, Volume 73, Issue 5, pp 439–461 | Cite as

Pediatric Relapsed or Refractory Leukemia: New Pharmacotherapeutic Developments and Future Directions

  • Keith J. August
  • Aru Narendran
  • Kathleen A. Neville
Review Article


Over the past 50 years, numerous advances in treatment have produced dramatic increases in the cure rates of pediatric leukemias. Despite this progress, the majority of children with relapsed leukemia are not expected to survive. With current chemotherapy regimens, approximately 15 % of children with acute lymphoblastic leukemia and 45 % of children with acute myeloid leukemia will have refractory disease or experience a relapse. Advances in the treatment of pediatric relapsed leukemia have not mirrored the successes of upfront therapy, and newer treatments are desperately needed in order to improve survival in these challenging patients. Recent improvements in our knowledge of cancer biology have revealed an extensive number of targets that have the potential to be exploited for anticancer therapy. These advances have led to the development of a number of new treatments that are now being explored in children with relapsed or refractory leukemia. Novel agents seek to exploit the same molecular aberrations that contribute to leukemia development and resistance to therapy. Newer classes of drugs, including monoclonal antibodies, tyrosine kinase inhibitors and epigenetic modifiers are transforming the treatment of patients who are not cured with conventional therapies. As the side effects of many new agents are distinct from those seen with conventional chemotherapy, these treatments are often explored in combination with each other or combined with conventional treatment regimens. This review discusses the biological rationale for the most promising new agents and the results of recent studies conducted in pediatric patients with relapsed leukemia.


  1. 1.
    Linabery AM, Ross JA. Trends in childhood cancer incidence in the US (1992–2004). Cancer. 2008;112(2):416–32. (Epub 2007/12/13).PubMedCrossRefGoogle Scholar
  2. 2.
    Pui CH, Campana D, Pei D, Bowman WP, Sandlund JT, Kaste SC, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med. 2009;360(26):2730–41. (Epub 2009/06/26).PubMedCrossRefGoogle Scholar
  3. 3.
    Mitchell C, Payne J, Wade R, Vora A, Kinsey S, Richards S, et al. The impact of risk stratification by early bone-marrow response in childhood lymphoblastic leukaemia: results from the United Kingdom Medical Research Council trial ALL97 and ALL97/99. Br J Haematol. 2009;146(4):424–36. (Epub 2009/06/25).PubMedCrossRefGoogle Scholar
  4. 4.
    Conter V, Bartram CR, Valsecchi MG, Schrauder A, Panzer-Grumayer R, Moricke A, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood. 2010;115(16):3206–14. (Epub 2010/02/16).PubMedCrossRefGoogle Scholar
  5. 5.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.PubMedCrossRefGoogle Scholar
  6. 6.
    Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(14):1663–9. (Epub 2012/03/14).PubMedCrossRefGoogle Scholar
  7. 7.
    Creutzig U, Zimmermann M, Ritter J, Reinhardt D, Hermann J, Henze G, et al. Treatment strategies and long-term results in paediatric patients treated in four consecutive AML-BFM trials. Leukemia. 2005;19(12):2030–42. (Epub 2005/11/24).PubMedCrossRefGoogle Scholar
  8. 8.
    Gibson BE, Wheatley K, Hann IM, Stevens RF, Webb D, Hills RK, et al. Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. Leukemia. 2005;19(12):2130–8. (Epub 2005/11/24).PubMedCrossRefGoogle Scholar
  9. 9.
    Lie SO, Abrahamsson J, Clausen N, Forestier E, Hasle H, Hovi L, et al. Long-term results in children with AML: NOPHO-AML Study Group-report of three consecutive trials. Leukemia. 2005;19(12):2090–100. (Epub 2005/11/24).PubMedCrossRefGoogle Scholar
  10. 10.
    Perel Y, Auvrignon A, Leblanc T, Michel G, Reguerre Y, Vannier JP, et al. Treatment of childhood acute myeloblastic leukemia: dose intensification improves outcome and maintenance therapy is of no benefit—multicenter studies of the French LAME (Leucemie Aigue Myeloblastique Enfant) Cooperative Group. Leukemia. 2005;19(12):2082–9. (Epub 2005/08/27).PubMedCrossRefGoogle Scholar
  11. 11.
    Abshire TC, Pollock BH, Billett AL, Bradley P, Buchanan GR. Weekly polyethylene glycol conjugated L-asparaginase compared with biweekly dosing produces superior induction remission rates in childhood relapsed acute lymphoblastic leukemia: a Pediatric Oncology Group Study. Blood. 2000;96(5):1709–15. (Epub 2000/08/29).PubMedGoogle Scholar
  12. 12.
    Ko RH, Ji L, Barnette P, Bostrom B, Hutchinson R, Raetz E, et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol. 2010;28(4):648–54. (Epub 2009/10/21).PubMedCrossRefGoogle Scholar
  13. 13.
    Tallen G, Ratei R, Mann G, Kaspers G, Niggli F, Karachunsky A, et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol. 2010;28(14):2339–47. (Epub 2010/04/14).PubMedCrossRefGoogle Scholar
  14. 14.
    Reismuller B, Attarbaschi A, Peters C, Dworzak MN, Potschger U, Urban C, et al. Long-term outcome of initially homogenously treated and relapsed childhood acute lymphoblastic leukaemia in Austria—a population-based report of the Austrian Berlin-Frankfurt-Munster (BFM) Study Group. Br J Haematol. 2009;144(4):559–70. (Epub 2008/12/17).PubMedCrossRefGoogle Scholar
  15. 15.
    Raetz EA, Borowitz MJ, Devidas M, Linda SB, Hunger SP, Winick NJ, et al. Reinduction platform for children with first marrow relapse of acute lymphoblastic leukemia: a Children’s Oncology Group Study [corrected]. J Clin Oncol. 2008;26(24):3971–8. (Epub 2008/08/20).PubMedCrossRefGoogle Scholar
  16. 16.
    Roy A, Cargill A, Love S, Moorman AV, Stoneham S, Lim A, et al. Outcome after first relapse in childhood acute lymphoblastic leukaemia—lessons from the United Kingdom R2 trial. Br J Haematol. 2005;130(1):67–75. (Epub 2005/06/29).PubMedCrossRefGoogle Scholar
  17. 17.
    Freyer DR, Devidas M, La M, Carroll WL, Gaynon PS, Hunger SP, et al. Postrelapse survival in childhood acute lymphoblastic leukemia is independent of initial treatment intensity: a report from the Children’s Oncology Group. Blood. 2011;117(11):3010–5. (Epub 2011/01/05).PubMedCrossRefGoogle Scholar
  18. 18.
    Parker C, Waters R, Leighton C, Hancock J, Sutton R, Moorman AV, et al. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet. 2010;376(9757):2009–17. (Epub 2010/12/07).PubMedCrossRefGoogle Scholar
  19. 19.
    Nguyen K, Devidas M, Cheng SC, La M, Raetz EA, Carroll WL, et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children’s Oncology Group study. Leukemia. 2008;22(12):2142–50. (Epub 2008/09/27).PubMedCrossRefGoogle Scholar
  20. 20.
    Gorman MF, Ji L, Ko RH, Barnette P, Bostrom B, Hutchinson R, et al. Outcome for children treated for relapsed or refractory acute myelogenous leukemia (rAML): a Therapeutic Advances in Childhood Leukemia (TACL) Consortium study. Pediatr Blood Cancer. 2010;55(3):421–9. (Epub 2010/07/27).PubMedCrossRefGoogle Scholar
  21. 21.
    Wells RJ, Adams MT, Alonzo TA, Arceci RJ, Buckley J, Buxton AB, et al. Mitoxantrone and cytarabine induction, high-dose cytarabine, and etoposide intensification for pediatric patients with relapsed or refractory acute myeloid leukemia: Children’s Cancer Group Study 2951. J Clin Oncol. 2003;21(15):2940–7. (Epub 2003/07/30).PubMedCrossRefGoogle Scholar
  22. 22.
    Abrahamsson J, Clausen N, Gustafsson G, Hovi L, Jonmundsson G, Zeller B, et al. Improved outcome after relapse in children with acute myeloid leukaemia. Br J Haematol. 2007;136(2):229–36. (Epub 2007/02/06).PubMedCrossRefGoogle Scholar
  23. 23.
    Sander A, Zimmermann M, Dworzak M, Fleischhack G, von Neuhoff C, Reinhardt D, et al. Consequent and intensified relapse therapy improved survival in pediatric AML: results of relapse treatment in 379 patients of three consecutive AML-BFM trials. Leukemia. 2010;24(8):1422–8. (Epub 2010/06/11).PubMedCrossRefGoogle Scholar
  24. 24.
    Hogan LE, Meyer JA, Yang J, Wang J, Wong N, Yang W, et al. Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies. Blood. 2011;118(19):5218–26. (Epub 2011/09/17).PubMedCrossRefGoogle Scholar
  25. 25.
    Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA, et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science. 2008;322(5906):1377–80. (Epub 2008/11/29).PubMedCrossRefGoogle Scholar
  26. 26.
    Cheson BD, Leonard JP. Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N Engl J Med. 2008;359(6):613–26. (Epub 2008/08/09).PubMedCrossRefGoogle Scholar
  27. 27.
    Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42. (Epub 2002/01/25).PubMedCrossRefGoogle Scholar
  28. 28.
    Pfreundschuh M, Trumper L, Osterborg A, Pettengell R, Trneny M, Imrie K, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7(5):379–91. (Epub 2006/05/02).PubMedCrossRefGoogle Scholar
  29. 29.
    Maloney DG. Mechanism of action of rituximab. Anticancer Drugs. 2001;12(Suppl 2):S1–4. (Epub 2001/08/18).PubMedGoogle Scholar
  30. 30.
    Thomas DA, Faderl S, O’Brien S, Bueso-Ramos C, Cortes J, Garcia-Manero G, et al. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer. 2006;106(7):1569–80. (Epub 2006/02/28).PubMedCrossRefGoogle Scholar
  31. 31.
    Meinhardt A, Burkhardt B, Zimmermann M, Borkhardt A, Kontny U, Klingebiel T, et al. Phase II window study on rituximab in newly diagnosed pediatric mature B-cell non-Hodgkin’s lymphoma and Burkitt leukemia. (J Clin Oncol). 2010;28(19):3115–21. (Epub 2010/06/03).CrossRefGoogle Scholar
  32. 32.
