlanta: Centers for Disease Control and Prevention; 2007.Google Scholar
  22. 22.
    Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, et al. Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology. 1992;42(9):1736–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Liu NQ, Lossinsky AS, Popik W, Li X, Gujuluva C, Kriederman B, et al. Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J Virol. 2002;76(13):6689–700.PubMedCrossRefGoogle Scholar
  24. 24.
    Haase AT. Pathogenesis of lentivirus infections. Nature. 1986;322(6075):130–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Lindl KA, Marks DR, Kolson DL, Jordan-Sciutto KL. HIV-associated neurocognitive disorder: pathogenesis and therapeutic opportunities. J Neuroimmune Pharmacol. 2010;5(3):294–309.PubMedCrossRefGoogle Scholar
  26. 26.
    Bell JE. An update on the neuropathology of HIV in the HAART era. Histopathology. 2004;45(6):549–59.PubMedCrossRefGoogle Scholar
  27. 27.
    An SF, Scaravilli F. Early HIV-1 infection of the central nervous system. Arch Anat Cytol Pathol. 1997;45(2–3):94–105.PubMedGoogle Scholar
  28. 28.
    Giometto B, An SF, Groves M, Scaravilli T, Geddes JF, Miller R, et al. Accumulation of beta-amyloid precursor protein in HIV encephalitis: relationship with neuropsychological abnormalities. Ann Neurol. 1997;42(1):34–40.PubMedCrossRefGoogle Scholar
  29. 29.
    Masliah E, Heaton RK, Marcotte TD, Ellis RJ, Wiley CA, Mallory M, et al. Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann Neurol. 1997;42(6):963–72.PubMedCrossRefGoogle Scholar
  30. 30.
    Meucci O, Miller RJ. gp120-induced neurotoxicity in hippocampal pyramidal neuron cultures: protective action of TGF-beta1. J Neurosci. 1996;16(13):4080–8.PubMedGoogle Scholar
  31. 31.
    Spudich S, Gonzalez-Scarano F. HIV-1-related central nervous system disease: current issues in pathogenesis, diagnosis, and treatment. Cold Spring Harb Perspect Med. 2012;2(6):a007120.PubMedCrossRefGoogle Scholar
  32. 32.
    Masliah E, DeTeresa RM, Mallory ME, Hansen LA. Changes in pathological findings at autopsy in AIDS cases for the last 15 years. AIDS. 2000;14(1):69–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Hazleton JE, Berman JW, Eugenin EA. Novel mechanisms of central nervous system damage in HIV infection. HIV AIDS (Auckl). 2010;2:39–49.Google Scholar
  34. 34.
    Tucker KA, Robertson KR, Lin W, Smith JK, An H, Chen Y, et al. Neuroimaging in human immunodeficiency virus infection. J Neuroimmunol. 2004;157(1–2):153–62.PubMedCrossRefGoogle Scholar
  35. 35.
    Quest Diagnostics. Test Center: HIV-1 RNA, Quantitative, Real-Time PCR, CSF (website). http://www.questdiagnostics.com/testcenter/TestDetail.action?tabName=OrderingInfo&ntc=16186 (cited 26 March 2013).
  36. 36.
    Ellis RJ, Hsia K, Spector SA, Nelson JA, Heaton RK, Wallace MR, et al. Cerebrospinal fluid human immunodeficiency virus type 1 RNA levels are elevated in neurocognitively impaired individuals with acquired immunodeficiency syndrome. HIV Neurobehavioral Research Center Group. Ann Neurol. 1997;42(5):679–88.PubMedCrossRefGoogle Scholar
  37. 37.
    McArthur JC, McClernon DR, Cronin MF, Nance-Sproson TE, Saah AJ, St Clair M, et al. Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol. 1997;42(5):689–98.PubMedCrossRefGoogle Scholar
  38. 38.
    Gras G, Kaul M. Molecular mechanisms of neuroinvasion by monocytes-macrophages in HIV-1 infection. Retrovirology. 2010;7:30.PubMedCrossRefGoogle Scholar
  39. 39.
    Wiley CA, Soontornniyomkij V, Radhakrishnan L, Masliah E, Mellors J, Hermann SA, et al. Distribution of brain HIV load in AIDS. Brain Pathol. 1998;8(2):277–84.PubMedCrossRefGoogle Scholar
  40. 40.