    Cairo MS, Lynch J, Harrison L, van de Ven C, Gross T, Shiramizu B, et al. Safety, efficacy and rituximab levels following chemoimmunotherapy (rituximab + FAB chemotherapy) in children and adolescents with mature B-cell non-hodgkin lymphoma (B-NHL): a children’s oncology group report. ASH Annual Meeting Abstracts. 2008;112(11):838.Google Scholar
  33. 33.
    Dworzak MN, Schumich A, Printz D, Potschger U, Husak Z, Attarbaschi A, et al. CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy. Blood. 2008;112(10):3982–8. (Epub 2008/09/11).PubMedCrossRefGoogle Scholar
  34. 34.
    Jeha S, Behm F, Pei D, Sandlund JT, Ribeiro RC, Razzouk BI, et al. Prognostic significance of CD20 expression in childhood B-cell precursor acute lymphoblastic leukemia. Blood. 2006;108(10):3302–4. (Epub 2006/08/10).PubMedCrossRefGoogle Scholar
  35. 35.
    Watt TC, Park S, Cooper T. CD20 up-regulation in induction therapy for childhood b lymphoblastic leukemia. ASH Annual Meeting Abstracts. 2010;116(21):2124.Google Scholar
  36. 36.
    Thomas DA, O’Brien S, Jorgensen JL, Cortes J, Faderl S, Garcia-Manero G, et al. Prognostic significance of CD20 expression in adults with de novo precursor B-lineage acute lymphoblastic leukemia. Blood. 2009;113(25):6330–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Borowitz MJ, Shuster J, Carroll AJ, Nash M, Look AT, Camitta B, et al. Prognostic significance of fluorescence intensity of surface marker expression in childhood b-precursor acute lymphoblastic leukemia. A Pediatric Oncology Group Study. Blood. 1997;89(11):3960–6.PubMedGoogle Scholar
  38. 38.
    Thomas DA, O’Brien S, Faderl S, Garcia-Manero G, Ferrajoli A, Wierda W, et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol. 2010;28(24):3880–9. (Epub 2010/07/28).PubMedCrossRefGoogle Scholar
  39. 39.
    Claviez A, Eckert C, Seeger K, Schrauder A, Schrappe M, Henze G, et al. Rituximab plus chemotherapy in children with relapsed or refractory CD20-positive B-cell precursor acute lymphoblastic leukemia. Haematologica. 2006;91(2):272–3. (Epub 2006/02/08).PubMedGoogle Scholar
  40. 40.
    Kraal K, Schalij-Delfos N, van Buchem M, Egeler M, Ball L. Optic nerve relapse in a child with common acute lymphoblastic leukemia, treated with systemic anti-CD-20 (rituximab). Haematologica. 2005;90 Suppl:ECR24. (Epub 2005/11/04).Google Scholar
  41. 41.
    de Vries MJ, Veerman AJ, Zwaan CM. Rituximab in three children with relapsed/refractory B-cell acute lymphoblastic leukaemia/Burkitt non-Hodgkin’s lymphoma. Br J Haematol. 2004;125(3):414–5. (Epub 2004/04/17).PubMedCrossRefGoogle Scholar
  42. 42.
    Morris ES, Vora A. Remission induction with single agent Rituximab in a child with multiply relapsed precursor-B ALL. Br J Haematol. 2007;139(2):344–5. (Epub 2007/09/28).PubMedCrossRefGoogle Scholar
  43. 43.
    Corbacioglu S, Eber S, Gungor T, Hummerjohann J, Niggli F. Induction of long-term remission of a relapsed childhood B-acute lymphoblastic leukemia with rituximab chimeric anti-CD20 monoclonal antibody and autologous stem cell transplantation. J Pediatr Hematol Oncol. 2003;25(4):327–9. (Epub 2003/04/08).PubMedCrossRefGoogle Scholar
  44. 44.
    Raetz EA, Cairo MS, Borowitz MJ, Lu X, Devidas M, Reid JM, et al. Reinduction chemoimmunotherapy with epratuzumab in relapsed acute lymphoblastic leukemia (ALL) in children, adolescents and young adults: results from Children’s Oncology Group (COG) Study ADVL04P2. ASH Annual Meeting Abstracts. 2011;118(21):573.Google Scholar
  45. 45.
    Frampton JE, Wagstaff AJ. Alemtuzumab. Drugs. 2003;63(12):1229–43.PubMedCrossRefGoogle Scholar
  46. 46.
    Rodig SJ, Abramson JS, Pinkus GS, Treon SP, Dorfman DM, Dong HY, et al. Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H). Clin Cancer Res. 2006;12(23):7174–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Tibes R, Keating MJ, Ferrajoli A, Wierda W, Ravandi F, Garcia-Manero G, et al. Activity of alemtuzumab in patients with CD52-positive acute leukemia. Cancer. 2006;106(12):2645–51.PubMedCrossRefGoogle Scholar
  48. 48.
    Angiolillo AL, Yu AL, Reaman G, Ingle AM, Secola R, Adamson PC. A phase II study of Campath-1H in children with relapsed or refractory acute lymphoblastic leukemia: a Children’s Oncology Group report. Pediatr Blood Cancer. 2009;53(6):978–83. (Epub 2009/07/29).PubMedCrossRefGoogle Scholar
  49. 49.
    Golay J, Cortiana C, Manganini M, Cazzaniga G, Salvi A, Spinelli O, et al. The sensitivity of acute lymphoblastic leukemia cells carrying the t(12;21) translocation to campath-1H-mediated cell lysis. Haematologica. 2006;91(3):322–30. (Epub 2006/03/15).PubMedGoogle Scholar
  50. 50.
    Pollard JA, Alonzo TA, Loken M, Gerbing RB, Ho PA, Bernstein ID, et al. Correlation of CD33 expression level with disease characteristics and response to gemtuzumab ozogamicin containing chemotherapy in childhood AML. Blood. 2012;119(16):3705–11. doi:10.1182/blood-2011-12-398370. (Epub 2012 Feb 29).PubMedCrossRefGoogle Scholar
  51. 51.
    Aplenc R, Alonzo TA, Gerbing RB, Lange BJ, Hurwitz CA, Wells RJ, et al. Safety and efficacy of gemtuzumab ozogamicin in combination with chemotherapy for pediatric acute myeloid leukemia: a report from the Children’s Oncology Group. J Clin Oncol. 2008;26(14):2390–3295. (Epub 2008/05/10).PubMedCrossRefGoogle Scholar
  52. 52.
    Cooper TM, Franklin J, Gerbing RB, Alonzo TA, Hurwitz C, Raimondi SC, et al. AAML03P1, a pilot study of the safety of gemtuzumab ozogamicin in combination with chemotherapy for newly diagnosed childhood acute myeloid leukemia: a report from the Children’s Oncology Group. Cancer. 2012;118(3):761–9. (Epub 2011/07/19).PubMedCrossRefGoogle Scholar
  53. 53.
    Mejstrikova E, Kalina T, Trka J, Stary J, Hrusak O. Correlation of CD33 with poorer prognosis in childhood ALL implicates a potential of anti-CD33 frontline therapy. Leukemia. 2005;19(6):1092–4. (Epub 2005/04/15).PubMedCrossRefGoogle Scholar
  54. 54.
    Pui CH, Rubnitz JE, Hancock ML, Downing JR, Raimondi SC, Rivera GK, et al. Reappraisal of the clinical and biologic significance of myeloid-associated antigen expression in childhood acute lymphoblastic leukemia. J Clin Oncol. 1998;16(12):3768–73. (Epub 1998/12/16).PubMedGoogle Scholar
  55. 55.
    Cotter M, Rooney S, O’Marcaigh A, Smith OP. Successful use of gemtuzumab ozogamicin in a child with relapsed CD33-positive acute lymphoblastic leukaemia. Br J Haematol. 2003;122(4):687–8. (Epub 2003/08/06).PubMedCrossRefGoogle Scholar
  56. 56.
    Zwaan CM, Reinhardt D, Jurgens H, Huismans DR, Hahlen K, Smith OP, et al. Gemtuzumab ozogamicin in pediatric CD33-positive acute lymphoblastic leukemia: first clinical experiences and relation with cellular sensitivity to single agent calicheamicin. Leukemia. 2003;17(2):468–70. (Epub 2003/02/20).PubMedCrossRefGoogle Scholar
  57. 57.
    Petersdorf S, Kopecky K, Stuart RK, Larson RA, Nevill TJ, Stenke L, et al. Preliminary Results of Southwest Oncology Group Study S0106: An international intergroup phase 3 randomized trial comparing the addition of gemtuzumab ozogamicin to standard induction therapy versus standard induction therapy followed by a second randomization to post-consolidation gemtuzumab ozogamicin versus no additional therapy for previously untreated acute myeloid leukemia. ASH Annual Meeting Abstracts. 2009;114(22):790.Google Scholar
  58. 58.
    Burnett AK, Hills RK, Milligan D, Kjeldsen L, Kell J, Russell NH, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol. 2011;29(4):369–77. (Epub 2010/12/22).PubMedCrossRefGoogle Scholar
  59. 59.
    Castaigne S, Pautas C, Terré C, Raffoux E, Bordessoule D, Bastie J-N, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012;119(16):3705–11. doi:10.1182/blood-2011-12-398370. (Epub 2012 Feb 29).Google Scholar
  60. 60.
    de Vries JF, Zwaan CM, De Bie M, Voerman JS, den Boer ML, van Dongen JJ, et al. The novel calicheamicin-conjugated CD22 antibody inotuzumab ozogamicin (CMC-544) effectively kills primary pediatric acute lymphoblastic leukemia cells. Leukemia. 2011 (Epub 2011/08/27).Google Scholar
  61. 61.
    Kantarjian H, Thomas D, Jorgensen J, Jabbour E, Kebriaei P, Rytting M, et al. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol. 2012;13(4):403–11. (Epub 2012/02/24).PubMedCrossRefGoogle Scholar
  62. 62.
    Mussai F, Campana D, Bhojwani D, Stetler-Stevenson M, Steinberg SM, Wayne AS, et al. Cytotoxicity of the anti-CD22 immunotoxin HA22 (CAT-8015) against paediatric acute lymphoblastic leukaemia. Br J Haematol. 2010;150(3):352–8. (Epub 2010/06/10).PubMedCrossRefGoogle Scholar
  63. 63.
    Wayne AS, Bhojwani D, Silverman LB, Richards K, Stetler-Stevenson M, Shah NN, et al. A novel anti-CD22 immunotoxin, moxetumomab pasudotox: phase I study in pediatric acute lymphoblastic leukemia (ALL). ASH Annual Meeting Abstracts. 2011;118(21):248.Google Scholar
  64. 64.
    Blanc V, Bousseau A, Caron A, Carrez C, Lutz RJ, Lambert JM. SAR3419: an anti-CD19-maytansinoid immunoconjugate for the treatment of B-cell malignancies. Clin Cancer Res. 2011;17(20):6448–58. (Epub 2011/10/18).PubMedCrossRefGoogle Scholar
  65. 65.
    Younes A, Kim S, Romaguera J, Copeland A, Farial Sde C, Kwak LW, et al. Phase I multidose-escalation study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered by intravenous infusion every 3 weeks to patients with relapsed/refractory B-cell lymphoma. J Clin Oncol. 2012;30(22):2776–82.Google Scholar
  66. 66.
    Topp MS, Kufer P, Gokbuget N, Goebeler M, Klinger M, Neumann S, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29(18):2493–8. (Epub 2011/05/18).PubMedCrossRefGoogle Scholar
  67. 67.
    Handgretinger R, Zugmaier G, Henze G, Kreyenberg H, Lang P, von Stackelberg A. Complete remission after blinatumomab-induced donor T-cell activation in three pediatric patients with post-transplant relapsed acute lymphoblastic leukemia. Leukemia. 2011;25(1):181–4. (Epub 2010/10/15).PubMedCrossRefGoogle Scholar
  68. 68.
    Bonate PL, Arthaud L, Cantrell WR Jr, Stephenson K, Secrist JA 3rd, Weitman S. Discovery and development of clofarabine: a nucleoside analogue for treating cancer. Nat Rev Drug Discov. 2006;5(10):855–63. (Epub 2006/10/04).PubMedCrossRefGoogle Scholar
  69. 69.
    Curran MP, Perry CM. Clofarabine: in pediatric patients with acute lymphoblastic leukemia. Paediatr Drugs. 2005;7(4):259–64. (discussion 65-6, Epub 2005/08/25).Google Scholar
  70. 70.
    Jeha S, Gandhi V, Chan KW, McDonald L, Ramirez I, Madden R, et al. Clofarabine, a novel nucleoside analog, is active in pediatric patients with advanced leukemia. Blood. 2004;103(3):784–9. (Epub 2003/10/11).PubMedCrossRefGoogle Scholar
  71. 71.
    Jeha S, Gaynon PS, Razzouk BI, Franklin J, Kadota R, Shen V, et al. Phase II study of clofarabine in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. J Clin Oncol. 2006;24(12):1917–23. (Epub 2006/04/20).PubMedCrossRefGoogle Scholar
  72. 72.
    Jeha S, Razzouk B, Rytting M, Rheingold S, Albano E, Kadota R, et al. Phase II study of clofarabine in pediatric patients with refractory or relapsed acute myeloid leukemia. J Clin Oncol. 2009;27(26):4392–7. (Epub 2009/08/05).PubMedCrossRefGoogle Scholar
  73. 73.
    Hijiya N, Gaynon P, Barry E, Silverman L, Thomson B, Chu R, et al. A multi-center phase I study of clofarabine, etoposide and cyclophosphamide in combination in pediatric patients with refractory or relapsed acute leukemia. Leukemia. 2009;23(12):2259–64. (Epub 2009/09/11).PubMedCrossRefGoogle Scholar
  74. 74.
    Hijiya N, Thomson B, Isakoff MS, Silverman LB, Steinherz PG, Borowitz MJ, et al. Phase 2 trial of clofarabine in combination with etoposide and cyclophosphamide in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. Blood. 2011;118(23):6043–9. (Epub 2011/10/05).PubMedCrossRefGoogle Scholar
  75. 75.
    Locatelli F, Testi AM, Bernardo ME, Rizzari C, Bertaina A, Merli P, et al. Clofarabine, cyclophosphamide and etoposide as single-course re-induction therapy for children with refractory/multiple relapsed acute lymphoblastic leukaemia. Br J Haematol. 2009;147(3):371–8. (Epub 2009/09/15).PubMedCrossRefGoogle Scholar
  76. 76.
    Miano M, Pistorio A, Putti MC, Dufour C, Messina C, Barisone E, et al. Clofarabine, cyclophosphamide and etoposide for the treatment of relapsed or resistant acute leukemia in pediatric patients. Leuk Lymphoma. 2012. (Epub 2012/02/07).Google Scholar
  77. 77.
    O’Connor D, Sibson K, Caswell M, Connor P, Cummins M, Mitchell C, et al. Early UK experience in the use of clofarabine in the treatment of relapsed and refractory paediatric acute lymphoblastic leukaemia. Br J Haematol. 2011;154(4):482–5. (Epub 2011/06/22).PubMedCrossRefGoogle Scholar
  78. 78.
    Steinherz PG, Shukla N, Kobos R, Steinherz L. Remission re-induction chemotherapy with clofarabine, topotecan, thiotepa, and vinorelbine for patients with relapsed or refractory leukemia. Pediatr Blood Cancer. 2010;54(5):687–93. (Epub 2010/03/06).PubMedCrossRefGoogle Scholar
  79. 79.
    Cooper T, Ayres M, Nowak B, Gandhi V. Biochemical modulation of cytarabine triphosphate by clofarabine. Cancer Chemother Pharmacol. 2005;55(4):361–8. (Epub 2005/02/22).PubMedCrossRefGoogle Scholar
  80. 80.
    Cooper T, Alonzo TA, Gerbing RB, Perentesis J, Whitlock JA, Taub JW, et al. AAML0523: a report from the children’s oncology group on the efficacy of clofarabine in combination with cytarabine in pediatric patients with relapsed acute myeloid leukemia. ASH Annual Meeting Abstracts. 2012;120(21):3604.Google Scholar
  81. 81.
    Sanford M, Lyseng-Williamson KA. Nelarabine. Drugs. 2008;68(4):439–47. (Epub 2008/03/06).PubMedCrossRefGoogle Scholar
  82. 82.
    Rodriguez CO Jr, Stellrecht CM, Gandhi V. Mechanisms for T-cell selective cytotoxicity of arabinosylguanine. Blood. 2003;102(5):1842–8. (Epub 2003/05/17).PubMedCrossRefGoogle Scholar
  83. 83.
    Gandhi V, Plunkett W, Rodriguez CO Jr, Nowak BJ, Du M, Ayres M, et al. Compound GW506U78 in refractory hematologic malignancies: relationship between cellular pharmacokinetics and clinical response. J Clin Oncol. 1998;16(11):3607–15. (Epub 1998/11/17).PubMedGoogle Scholar
  84. 84.
    Cohen MH, Johnson JR, Justice R, Pazdur R. FDA drug approval summary: nelarabine (Arranon) for the treatment of T-cell lymphoblastic leukemia/lymphoma. Oncologist. 2008;13(6):709–14. (Epub 2008/07/01).PubMedCrossRefGoogle Scholar
  85. 85.
    Kurtzberg J, Ernst TJ, Keating MJ, Gandhi V, Hodge JP, Kisor DF, et al. Phase I study of 506U78 administered on a consecutive 5-day schedule in children and adults with refractory hematologic malignancies. J Clin Oncol. 2005;23(15):3396–403. (Epub 2005/05/24).PubMedCrossRefGoogle Scholar
  86. 86.
    Berg SL, Blaney SM, Devidas M, Lampkin TA, Murgo A, Bernstein M, et al. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children’s Oncology Group. J Clin Oncol. 2005;23(15):3376–82. (Epub 2005/05/24).PubMedCrossRefGoogle Scholar
  87. 87.
    Commander LA, Seif AE, Insogna IG, Rheingold SR. Salvage therapy with nelarabine, etoposide, and cyclophosphamide in relapsed/refractory paediatric T-cell lymphoblastic leukaemia and lymphoma. Br J Haematol. 2010;150(3):345–51. (Epub 2010/06/10).PubMedCrossRefGoogle Scholar
  88. 88.
    Dunsmore KP, Devidas M, Linda SB, Borowitz MJ, Winick N, Hunger SP, et al. Pilot study of nelarabine in combination with intensive chemotherapy in high-risk T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(22):2753–9. (Epub 2012/06/27).PubMedCrossRefGoogle Scholar
  89. 89.
    Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children’s Oncology Group Study. J Clin Oncol. 2009;27(31):5175–81. (Epub 2009/10/07).PubMedCrossRefGoogle Scholar
  90. 90.
    Brave M, Goodman V, Kaminskas E, Farrell A, Timmer W, Pope S, et al. Sprycel for chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant to or intolerant of imatinib mesylate. Clin Cancer Res. 2008;14(2):352–9. (Epub 2008/01/29).PubMedCrossRefGoogle Scholar
  91. 91.
    O’Hare T, Walters DK, Stoffregen EP, Jia T, Manley PW, Mestan J, et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 2005;65(11):4500–5. (Epub 2005/06/03).PubMedCrossRefGoogle Scholar
  92. 92.
    Porkka K, Koskenvesa P, Lundan T, Rimpilainen J, Mustjoki S, Smykla R, et al. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood. 2008;112(4):1005–12. (Epub 2008/05/15).PubMedCrossRefGoogle Scholar
  93. 93.
    Ottmann O, Dombret H, Martinelli G, Simonsson B, Guilhot F, Larson RA, et al. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood. 2007;110(7):2309–15. (Epub 2007/05/15).PubMedCrossRefGoogle Scholar
  94. 94.
    Foa R, Vitale A, Vignetti M, Meloni G, Guarini A, De Propris MS, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011;118(25):6521–8. (Epub 2011/09/21).PubMedCrossRefGoogle Scholar
  95. 95.
    O’Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, et al. AP24534, a Pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16(5):401–12.PubMedCrossRefGoogle Scholar
  96. 96.
    Kondo M, Horibe K, Takahashi Y, Matsumoto K, Fukuda M, Inaba J, et al. Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol. 1999;33(6):525–9. (Epub 1999/11/26).PubMedCrossRefGoogle Scholar
  97. 97.
    Brown P, Small D. FLT3 inhibitors: a paradigm for the development of targeted therapeutics for paediatric cancer. Eur J Cancer. 2004;40(5):707–21. (discussion 22-4, Epub 2004/03/11).Google Scholar
  98. 98.
    Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood. 2001;97(1):89–94. (Epub 2001/01/03).PubMedCrossRefGoogle Scholar
  99. 99.
    Meshinchi S, Alonzo TA, Stirewalt DL, Zwaan M, Zimmerman M, Reinhardt D, et al. Clinical implications of FLT3 mutations in pediatric AML. Blood. 2006;108(12):3654–61. (Epub 2006/08/17).PubMedCrossRefGoogle Scholar
  100. 100.
    Staffas A, Kanduri M, Hovland R, Rosenquist R, Ommen HB, Abrahamsson J, et al. Presence of FLT3-ITD and high BAALC expression are independent prognostic markers in childhood acute myeloid leukemia. Blood. 2011;118(22):5905–13. (Epub 2011/10/05).PubMedCrossRefGoogle Scholar
  101. 101.
    Leow S, Kham SK, Ariffin H, Quah TC, Yeoh AE. FLT3 mutation and expression did not adversely affect clinical outcome of childhood acute leukaemia: a study of 531 Southeast Asian children by the Ma-Spore study group. Hematol Oncol. 2011;29(4):211–9. (Epub 2011/03/10).PubMedCrossRefGoogle Scholar
  102. 102.
    Kutny MA, Moser BK, Laumann K, Feusner JH, Gamis A, Gregory J, et al. FLT3 mutation status is a predictor of early death in pediatric acute promyelocytic leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2012;59(4):662–7. doi:10.1002/pbc.24122. (Epub 2012 Feb 29).PubMedCrossRefGoogle Scholar
  103. 103.
    Zhang W, Konopleva M, Shi YX, McQueen T, Harris D, Ling X, et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst. 2008;100(3):184–98. (Epub 2008/01/31).PubMedCrossRefGoogle Scholar
  104. 104.
    Safaian NN, Czibere A, Bruns I, Fenk R, Reinecke P, Dienst A, et al. Sorafenib (Nexavar) induces molecular remission and regression of extramedullary disease in a patient with FLT3-ITD+ acute myeloid leukemia. Leuk Res. 2009;33(2):348–50. (Epub 2008/06/25).PubMedCrossRefGoogle Scholar
  105. 105.
    Metzelder S, Wang Y, Wollmer E, Wanzel M, Teichler S, Chaturvedi A, et al. Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood. 2009;113(26):6567–71. (Epub 2009/04/25).PubMedCrossRefGoogle Scholar
  106. 106.
    Lee SH, Paietta E, Racevskis J, Wiernik PH. Complete resolution of leukemia cutis with sorafenib in an acute myeloid leukemia patient with FLT3-ITD mutation. Am J Hematol. 2009;84(10):701–2. (Epub 2009/08/29).PubMedCrossRefGoogle Scholar
  107. 107.
    Knapper S, Burnett AK, Littlewood T, Kell WJ, Agrawal S, Chopra R, et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood. 2006;108(10):3262–70. (Epub 2006/07/22).PubMedCrossRefGoogle Scholar
  108. 108.
    Ravandi F, Cortes JE, Jones D, Faderl S, Garcia-Manero G, Konopleva MY, et al. Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol. 2010;28(11):1856–62. (Epub 2010/03/10).PubMedCrossRefGoogle Scholar
  109. 109.
    Inaba H, Rubnitz JE, Coustan-Smith E, Li L, Furmanski BD, Mascara GP, et al. Phase I pharmacokinetic and pharmacodynamic study of the multikinase inhibitor sorafenib in combination with clofarabine and cytarabine in pediatric relapsed/refractory leukemia. J Clin Oncol. 2011;29(24):3293–300. (Epub 2011/07/20).PubMedCrossRefGoogle Scholar
  110. 110.
    Levis M, Allebach J, Tse KF, Zheng R, Baldwin BR, Smith BD, et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood. 2002;99(11):3885–91. (Epub 2002/05/16).PubMedCrossRefGoogle Scholar
  111. 111.
    Brown P, Levis M, Shurtleff S, Campana D, Downing J, Small D. FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood. 2005;105(2):812–20. (Epub 2004/09/18).PubMedCrossRefGoogle Scholar
  112. 112.
    Brown P, Meshinchi S, Levis M, Alonzo TA, Gerbing R, Lange B, et al. Pediatric AML primary samples with FLT3/ITD mutations are preferentially killed by FLT3 inhibition. Blood. 2004;104(6):1841–9. (Epub 2004/05/29).PubMedCrossRefGoogle Scholar
  113. 113.
    Levis M, Ravandi F, Wang ES, Baer MR, Perl A, Coutre S, et al. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood. 2011;117(12):3294–301. (Epub 2011/01/29).PubMedCrossRefGoogle Scholar
  114. 114.
    Carow CE, Levenstein M, Kaufmann SH, Chen J, Amin S, Rockwell P, et al. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood. 1996;87(3):1089–96. (Epub 1996/02/01).PubMedGoogle Scholar
  115. 115.
    Birg F, Courcoul M, Rosnet O, Bardin F, Pebusque M, Marchetto S, et al. Expression of the FMS/KIT-like gene FLT3 in human acute leukemias of the myeloid and lymphoid lineages. Blood. 1992;80(10):2584–93.PubMedGoogle Scholar
  116. 116.
    Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30(1):41–7. (Epub 2001/12/04).PubMedCrossRefGoogle Scholar
  117. 117.
    Armstrong SA, Kung AL, Mabon ME, Silverman LB, Stam RW, Den Boer ML, et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell. 2003;3(2):173–83. (Epub 2003/03/07).PubMedCrossRefGoogle Scholar
  118. 118.
    Taketani T, Taki T, Sugita K, Furuichi Y, Ishii E, Hanada R, et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood. 2004;103(3):1085–8. (Epub 2003/09/25).PubMedCrossRefGoogle Scholar
  119. 119.
    Brown P, Levis M, McIntyre E, Griesemer M, Small D. Combinations of the FLT3 inhibitor CEP-701 and chemotherapy synergistically kill infant and childhood MLL-rearranged ALL cells in a sequence-dependent manner. Leukemia. 2006;20(8):1368–76. (Epub 2006/06/09).PubMedCrossRefGoogle Scholar
  120. 120.
    Levis M, Pham R, Smith BD, Small D. In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood. 2004;104(4):1145–50. (Epub 2004/05/06).PubMedCrossRefGoogle Scholar
  121. 121.
    Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B, et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 2009;114(14):2984–92.PubMedCrossRefGoogle Scholar
  122. 122.
    Linger RMA, DeRyckere D, Brandão L, Sawczyn KK, Jacobsen KM, Liang X, et al. Mer receptor tyrosine kinase is a novel therapeutic target in pediatric B-cell acute lymphoblastic leukemia. Blood. 2009;114(13):2678–87.PubMedCrossRefGoogle Scholar
  123. 123.
    Graham DK, Salzberg DB, Kurtzberg J, Sather S, Matsushima GK, Keating AK, et al. Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia. Clin Cancer Res. 2006;12(9):2662–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Verma A, Warner SL, Vankayalapati H, Bearss DJ, Sharma S. Targeting Axl and Mer kinases in cancer. Mol Cancer Ther. 2011;10(10):1763–73.PubMedCrossRefGoogle Scholar
  125. 125.
    Christoph S, DeRyckere D, Sather S, Wang X, Kireev D, Janzen W, et al. UNC569 as novel small molecule mer receptor tyrosine kinase inhibitor for treatment of ALL. ASH Annual Meeting Abstracts. 2011;118(21):2589.Google Scholar
  126. 126.
    Lee-Sherick AB, Eisenman KM, Sather S, DeRyckere D, Schlegel J, Graham DK. Mer receptor tyrosine kinase is over-expressed in and contributes to oncogenesis in acute myeloid leukemia. ASH Annual Meeting Abstracts. 2011;118(21):1390.Google Scholar
  127. 127.
    Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med. 2010;363(12):1117–27. (Epub 2010/09/17).PubMedCrossRefGoogle Scholar
  128. 128.
    Mullighan CG, Zhang J, Harvey RC, Collins-Underwood JR, Schulman BA, Phillips LA, et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2009;106(23):9414–8. (Epub 2009/05/28).PubMedCrossRefGoogle Scholar
  129. 129.
    Mullighan CG, Collins-Underwood JR, Phillips LA, Loudin MG, Liu W, Zhang J, et al. Rearrangement of CRLF2 in B-progenitor- and down syndrome-associated acute lymphoblastic leukemia. Nat Genet. 2009;41(11):1243–6. Epub 2009/10/20.PubMedCrossRefGoogle Scholar
  130. 130.
    Harvey RC, Mullighan CG, Chen IM, Wharton W, Mikhail FM, Carroll AJ, et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood. 2010;115(26):5312–21. (Epub 2010/02/09).PubMedCrossRefGoogle Scholar
  131. 131.
    Yoda A, Yoda Y, Chiaretti S, Bar-Natan M, Mani K, Rodig SJ, et al. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2010;107(1):252–7. (Epub 2009/12/19).PubMedCrossRefGoogle Scholar
  132. 132.
    Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–80. (Epub 2009/01/09).PubMedCrossRefGoogle Scholar
  133. 133.
    Zhang J, Mullighan CG, Harvey RC, Wu G, Chen X, Edmonson M, et al. Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood. 2011;118(11):3080–7. (Epub 2011/06/18).PubMedCrossRefGoogle Scholar
  134. 134.
    Gaikwad A, Rye CL, Devidas M, Heerema NA, Carroll AJ, Izraeli S, et al. Prevalence and clinical correlates of JAK2 mutations in Down syndrome acute lymphoblastic leukaemia. Br J Haematol. 2009;144(6):930–2. (Epub 2009/01/06).PubMedCrossRefGoogle Scholar
  135. 135.
    Kearney L, Gonzalez De Castro D, Yeung J, Procter J, Horsley SW, Eguchi-Ishimae M, et al. Specific JAK2 mutation (JAK2R683) and multiple gene deletions in down syndrome acute lymphoblastic leukemia. Blood. 2009;113(3):646–48. (Epub 2008/10/18).Google Scholar
  136. 136.
    Buitenkamp TD, Pieters R, Gallimore NE, van der Veer A, Meijerink JP, Beverloo HB, et al. Outcome in children with Down’s syndrome and acute lymphoblastic leukemia: role of IKZF1 deletions and CRLF2 aberrations. Leukemia. 2012;26(10):2204–11. doi:10.1038/leu.2012.84. (Epub 2012 Mar 22).PubMedCrossRefGoogle Scholar
  137. 137.