    Power C, Selnes OA, Grim JA, McArthur JC. HIV Dementia Scale: a rapid screening test. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;8(3):273–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Sacktor NC, Wong M, Nakasujja N, Skolasky RL, Selnes OA, Musisi S, et al. The International HIV Dementia Scale: a new rapid screening test for HIV dementia. AIDS. 2005;19(13):1367–74.PubMedGoogle Scholar
  42. 42.
    Overton ET, Azad TD, Parker N, Demarco Shaw D, Frain J, Spitz T, et al. The Alzheimer’s disease-8 and Montreal Cognitive Assessment as screening tools for neurocognitive impairment in HIV-infected persons. J Neurovirol. 2013;19(1):109–16.PubMedCrossRefGoogle Scholar
  43. 43.
    Marra CM, Zhao Y, Clifford DB, Letendre S, Evans S, Henry K, et al. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS. 2009;23(11):1359–66.PubMedCrossRefGoogle Scholar
  44. 44.
    Smurzynski M, Wu K, Letendre S, Robertson K, Bosch RJ, Clifford DB, et al. Effects of central nervous system antiretroviral penetration on cognitive functioning in the ALLRT cohort. AIDS. 2011;25(3):357–65.PubMedCrossRefGoogle Scholar
  45. 45.
    Ene L, Duiculescu D, Ruta SM. How much do antiretroviral drugs penetrate into the central nervous system? J Med Life. 2011;4(4):432–9.PubMedGoogle Scholar
  46. 46.
    Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC, et al. Validation of the CNS Penetration-Effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol. 2008;65(1):65–70.PubMedCrossRefGoogle Scholar
  47. 47.
    Letendre SL, Ellis RJ, Ances BM, McCutchan JA. Neurologic complications of HIV disease and their treatment. Top HIV Med. 2010;18(2):45–55.PubMedGoogle Scholar
  48. 48.
    Letendre SL, McCutchan JA, Childers ME, Woods SP, Lazzaretto D, Heaton RK, et al. Enhancing antiretroviral therapy for human immunodeficiency virus cognitive disorders. Ann Neurol. 2004;56(3):416–23.PubMedCrossRefGoogle Scholar
  49. 49.
    Cusini A, Vernazza PL, Yerly S, Decosterd LA, Ledergerber B, Fux CA, et al. Higher CNS penetration-effectiveness of long-term combination antiretroviral therapy is associated with better HIV-1 viral suppression in cerebrospinal fluid. J Acquir Immune Defic Syndr. 2013;62:28–35.PubMedCrossRefGoogle Scholar
  50. 50.
    Varatharajan L, Thomas SA. The transport of anti-HIV drugs across blood–CNS interfaces: summary of current knowledge and recommendations for further research. Antiviral Res. 2009;82(2):A99–109.PubMedCrossRefGoogle Scholar
  51. 51.
    Miller DS, Bauer B, Hartz AM. Modulation of P-glycoprotein at the blood–brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev. 2008;60(2):196–209.PubMedCrossRefGoogle Scholar
  52. 52.
    Goralski KB, Hartmann G, Piquette-Miller M, Renton KW. Downregulation of mdr1a expression in the brain and liver during CNS inflammation alters the in vivo disposition of digoxin. Br J Pharmacol. 2003;139(1):35–48.PubMedCrossRefGoogle Scholar
  53. 53.
    Bauer B, Hartz AM, Pekcec A, Toellner K, Miller DS, Potschka H. Seizure-induced up-regulation of P-glycoprotein at the blood–brain barrier through glutamate and cyclooxygenase-2 signaling. Mol Pharmacol. 2008;73(5):1444–53.PubMedCrossRefGoogle Scholar
  54. 54.
    Kis O, Robillard K, Chan GN, Bendayan R. The complexities of antiretroviral drug–drug interactions: role of ABC and SLC transporters. Trends Pharmacol Sci. 2010;31(1):22–35.Google Scholar
  55. 55.
    Simpson DM. Human immunodeficiency virus-associated dementia: review of pathogenesis, prophylaxis, and treatment studies of zidovudine therapy. Clin Infect Dis. 1999;29(1):19–34.PubMedCrossRefGoogle Scholar
  56. 56.