    Aster JC, Pear WS, Blacklow SC. Notch signaling in leukemia. Annu Rev Pathol. 2008;3:587–613. (Epub 2007/11/28).PubMedCrossRefGoogle Scholar
  138. 138.
    Weng AP, Ferrando AA, Lee W, Morris JP 4th, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71. (Epub 2004/10/09).Google Scholar
  139. 139.
    Breit S, Stanulla M, Flohr T, Schrappe M, Ludwig WD, Tolle G, et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood. 2006;108(4):1151–7. Epub 2006/04/15.PubMedCrossRefGoogle Scholar
  140. 140.
    Park MJ, Taki T, Oda M, Watanabe T, Yumura-Yagi K, Kobayashi R, et al. FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma. Br J Haematol. 2009;145(2):198–206. (Epub 2009/02/28).PubMedCrossRefGoogle Scholar
  141. 141.
    Palomero T, Barnes KC, Real PJ. Glade Bender JL, Sulis ML, Murty VV, et al. CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to gamma-secretase inhibitors. Leukemia. 2006;20(7):1279–87. (Epub 2006/05/12).PubMedCrossRefGoogle Scholar
  142. 142.
    Tammam J, Ware C, Efferson C, O’Neil J, Rao S, Qu X, et al. Down-regulation of the Notch pathway mediated by a gamma-secretase inhibitor induces anti-tumour effects in mouse models of T-cell leukaemia. Br J Pharmacol. 2009;158(5):1183–95. (Epub 2009/09/25).PubMedCrossRefGoogle Scholar
  143. 143.
    Real PJ, Tosello V, Palomero T, Castillo M, Hernando E, de Stanchina E, et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med. 2009;15(1):50–8. (Epub 2008/12/23).PubMedCrossRefGoogle Scholar
  144. 144.
    De Keersmaecker K, Lahortiga I, Mentens N, Folens C, Van Neste L, Bekaert S, et al. In vitro validation of gamma-secretase inhibitors alone or in combination with other anti-cancer drugs for the treatment of T-cell acute lymphoblastic leukemia. Haematologica. 2008;93(4):533–42. (Epub 2008/03/07).PubMedCrossRefGoogle Scholar
  145. 145.
    Deangelo DJ, Stone RM, Silverman LB, Stock W, Attar EC, Fearen I, et al. A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias. ASCO Meeting Abstracts. 2006;24(18_suppl):6585.Google Scholar
  146. 146.
    Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 2007;13(10):1203–10. (Epub 2007/09/18).PubMedCrossRefGoogle Scholar
  147. 147.
    Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A, et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA. 2006;103(48):18261–6. (Epub 2006/11/23).PubMedCrossRefGoogle Scholar
  148. 148.
    Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006;20(15):2096–109. (Epub 2006/07/19).PubMedCrossRefGoogle Scholar
  149. 149.
    Vilimas T, Mascarenhas J, Palomero T, Mandal M, Buonamici S, Meng F, et al. Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med. 2007;13(1):70–7. (Epub 2006/12/19).PubMedCrossRefGoogle Scholar
  150. 150.
    Sharma VM, Calvo JA, Draheim KM, Cunningham LA, Hermance N, Beverly L, et al. Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol Cell Biol. 2006;26(21):8022–31.PubMedCrossRefGoogle Scholar
  151. 151.
    Espinosa L, Cathelin S, D’Altri T, Trimarchi T, Statnikov A, Guiu J, et al. The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia. Cancer Cell. 2010;18(3):268–81.PubMedCrossRefGoogle Scholar
  152. 152.
    Vu C, Fruman DA. Target of rapamycin signaling in leukemia and lymphoma. Clin Cancer Res. 2010;16(22):5374–80. (Epub 2010/09/10).PubMedCrossRefGoogle Scholar
  153. 153.
    Teachey DT, Grupp SA, Brown VI. Mammalian target of rapamycin inhibitors and their potential role in therapy in leukaemia and other haematological malignancies. Br J Haematol. 2009;145(5):569–80. (Epub 2009/04/07).PubMedCrossRefGoogle Scholar
  154. 154.
    Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004;4(5):335–48. (Epub 2004/05/04).PubMedCrossRefGoogle Scholar
  155. 155.
    Avellino R, Romano S, Parasole R, Bisogni R, Lamberti A, Poggi V, et al. Rapamycin stimulates apoptosis of childhood acute lymphoblastic leukemia cells. Blood. 2005;106(4):1400–6. (Epub 2005/05/10).PubMedCrossRefGoogle Scholar
  156. 156.
    Teachey DT, Sheen C, Hall J, Ryan T, Brown VI, Fish J, et al. mTOR inhibitors are synergistic with methotrexate: an effective combination to treat acute lymphoblastic leukemia. (Blood). 2008;112(5):2020–3. (Epub 2008/06/12).Google Scholar
  157. 157.
    Wei G, Twomey D, Lamb J, Schlis K, Agarwal J, Stam RW, et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell. 2006;10(4):331–42. (Epub 2006/10/03).PubMedCrossRefGoogle Scholar
  158. 158.
    Houghton PJ, Morton CL, Gorlick R, Lock RB, Carol H, Reynolds CP, et al. Stage 2 combination testing of rapamycin with cytotoxic agents by the Pediatric Preclinical Testing Program. Mol Cancer Ther. 2010;9(1):101–12. (Epub 2010/01/08).PubMedCrossRefGoogle Scholar
  159. 159.
    Crazzolara R, Cisterne A, Thien M, Hewson J, Baraz R, Bradstock KF, et al. Potentiating effects of RAD001 (Everolimus) on vincristine therapy in childhood acute lymphoblastic leukemia. Blood. 2009;113(14):3297–306. (Epub 2009/02/07).PubMedCrossRefGoogle Scholar
  160. 160.
    Recher C, Beyne-Rauzy O, Demur C, Chicanne G, Dos Santos C, Mas VM, et al. Antileukemic activity of rapamycin in acute myeloid leukemia. Blood. 2005;105(6):2527–34. (Epub 2004/11/20).PubMedCrossRefGoogle Scholar
  161. 161.
    Teachey DT, Obzut DA, Cooperman J, Fang J, Carroll M, Choi JK, et al. The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood. 2006;107(3):1149–55. (Epub 2005/10/01).PubMedCrossRefGoogle Scholar
  162. 162.
    Houghton PJ, Morton CL, Kolb EA, Gorlick R, Lock R, Carol H, et al. Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008;50(4):799–805. (Epub 2007/07/20).PubMedCrossRefGoogle Scholar
  163. 163.
    Rheingold SR, Sacks N, Chang YJ, Brown VI, Teachey DT, Lange BJ, et al. A phase I trial of sirolimus (Rapamycin) in pediatric patients with relapsed/refractory leukemia. ASH Annual Meeting Abstracts. 2007;110(11):2834.Google Scholar
  164. 164.
    Schlis KD, Stubbs M, DeAngelo DJ, Neuberg D, Dahlberg SE, Sallan SE, et al. A pilot trial of rapamycin with glucocorticoids in children and adults with relapsed ALL. ASH Annual Meeting Abstracts. 2010;116(21):3244.Google Scholar
  165. 165.
    Saunders P, Cisterne A, Weiss J, Bradstock KF, Bendall LJ. The mammalian target of rapamycin inhibitor RAD001 (everolimus) synergizes with chemotherapeutic agents, ionizing radiation and proteasome inhibitors in pre-B acute lymphocytic leukemia. Haematologica. 2011;96(1):69–77. (Epub 2010/10/19).PubMedCrossRefGoogle Scholar
  166. 166.
    Crazzolara R, Bradstock KF, Bendall LJ. RAD001 (Everolimus) induces autophagy in acute lymphoblastic leukemia. Autophagy. 2009;5(5):727–8. (Epub 2009/04/14).PubMedCrossRefGoogle Scholar
  167. 167.
    Keen N, Taylor S. Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer. 2004;4(12):927–36. (Epub 2004/12/02).PubMedCrossRefGoogle Scholar
  168. 168.
    Ochi T, Fujiwara H, Yasukawa M. Aurora-A kinase: a novel target both for cellular immunotherapy and molecular target therapy against human leukemia. Expert Opin Ther Targets. 2009;13(12):1399–410. (Epub 2009/10/14).PubMedCrossRefGoogle Scholar
  169. 169.
    Ikezoe T, Yang J, Nishioka C, Tasaka T, Taniguchi A, Kuwayama Y, et al. A novel treatment strategy targeting Aurora kinases in acute myelogenous leukemia. Mol Cancer Ther. 2007;6(6):1851–7.PubMedCrossRefGoogle Scholar
  170. 170.
    Gautschi O, Heighway J, Mack PC, Purnell PR, Lara PN Jr, Gandara DR. Aurora kinases as anticancer drug targets. Clin Cancer Res. 2008;14(6):1639–48. (Epub 2008/03/19).PubMedCrossRefGoogle Scholar
  171. 171.
    Yuan H, Wang Z, Zhang H, Roth M, Bhatia R, Chen WY. Overcoming CML-acquired resistance by specific inhibition of Aurora A kinase in the KCL-22 cell model. Carcinogenesis. 2011. (Epub 2011/11/26).Google Scholar
  172. 172.
    Giles FJ, Cortes J, Jones D, Bergstrom D, Kantarjian H, Freedman SJ. MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood. 2007;109(2):500–2. (Epub 2006/09/23).PubMedCrossRefGoogle Scholar
  173. 173.
    Fei F, Stoddart S, Groffen J, Heisterkamp N. Activity of the Aurora kinase inhibitor VX-680 against Bcr/Abl-positive acute lymphoblastic leukemias. Mol Cancer Ther. 2010;9(5):1318–27. (Epub 2010/04/15).PubMedCrossRefGoogle Scholar
  174. 174.
    Yoshida K, Nagai T, Ohmine K, Uesawa M, Sripayap P, Ishida Y, et al. Vincristine potentiates the anti-proliferative effect of an aurora kinase inhibitor, VE-465, in myeloid leukemia cells. Biochem Pharmacol. 2011;82(12):1884–90. (Epub 2011/10/06).PubMedCrossRefGoogle Scholar
  175. 175.
    Carol H, Boehm I, Reynolds CP, Kang MH, Maris JM, Morton CL, et al. Efficacy and pharmacokinetic/pharmacodynamic evaluation of the Aurora kinase A inhibitor MLN8237 against preclinical models of pediatric cancer. Cancer Chemother Pharmacol. 2011;68(5):1291–304. (Epub 2011/03/31).PubMedCrossRefGoogle Scholar
  176. 176.
    Maris JM, Morton CL, Gorlick R, Kolb EA, Lock R, Carol H, et al. Initial testing of the aurora kinase A inhibitor MLN8237 by the pediatric preclinical testing program (PPTP). Pediatr Blood Cancer. 2010;55(1):26–34. (Epub 2010/01/29).PubMedGoogle Scholar
  177. 177.
    Lancet JE, Karp JE. Farnesyltransferase inhibitors in hematologic malignancies: new horizons in therapy. Blood. 2003;102(12):3880–9.PubMedCrossRefGoogle Scholar
  178. 178.
    Sano H, Shimada A, Taki T, Murata C, Park M-j, Sotomatsu M, et al. RAS mutations are frequent in FAB type M4 and M5 of acute myeloid leukemia, and related to late relapse: a study of the Japanese Childhood AML Cooperative Study Group. Int J Hematol. 2012;95(5):509–15. doi:10.1007/s12185-012-1033-x. (Epub 2012 Mar 10).PubMedCrossRefGoogle Scholar
  179. 179.
    Case M, Matheson E, Minto L, Hassan R, Harrison CJ, Bown N, et al. Mutation of genes affecting the RAS pathway is common in childhood acute lymphoblastic leukemia. Cancer Res. 2008;68(16):6803–9.PubMedCrossRefGoogle Scholar
  180. 180.
    Liang D-C, Shih L-Y, Fu J-F, Li H-Y, Wang H-I, Hung I-J, et al. K-ras mutations and N-ras mutations in childhood acute leukemias with or without mixed-lineage leukemia gene rearrangements. Cancer. 2006;106(4):950–6.PubMedCrossRefGoogle Scholar
  181. 181.
    Meshinchi S, Stirewalt DL, Alonzo TA, Zhang Q, Sweetser DA, Woods WG, et al. Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood. 2003;102(4):1474–9.PubMedCrossRefGoogle Scholar
  182. 182.
    Harousseau JL, Lancet JE, Reiffers J, Lowenberg B, Thomas X, Huguet F, et al. A phase 2 study of the oral farnesyltransferase inhibitor tipifarnib in patients with refractory or relapsed acute myeloid leukemia. Blood. 2007;109(12):5151–6. (Epub 2007/03/140).PubMedCrossRefGoogle Scholar
  183. 183.
    Kirschbaum MH, Synold T, Stein AS, Tuscano J, Zain JM, Popplewell L, et al. A phase 1 trial dose-escalation study of tipifarnib on a week-on, week-off schedule in relapsed, refractory or high-risk myeloid leukemia. Leukemia. 2011;25(10):1543–7. (Epub 2011/06/01).PubMedCrossRefGoogle Scholar
  184. 184.
    Karp JE, Flatten K, Feldman EJ, Greer JM, Loegering DA, Ricklis RM, et al. Active oral regimen for elderly adults with newly diagnosed acute myelogenous leukemia: a preclinical and phase 1 trial of the farnesyltransferase inhibitor tipifarnib (R115777, Zarnestra) combined with etoposide. Blood. 2009;113(20):4841–52.PubMedCrossRefGoogle Scholar
  185. 185.
    Karp JE, Vener TI, Raponi M, Ritchie EK, Smith BD, Gore SD, et al. Multi-institutional phase 2 clinical and pharmacogenomic trial of tipifarnib plus etoposide for elderly adults with newly diagnosed acute myelogenous leukemia. Blood. 2012;119(1):55–63.PubMedCrossRefGoogle Scholar
  186. 186.
    Widemann BC, Arceci RJ, Jayaprakash N, Fox E, Zannikos P, Goodspeed W, et al. Phase 1 trial and pharmacokinetic study of the farnesyl transferase inhibitor tipifarnib in children and adolescents with refractory leukemias: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2011;56(2):226–33. (Epub 2010/09/23).PubMedCrossRefGoogle Scholar
  187. 187.
    Uckun FM, Qazi S. Spleen tyrosine kinase as a molecular target for treatment of leukemias and lymphomas. Expert Rev Anticancer Ther. 2010;10(9):1407–18. (Epub 2010/09/15).PubMedCrossRefGoogle Scholar
  188. 188.
    Uckun FM, Qazi S, Ma H, Tuel-Ahlgren L, Ozer Z. STAT3 is a substrate of SYK tyrosine kinase in B-lineage leukemia/lymphoma cells exposed to oxidative stress. Proc Natl Acad Sci USA. 2010;107(7):2902–7. (Epub 2010/02/06).PubMedCrossRefGoogle Scholar
  189. 189.
    Uckun FM, Ek RO, Jan ST, Chen CL, Qazi S. Targeting SYK kinase-dependent anti-apoptotic resistance pathway in B-lineage acute lymphoblastic leukaemia (ALL) cells with a potent SYK inhibitory pentapeptide mimic. Br J Haematol. 2010;149(4):508–17. (Epub 2010/02/16).PubMedCrossRefGoogle Scholar
  190. 190.
    Hahn CK, Berchuck JE, Ross KN, Kakoza RM, Clauser K, Schinzel AC, et al. Proteomic and genetic approaches identify Syk as an AML target. Cancer Cell. 2009;16(4):281–94. (Epub 2009/10/06).PubMedCrossRefGoogle Scholar
  191. 191.
    Ludwig H, Khayat D, Giaccone G, Facon T. Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies. Cancer. 2005;104(9):1794–807. (Epub 2005/09/24).PubMedCrossRefGoogle Scholar
  192. 192.
    Teicher BA, Ara G, Herbst R, Palombella VJ, Adams J. The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res. 1999;5(9):2638–45. (Epub 1999/09/28).PubMedGoogle Scholar
  193. 193.
    Orlowski RZ, Kuhn DJ. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res. 2008;14(6):1649–57. (Epub 2008/03/19).PubMedCrossRefGoogle Scholar
  194. 194.
    Houghton PJ, Morton CL, Kolb EA, Lock R, Carol H, Reynolds CP, et al. Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008;50(1):37–45. (Epub 2007/04/11).PubMedCrossRefGoogle Scholar
  195. 195.
    Horton TM, Pati D, Plon SE, Thompson PA, Bomgaars LR, Adamson PC, et al. A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: a Children’s Oncology Group study. Clin Cancer Res. 2007;13(5):1516–22. (Epub 2007/03/03).PubMedCrossRefGoogle Scholar
  196. 196.
    Messinger Y, Gaynon P, Raetz E, Hutchinson R, Dubois S, Glade-Bender J, et al. Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (ALL): a report from the therapeutic advances in childhood leukemia (TACL) consortium. Pediatr Blood Cancer. 2010;55(2):254–9. (Epub 2010/06/29).PubMedCrossRefGoogle Scholar
  197. 197.
    Messinger YH, Gaynon PS, Sposto R, van der Giessen J, Eckroth E, Malvar J, et al. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood. 2012;120(2):285–90. (Epub 2012/06/02).PubMedCrossRefGoogle Scholar
  198. 198.
    Trepel J, Mollapour M, Giaccone G, Neckers L. Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer. 2010;10(8):537–49.PubMedCrossRefGoogle Scholar
  199. 199.
    Thomas X, Campos L, Le QH, Guyotat D. Heat shock proteins and acute leukemias. Hematology. 2005;10(3):225–35. (Epub 2005/07/16).PubMedCrossRefGoogle Scholar
  200. 200.
    Neckers L, Workman P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res. 2012;18(1):64–76. (Epub 2012/01/05).PubMedCrossRefGoogle Scholar
  201. 201.
    Hawkins LM, Jayanthan AA, Narendran A. Effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG) on pediatric acute lymphoblastic leukemia (ALL) with respect to Bcr-Abl status and imatinib mesylate sensitivity. Pediatr Res. 2005;57(3):430–7.PubMedCrossRefGoogle Scholar
  202. 202.
    Yao Q, Nishiuchi R, Li Q, Kumar AR, Hudson WA, Kersey JH. FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases. Clin Cancer Res. 2003;9(12):4483–93.PubMedGoogle Scholar
  203. 203.
    Yao Q, Weigel B, Kersey J. Synergism between etoposide and 17-AAG in leukemia cells: critical roles for Hsp90, FLT3, topoisomerase II, Chk1, and Rad51. Clin Cancer Res. 2007;13(5):1591–600.PubMedCrossRefGoogle Scholar
  204. 204.
    Mesa RA, Loegering D, Powell HL, Flatten K, Arlander SJH, Dai NT, et al. Heat shock protein 90 inhibition sensitizes acute myelogenous leukemia cells to cytarabine. Blood. 2005;106(1):318–27.PubMedCrossRefGoogle Scholar
  205. 205.
    Tong WG, Estrov Z, Wang Y, O’Brien S, Faderl S, Harris DM, et al. The synthetic heat shock protein 90 (Hsp90) inhibitor EC141 induces degradation of Bcr-Abl p190 protein and apoptosis of Ph-positive acute lymphoblastic leukemia cells. Invest New Drugs. 2011;29(6):1206–12. (Epub 2010/06/10).PubMedCrossRefGoogle Scholar
  206. 206.
    AlShaer L, Walsby E, Gilkes A, Tonks A, Walsh V, Mills K, et al. Heat shock protein 90 inhibition is cytotoxic to primary AML cells expressing mutant FLT3 and results in altered downstream signalling. Br J Haematol. 2008;141(4):483–93.CrossRefGoogle Scholar
  207. 207.
    Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009;15(4):1126–32. (Epub 2009/02/21).PubMedCrossRefGoogle Scholar
  208. 208.
    Campana D, Coustan-Smith E, Manabe A, Buschle M, Raimondi SC, Behm FG, et al. Prolonged survival of B-lineage acute lymphoblastic leukemia cells is accompanied by overexpression of bcl-2 protein. Blood. 1993;81(4):1025–31. (Epub 1993/02/15).PubMedGoogle Scholar
  209. 209.
    Coustan-Smith E, Kitanaka A, Pui CH, McNinch L, Evans WE, Raimondi SC, et al. Clinical relevance of BCL-2 overexpression in childhood acute lymphoblastic leukemia. Blood. 1996;87(3):1140–6. (Epub 1996/02/01).PubMedGoogle Scholar
  210. 210.