    Best BM, Letendre SL, Koopmans P, Rossi SS, Clifford DB, Collier AC, et al. Low cerebrospinal fluid concentrations of the nucleotide HIV reverse transcriptase inhibitor, tenofovir. J Acquir Immune Defic Syndr. 2012;59(4):376–81.PubMedCrossRefGoogle Scholar
  57. 57.
    Calcagno A, Bonora S, Simiele M, Rostagno R, Tettoni MC, Bonasso M, et al. Tenofovir and emtricitabine cerebrospinal fluid-to-plasma ratios correlate to the extent of blood–brain barrier damage. AIDS. 2011;25(11):1437–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Best BM, Koopmans PP, Letendre SL, Capparelli EV, Rossi SS, Clifford DB, et al. Efavirenz concentrations in CSF exceed IC50 for wild-type HIV. J Antimicrob Chemother. 2011;66(2):354–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Tiraboschi JM, Niubo J, Vila A, Perez-Pujol S, Podzamczer D. Etravirine concentrations in CSF in HIV-infected patients. J Antimicrob Chemother. 2012;67(6):1446–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Nguyen A, Rossi S, Croteau D, Best BM, Clifford D, Collier AC, et al. Etravirine in CSF is highly protein bound. J Antimicrob Chemother. 2013;68:1161–8.PubMedCrossRefGoogle Scholar
  61. 61.
    DiCenzo R, DiFrancesco R, Cruttenden K, Donnelly J, Schifitto G. Lopinavir cerebrospinal fluid steady-state trough concentrations in HIV-infected adults. Ann Pharmacother. 2009;43(12):1972–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Capparelli EV, Holland D, Okamoto C, Gragg B, Durelle J, Marquie-Beck J, et al. Lopinavir concentrations in cerebrospinal fluid exceed the 50% inhibitory concentration for HIV. AIDS. 2005;19(9):949–52.PubMedCrossRefGoogle Scholar
  63. 63.
    Yilmaz A, Stahle L, Hagberg L, Svennerholm B, Fuchs D, Gisslen M. Cerebrospinal fluid and plasma HIV-1 RNA levels and lopinavir concentrations following lopinavir/ritonavir regimen. Scand J Infect Dis. 2004;36(11–12):823–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Best BM, Letendre SL, Brigid E, Clifford DB, Collier AC, Gelman BB, et al. Low atazanavir concentrations in cerebrospinal fluid. AIDS. 2009;23(1):83–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Croteau D, Letendre S, Best BM, Rossi SS, Ellis RJ, Clifford DB, et al. Therapeutic amprenavir concentrations in cerebrospinal fluid. Antimicrob Agents Chemother. 2012;56(4):1985–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Croteau D, Rossi SS, Best BM, Capparelli E, Ellis RJ, Clifford DB, et al. Darunavir is predominantly unbound to protein in cerebrospinal fluid and concentrations exceed the wild-type HIV-1 median 90% inhibitory concentration. J Antimicrob Chemother. 2013;68:684–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Yilmaz A, Izadkhashti A, Price RW, Mallon PW, De Meulder M, Timmerman P, et al. Darunavir concentrations in cerebrospinal fluid and blood in HIV-1-infected individuals. AIDS Res Hum Retroviruses. 2009;25(4):457–61.PubMedCrossRefGoogle Scholar
  68. 68.
    Calcagno A, Yilmaz A, Cusato J, Simiele M, Bertucci R, Siccardi M, et al. Determinants of darunavir cerebrospinal fluid concentrations: impact of once-daily dosing and pharmacogenetics. AIDS. 2012;26(12):1529–33.PubMedCrossRefGoogle Scholar
  69. 69.
    van Lelyveld SF, Nijhuis M, Baatz F, Wilting I, van den Bergh WM, Kurowski M, et al. Therapy failure following selection of enfuvirtide-resistant HIV-1 in cerebrospinal fluid. Clin Infect Dis. 2010;50(3):387–90.PubMedCrossRefGoogle Scholar
  70. 70.
    Price RW, Parham R, Kroll JL, Wring SA, Baker B, Sailstad J, et al. Enfuvirtide cerebrospinal fluid (CSF) pharmacokinetics and potential use in defining CSF HIV-1 origin. Antivir Ther. 2008;13(3):369–74.PubMedGoogle Scholar
  71. 71.
    Yilmaz A, Watson V, Else L, Gisslen M. Cerebrospinal fluid maraviroc concentrations in HIV-1 infected patients. AIDS. 2009;23(18):2537–40.PubMedCrossRefGoogle Scholar
  72. 72.