    Robinson BW, Behling KC, Gupta M, Zhang AY, Moore JS, Bantly AD, et al. Abundant anti-apoptotic BCL-2 is a molecular target in leukaemias with t(4;11) translocation. Br J Haematol. 2008;141(6):827–39. (Epub 2008/04/22).PubMedCrossRefGoogle Scholar
  211. 211.
    Marcucci G, Byrd JC, Dai G, Klisovic MI, Kourlas PJ, Young DC, et al. Phase 1 and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia. Blood. 2003;101(2):425–32. (Epub 2002/10/24).PubMedCrossRefGoogle Scholar
  212. 212.
    Marcucci G, Stock W, Dai G, Klisovic RB, Liu S, Klisovic MI, et al. Phase I study of oblimersen sodium, an antisense to Bcl-2, in untreated older patients with acute myeloid leukemia: pharmacokinetics, pharmacodynamics, and clinical activity. J Clin Oncol. 2005;23(15):3404–11. (Epub 2005/04/13).PubMedCrossRefGoogle Scholar
  213. 213.
    Lock R, Carol H, Houghton PJ, Morton CL, Kolb EA, Gorlick R, et al. Initial testing (stage 1) of the BH3 mimetic ABT-263 by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008;50(6):1181–9. (Epub 2007/12/19).PubMedCrossRefGoogle Scholar
  214. 214.
    Schimmer AD, O’Brien S, Kantarjian H, Brandwein J, Cheson BD, Minden MD, et al. A phase I study of the pan bcl-2 family inhibitor obatoclax mesylate in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14(24):8295–301. (Epub 2008/12/18).PubMedCrossRefGoogle Scholar
  215. 215.
    Zhang AY, Robinson BW, Wang L-S, Kao K, Cory L, Barrett JS, et al. Pan-anti-apoptotic BCL-2 family inhibitor, obatoclax, activates autophagic cell death pathway and has potent cytotoxicity in infant and pediatric MLL-rearranged leukemias. ASH Annual Meeting Abstracts. 2008;112(11):2647.Google Scholar
  216. 216.
    Altieri DC. Validating survivin as a cancer therapeutic target. Nat Rev Cancer. 2003;3(1):46–54. (Epub 2003/01/02).PubMedCrossRefGoogle Scholar
  217. 217.
    Tamm I, Richter S, Oltersdorf D, Creutzig U, Harbott J, Scholz F, et al. High expression levels of x-linked inhibitor of apoptosis protein and survivin correlate with poor overall survival in childhood de novo acute myeloid leukemia. Clin Cancer Res. 2004;10(11):3737–44. (Epub 2004/06/03).PubMedCrossRefGoogle Scholar
  218. 218.
    Troeger A, Siepermann M, Escherich G, Meisel R, Willers R, Gudowius S, et al. Survivin and its prognostic significance in pediatric acute B-cell precursor lymphoblastic leukemia. Haematologica. 2007;92(8):1043–50. (Epub 2007/07/21).PubMedCrossRefGoogle Scholar
  219. 219.
    Opferman JT, Iwasaki H, Ong CC, Suh H, Mizuno S-i, Akashi K, et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science. 2005;307(5712):1101–4.PubMedCrossRefGoogle Scholar
  220. 220.
    Glaser SP, Lee EF, Trounson E, Bouillet P, Wei A, Fairlie WD, et al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev. 2012;26(2):120–5.PubMedCrossRefGoogle Scholar
  221. 221.
    Kang MH, Wan Z, Kang YH, Sposto R, Reynolds CP. Mechanism of synergy of N-(4-hydroxyphenyl)retinamide and ABT-737 in acute lymphoblastic leukemia cell lines: Mcl-1 inactivation. J Natl Cancer Inst. 2008;100(8):580–95.PubMedCrossRefGoogle Scholar
  222. 222.
    Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S, et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006;10(5):375–88.PubMedCrossRefGoogle Scholar
  223. 223.
    Holleman A, Cheok MH, den Boer ML, Yang W, Veerman AJP, Kazemier KM, et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med. 2004;351(6):533–42.PubMedCrossRefGoogle Scholar
  224. 224.
    Stam RW, Den Boer ML, Schneider P, de Boer J, Hagelstein J, Valsecchi MG, et al. Association of high-level MCL-1 expression with in vitro and in vivo prednisone resistance in MLL-rearranged infant acute lymphoblastic leukemia. Blood. 2010;115(5):1018–25.PubMedCrossRefGoogle Scholar
  225. 225.
    Kuang SQ, Tong WG, Yang H, Lin W, Lee MK, Fang ZH, et al. Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia. 2008;22(8):1529–38. (Epub 2008/06/06).PubMedCrossRefGoogle Scholar
  226. 226.
    Bullinger L, Ehrich M, Dohner K, Schlenk RF, Dohner H, Nelson MR, et al. Quantitative DNA methylation predicts survival in adult acute myeloid leukemia. Blood. 2010;115(3):636–42. (Epub 2009/11/12).PubMedCrossRefGoogle Scholar
  227. 227.
    Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL, Issa JP. Methylation profiling in acute myeloid leukemia. Blood. 2001;97(9):2823–9. (Epub 2001/04/21).PubMedCrossRefGoogle Scholar
  228. 228.
    Roman-Gomez J, Jimenez-Velasco A, Barrios M, Prosper F, Heiniger A, Torres A, et al. Poor prognosis in acute lymphoblastic leukemia may relate to promoter hypermethylation of cancer-related genes. Leuk Lymphoma. 2007;48(7):1269–82. (Epub 2007/07/07).PubMedCrossRefGoogle Scholar
  229. 229.
    Takeuchi S, Matsushita M, Zimmermann M, Ikezoe T, Komatsu N, Seriu T, et al. Clinical significance of aberrant DNA methylation in childhood acute lymphoblastic leukemia. Leuk Res. 2011;35(10):1345–9. (Epub 2011/05/20).PubMedCrossRefGoogle Scholar
  230. 230.
    Davidsson J, Lilljebjorn H, Andersson A, Veerla S, Heldrup J, Behrendtz M, et al. The DNA methylome of pediatric acute lymphoblastic leukemia. Hum Mol Genet. 2009;18(21):4054–65. (Epub 2009/08/15).PubMedCrossRefGoogle Scholar
  231. 231.
    Milani L, Lundmark A, Kiialainen A, Nordlund J, Flaegstad T, Forestier E, et al. DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia. Blood. 2010;115(6):1214–25. (Epub 2009/12/08).PubMedCrossRefGoogle Scholar
  232. 232.
    Garcia-Manero G, Jeha S, Daniel J, Williamson J, Albitar M, Kantarjian HM, et al. Aberrant DNA methylation in pediatric patients with acute lymphocytic leukemia. Cancer. 2003;97(3):695–702. (Epub 2003/01/28).PubMedCrossRefGoogle Scholar
  233. 233.
    Gutierrez MI, Siraj AK, Bhargava M, Ozbek U, Banavali S, Chaudhary MA, et al. Concurrent methylation of multiple genes in childhood ALL: correlation with phenotype and molecular subgroup. Leukemia. 2003;17(9):1845–50. (Epub 2003/09/13).PubMedCrossRefGoogle Scholar
  234. 234.
    Schafer E, Irizarry R, Negi S, McIntyre E, Small D, Figueroa ME, et al. Promoter hypermethylation in MLL-r infant acute lymphoblastic leukemia: biology and therapeutic targeting. Blood. 2010;115(23):4798–809. (Epub 2010/03/11).PubMedCrossRefGoogle Scholar
  235. 235.
    Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo JA, Navarro G, Calasanz MJ, et al. CpG island methylator phenotype redefines the prognostic effect of t(12;21) in childhood acute lymphoblastic leukemia. Clin Cancer Res. 2006;12(16):4845–50. (Epub 2006/08/18).PubMedCrossRefGoogle Scholar
  236. 236.
    Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, Yang H, Rosner G, Verstovsek S, et al. Phase 1/2 study of the combination of 5-aza-2’-deoxycytidine with valproic acid in patients with leukemia. Blood. 2006;108(10):3271–9. (Epub 2006/08/03).PubMedCrossRefGoogle Scholar
  237. 237.
    Blum W, Klisovic RB, Hackanson B, Liu Z, Liu S, Devine H, et al. Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol. 2007;25(25):3884–91. (Epub 2007/08/08).PubMedCrossRefGoogle Scholar
  238. 238.
    Fandy TE, Herman JG, Kerns P, Jiemjit A, Sugar EA, Choi S-H, et al. Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies. Blood. 2009;114(13):2764–73.PubMedCrossRefGoogle Scholar
  239. 239.
    Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2’-deoxycytidine (decitabine) in hematopoietic malignancies. Blood. 2004;103(5):1635–40. (Epub 2003/11/08).PubMedCrossRefGoogle Scholar
  240. 240.
    Cashen AF, Schiller GJ, O’Donnell MR, DiPersio JF. Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. J Clin Oncol. 2010;28(4):556–61. (Epub 2009/12/23).PubMedCrossRefGoogle Scholar
  241. 241.
    Scandura JM, Roboz GJ, Moh M, Morawa E, Brenet F, Bose JR, et al. Phase 1 study of epigenetic priming with decitabine prior to standard induction chemotherapy for patients with AML. Blood. 2011;118(6):1472–80. (Epub 2011/05/27).PubMedCrossRefGoogle Scholar
  242. 242.
    Yanez L, Bermudez A, Richard C, Bureo E, Iriondo A. Successful induction therapy with decitabine in refractory childhood acute lymphoblastic leukemia. Leukemia. 2009;23(7):1342–3. (Epub 2009/03/27).PubMedCrossRefGoogle Scholar
  243. 243.
    Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov. 2002;1(4):287–99. (Epub 2002/07/18).PubMedCrossRefGoogle Scholar
  244. 244.
    Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007;12(10):1247–52. (Epub 2007/10/27).PubMedCrossRefGoogle Scholar
  245. 245.
    Garcia-Manero G, Yang H, Bueso-Ramos C, Ferrajoli A, Cortes J, Wierda WG, et al. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood. 2008;111(3):1060–6. (Epub 2007/10/27).PubMedCrossRefGoogle Scholar
  246. 246.
    Keshelava N, Houghton PJ, Morton CL, Lock RB, Carol H, Keir ST, et al. Initial testing (stage 1) of vorinostat (SAHA) by the pediatric preclinical testing program. Pediatr Blood Cancer. 2009;53(3):505–8. (Epub 2009/05/07).PubMedCrossRefGoogle Scholar
  247. 247.