    Tiraboschi JM, Niubo J, Curto J, Podzamczer D. Maraviroc concentrations in cerebrospinal fluid in HIV-infected patients. J Acquir Immune Defic Syndr. 2010;55(5):606–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Croteau D, Best BM, Letendre S, Rossi SS, Ellis RJ, Clifford DB, et al. Lower than expected maraviroc concentrations in cerebrospinal fluid exceed the wild-type CC chemokine receptor 5-tropic HIV-1 50% inhibitory concentration. AIDS. 2012;26(7):890–3.PubMedCrossRefGoogle Scholar
  74. 74.
    Garvey L, Nelson M, Latch N, Erlwein OW, Allsop JM, Mitchell A, et al. CNS effects of a CCR5 inhibitor in HIV-infected subjects: a pharmacokinetic and cerebral metabolite study. J Antimicrob Chemother. 2012;67(1):206–12.PubMedCrossRefGoogle Scholar
  75. 75.
    Yilmaz A, Gisslen M, Spudich S, Lee E, Jayewardene A, Aweeka F, et al. Raltegravir cerebrospinal fluid concentrations in HIV-1 infection. PLoS One. 2009;4(9):e6877.PubMedCrossRefGoogle Scholar
  76. 76.
    Croteau D, Letendre S, Best BM, Ellis RJ, Breidinger S, Clifford D, et al. Total raltegravir concentrations in cerebrospinal fluid exceed the 50-percent inhibitory concentration for wild-type HIV-1. Antimicrob Agents Chemother. 2010;54(12):5156–60.PubMedCrossRefGoogle Scholar
  77. 77.
    Sacktor N, Schifitto G, McDermott MP, Marder K, McArthur JC, Kieburtz K. Transdermal selegiline in HIV-associated cognitive impairment: pilot, placebo-controlled study. Neurology. 2000;54(1):233–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Schifitto G, Yiannoutsos CT, Ernst T, Navia BA, Nath A, Sacktor N, et al. Selegiline and oxidative stress in HIV-associated cognitive impairment. Neurology. 2009;73(23):1975–81.PubMedCrossRefGoogle Scholar
  79. 79.
    Schifitto G, Zhang J, Evans SR, Sacktor N, Simpson D, Millar LL, et al. A multicenter trial of selegiline transdermal system for HIV-associated cognitive impairment. Neurology. 2007;69(13):1314–21.PubMedCrossRefGoogle Scholar
  80. 80.
    Chen HS, Lipton SA. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J Physiol. 1997;499(Pt 1):27–46.PubMedGoogle Scholar
  81. 81.
    Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med. 2003;348(14):1333–41.PubMedCrossRefGoogle Scholar
  82. 82.
    Lipton SA. Memantine prevents HIV coat protein-induced neuronal injury in vitro. Neurology. 1992;42(7):1403–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Zhao Y, Navia BA, Marra CM, Singer EJ, Chang L, Berger J, et al. Memantine for AIDS dementia complex: open-label report of ACTG 301. HIV Clin Trials. 2010;11(1):59–67.PubMedCrossRefGoogle Scholar
  84. 84.
    Sacktor N, Miyahara S, Deng L, Evans S, Schifitto G, Cohen BA, et al. Minocycline treatment for HIV-associated cognitive impairment: results from a randomized trial. Neurology. 2011;77(12):1135–42.PubMedCrossRefGoogle Scholar
  85. 85.
    Nath A. Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis. 2002;186(Suppl 2):S193–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Navia BA, Dafni U, Simpson D, Tucker T, Singer E, McArthur JC, et al. A phase I/II trial of nimodipine for HIV-related neurologic complications. Neurology. 1998;51(1):221–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Letendre S. Central nervous system complications in HIV disease: HIV-associated neurocognitive disorder. Top Antivir Med. 2011;19(4):137–42.PubMedGoogle Scholar
  88. 88.
    Wong HL, Chattopadhyay N, Wu XY, Bendayan R. Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv Drug Deliv Rev. 2010;62(4–5):503–17.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Division of Infectious Diseases, Department of MedicineGeorgetown University HospitalWashington, DCUSA
  2. 2.Department of PharmacyGeorgetown University HospitalWashington, DCUSA

Personalised recommendations