    Einsiedel HG, Kawan L, Eckert C, Witt O, Fichtner I, Henze G, et al. Histone deacetylase inhibitors have antitumor activity in two NOD/SCID mouse models of B-cell precursor childhood acute lymphoblastic leukemia. Leukemia. 2006;20(8):1435–6. (Epub 2006/07/01).PubMedCrossRefGoogle Scholar
  248. 248.
    Bachmann PS, Piazza RG, Janes ME, Wong NC, Davies C, Mogavero A, et al. Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition. Blood. 2010;116(16):3013–22. (Epub 2010/07/22).PubMedCrossRefGoogle Scholar
  249. 249.
    Xie C, Edwards H, Xu X, Zhou H, Buck SA, Stout ML, et al. Mechanisms of synergistic antileukemic interactions between valproic acid and cytarabine in pediatric acute myeloid leukemia. Clin Cancer Res. 2010;16(22):5499–510. (Epub 2010/10/05).PubMedCrossRefGoogle Scholar
  250. 250.
    Xu X, Xie C, Edwards H, Zhou H, Buck SA, Ge Y. Inhibition of histone deacetylases 1 and 6 enhances cytarabine-induced apoptosis in pediatric acute myeloid leukemia cells. PLoS One. 2011;6(2):e17138. (Epub 2011/03/02).PubMedCrossRefGoogle Scholar
  251. 251.
    Leclerc GJ, Mou C, Leclerc GM, Mian AM, Barredo JC. Histone deacetylase inhibitors induce FPGS mRNA expression and intracellular accumulation of long-chain methotrexate polyglutamates in childhood acute lymphoblastic leukemia: implications for combination therapy. Leukemia. 2010;24(3):552–62. (Epub 2010/01/15).PubMedCrossRefGoogle Scholar
  252. 252.
    Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999;21(1):103–7. (Epub 1999/01/23).PubMedCrossRefGoogle Scholar
  253. 253.
    Konopleva M, Tabe Y, Zeng Z, Andreeff M. Therapeutic targeting of microenvironmental interactions in leukemia: mechanisms and approaches. Drug Resist Updates. 2009;12(4–5):103–13.CrossRefGoogle Scholar
  254. 254.
    Burger JA, Peled A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia. 2009;23(1):43–52. (Epub 2008/11/07).PubMedCrossRefGoogle Scholar
  255. 255.
    Burger JA, Burkle A. The CXCR4 chemokine receptor in acute and chronic leukaemia: a marrow homing receptor and potential therapeutic target. Br J Haematol. 2007;137(4):288–96. (Epub 2007/04/26).PubMedCrossRefGoogle Scholar
  256. 256.
    Mohle R, Schittenhelm M, Failenschmid C, Bautz F, Kratz-Albers K, Serve H, et al. Functional response of leukaemic blasts to stromal cell-derived factor-1 correlates with preferential expression of the chemokine receptor CXCR4 in acute myelomonocytic and lymphoblastic leukaemia. Br J Haematol. 2000;110(3):563–72. (Epub 2000/09/21).PubMedCrossRefGoogle Scholar
  257. 257.
    Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M. Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia. 2002;16(9):1713–24. (Epub 2002/08/30).PubMedCrossRefGoogle Scholar
  258. 258.
    Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A, et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med. 2003;9(9):1158–65. (Epub 2003/08/05).PubMedCrossRefGoogle Scholar
  259. 259.
    Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007;25(11):1315–21. (Epub 2007/10/24).PubMedCrossRefGoogle Scholar
  260. 260.
    Konoplev S, Rassidakis GZ, Estey E, Kantarjian H, Liakou CI, Huang X, et al. Overexpression of CXCR4 predicts adverse overall and event-free survival in patients with unmutated FLT3 acute myeloid leukemia with normal karyotype. Cancer. 2007;109(6):1152–6. (Epub 2007/02/23).PubMedCrossRefGoogle Scholar
  261. 261.
    Spoo AC, Lubbert M, Wierda WG, Burger JA. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood. 2007;109(2):786–91. (Epub 2006/08/05).PubMedCrossRefGoogle Scholar
  262. 262.
    Rombouts EJ, Pavic B, Lowenberg B, Ploemacher RE. Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood. 2004;104(2):550–7. (Epub 2004/04/01).PubMedCrossRefGoogle Scholar
  263. 263.
    Crazzolara R, Kreczy A, Mann G, Heitger A, Eibl G, Fink FM, et al. High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukaemia. Br J Haematol. 2001;115(3):545–53. (Epub 2001/12/12).PubMedCrossRefGoogle Scholar
  264. 264.
    Faaij CM, Willemze AJ, Revesz T, Balzarolo M, Tensen CP, Hoogeboom M, et al. Chemokine/chemokine receptor interactions in extramedullary leukaemia of the skin in childhood AML: differential roles for CCR2, CCR5, CXCR4 and CXCR7. Pediatr Blood Cancer. 2010;55(2):344–8. (Epub 2010/06/29).PubMedCrossRefGoogle Scholar
  265. 265.
    Juarez J, Bradstock KF, Gottlieb DJ, Bendall LJ. Effects of inhibitors of the chemokine receptor CXCR4 on acute lymphoblastic leukemia cells in vitro. Leukemia. 2003;17(7):1294–300. (Epub 2003/07/02).PubMedCrossRefGoogle Scholar
  266. 266.
    Bendall LJ, Welschinger R, Liedtke F, Ford C, Dela Pena A, Juarez JG, et al. ALL Cells mobilized by AMD3100 are more proliferative, and remain in the circulation longer than normal HSC, enhancing the action of vincristine. ASH Annual Meeting Abstracts. 2010;116(21):2137.Google Scholar
  267. 267.
    Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O, et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009;113(24):6215–24. (Epub 2008/10/29).PubMedCrossRefGoogle Scholar
  268. 268.
    Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK, et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood. 2009;113(24):6206–14. (Epub 2008/12/04).PubMedCrossRefGoogle Scholar
  269. 269.
    Fierro FA, Brenner S, Oelschlaegel U, Jacobi A, Knoth H, Ehninger G, et al. Combining SDF-1/CXCR4 antagonism and chemotherapy in relapsed acute myeloid leukemia. Leukemia. 2009;23(2):393–6. (Epub 2008/07/11).PubMedCrossRefGoogle Scholar
  270. 270.
    Uy GL, Rettig MP, Motabi IH, McFarland K, Trinkaus KM, Hladnik LM, et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood. 2012;119(17):3917–24. (Epub 2012/02/07).PubMedCrossRefGoogle Scholar
  271. 271.
    Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E, Folkman J. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol. 1997;150(3):815–21. (Epub 1997/03/01).PubMedGoogle Scholar
  272. 272.
    Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood. 2000;95(1):309–13.PubMedGoogle Scholar
  273. 273.
    Aguayo A, Kantarjian HM, Estey EH, Giles FJ, Verstovsek S, Manshouri T, et al. Plasma vascular endothelial growth factor levels have prognostic significance in patients with acute myeloid leukemia but not in patients with myelodysplastic syndromes. Cancer. 2002;95(9):1923–30.PubMedCrossRefGoogle Scholar
  274. 274.
    Faderl S, Do K-A, Johnson MM, Keating M, O’Brien S, Jilani I, et al. Angiogenic factors may have a different prognostic role in adult acute lymphoblastic leukemia. Blood. 2005;106(13):4303–7.PubMedCrossRefGoogle Scholar
  275. 275.
    Koomagi R, Zintl F, Sauerbrey A, Volm M. Vascular endothelial growth factor in newly diagnosed and recurrent childhood acute lymphoblastic leukemia as measured by real-time quantitative polymerase chain reaction. Clin Cancer Res. 2001;7(11):3381–4.PubMedGoogle Scholar
  276. 276.
    Avramis IA, Panosyan EH, Dorey F, Holcenberg JS, Avramis VI. Correlation between high vascular endothelial growth factor-a serum levels and treatment outcome in patients with standard-risk acute lymphoblastic leukemia: a report from Children’s Oncology Group Study CCG-1962. Clin Cancer Res. 2006;12(23):6978–84.PubMedCrossRefGoogle Scholar
  277. 277.
    Zahiragic L, Schliemann C, Bieker R, Thoennissen NH, Burow K, Kramer C, et al. Bevacizumab reduces VEGF expression in patients with relapsed and refractory acute myeloid leukemia without clinical antileukemic activity. UK: Nature Publishing Group; 2007. p. 1310–2.Google Scholar
  278. 278.
    Karp JE, Gojo I, Pili R, Gocke CD, Greer J, Guo C, et al. Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias. Clin Cancer Res. 2004;10(11):3577–85.PubMedCrossRefGoogle Scholar
  279. 279.
    Richey EA, Lyons EA, Nebeker JR, Shankaran V, McKoy JM, Luu TH, et al. Accelerated approval of cancer drugs: improved access to therapeutic breakthroughs or early release of unsafe and ineffective drugs? J Clin Oncol. 2009;27(26):4398–405. (Epub 2009/07/29).PubMedCrossRefGoogle Scholar
  280. 280.
    Sallan SE. Myths and lessons from the adult/pediatric interface in acute lymphoblastic leukemia. ASH Education Program Book. 2006;2006(1):128–32.Google Scholar
  281. 281.
    Ho PA, Kutny MA, Alonzo TA, Gerbing RB, Joaquin J, Raimondi SC, et al. Leukemic mutations in the methylation-associated genes DNMT3A and IDH2 are rare events in pediatric AML: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2011;57(2):204–9. (Epub 2011/04/20).PubMedCrossRefGoogle Scholar
  282. 282.
    Ho PA, Alonzo TA, Kopecky KJ, Miller KL, Kuhn J, Zeng R, et al. Molecular alterations of the IDH1 gene in AML: a Children’s Oncology Group and Southwest Oncology Group Study. Leukemia. 2010;24(5):909–13. (Epub 2010/04/09).PubMedCrossRefGoogle Scholar
  283. 283.
    Lee-Sherick AB, Linger RM, Gore L, Keating AK, Graham DM. Targeting paediatric acute lymphoblastic leukamia: novel therapies currently in development. Br J Haematol. 2010;151(4):295–311Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Keith J. August
    • 1
  • Aru Narendran
    • 2
  • Kathleen A. Neville
    • 1
  1. 1.Children’s Mercy Hospitals and ClinicsKansas CityUSA
  2. 2.Alberta Children’s HospitalCalgaryCanada

Personalised recommendations