Drugs

, Volume 73, Issue 3, pp 213–228 | Cite as

Next-Generation Integrase Inhibitors

Where to After Raltegravir?
Leading Article

Abstract

The integrase enzyme facilitates the incorporation of HIV-1 proviral DNA into the host cell genome and catalyses a function vital to viral replication. Inhibitors of this enzyme represent the newest class of antiretroviral drugs in our armamentarium to treat HIV-1 infection. Raltegravir, an integrase strand transfer inhibitor, was the first drug of this class approved by the US FDA; it is a potent and well tolerated antiviral agent. However, it has the limitations of twice-daily dosing and a relatively modest genetic barrier to the development of resistance. These qualities have prompted the search for agents with once-daily dosing, a more robust barrier to resistance, and a resistance profile of limited overlap with that of raltegravir. We review a series of integrase inhibitors that are in clinical or advanced pre-clinical studies. Elvitegravir, recently approved by the FDA as part of the elvitegravir/cobicistat/tenofovir disoproxil fumarate/emtricitabine fixed-dose combination pill has the benefit of being part of a one-pill, once-daily regimen, but suffers from extensive cross-resistance with raltegravir. Dolutegravir is the most advanced second-generation integrase inhibitor, and it boasts good tolerability, once-daily dosing with no need for a pharmacological enhancer, and relatively little cross-resistance with raltegravir. S/GSK1265744 has been developed into a long-acting parenteral agent that shows a high barrier to resistance in vitro and the potential for an infrequent dosing schedule. BI 224436 is in early clinical trials, but is unlikely to demonstrate cross-resistance with other integrase inhibitors. The inhibitors of the lens epithelium-derived growth factor (LEDGF)/p75 binding site of integrase (LEDGINs) are extremely early in development. Each of these contributes a new benefit to the class and will extend the treatment options for patients with HIV-1 infection.

Notes

Acknowledgments

Martin Markowitz receives research grants from Gilead Sciences, Tobira and GlaxoSmithKline. He is a consultant to Gilead Sciences, Merck and Janssen; and he is a speaker for Gilead Sciences, Bristol-Myers Squibb and Janssen. Sharon Karmon reports no conflicts of interest.

References

  1. 1.
    Marchand C, Maddali K, Metifiot M, Pommier Y. HIV-1 IN inhibitors: 2010 update and perspectives. Curr Top Med Chem. 2009;9(11):1016–37.PubMedCrossRefGoogle Scholar
  2. 2.
    Prada N, Markowitz M. Novel integrase inhibitors for HIV. Expert Opin Investig Drugs. 2010;19(9):1087–98.PubMedCrossRefGoogle Scholar
  3. 3.
    Shun MC, Raghavendra NK, Vandegraaff N, Daigle JE, Hughes S, Kellam P, et al. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev. 2007;21(14):1767–78.PubMedCrossRefGoogle Scholar
  4. 4.
    Marshall HM, Ronen K, Berry C, Llano M, Sutherland H, Saenz D, et al. Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting. PLoS One. 2007;2(12):e1340.PubMedCrossRefGoogle Scholar
  5. 5.
    Wu X, Liu H, Xiao H, Conway JA, Hehl E, Kalpana GV, et al. Human immunodeficiency virus type 1 integrase protein promotes reverse transcription through specific interactions with the nucleoprotein reverse transcription complex. J Virol. 1999;73(3):2126–35.PubMedGoogle Scholar
  6. 6.
    Zhu K, Dobard C, Chow SA. Requirement for integrase during reverse transcription of human immunodeficiency virus type 1 and the effect of cysteine mutations of integrase on its interactions with reverse transcriptase. J Virol. 2004;78(10):5045–55.PubMedCrossRefGoogle Scholar
  7. 7.
    Dobard CW, Briones MS, Chow SA. Molecular mechanisms by which human immunodeficiency virus type 1 integrase stimulates the early steps of reverse transcription. J Virol. 2007;81(18):10037–46.PubMedCrossRefGoogle Scholar
  8. 8.
    Wilkinson TA, Januszyk K, Phillips ML, Tekeste SS, Zhang M, Miller JT, et al. Identifying and characterizing a functional HIV-1 reverse transcriptase-binding site on integrase. J Biol Chem. 2009;284(12):7931–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Markowitz M, Morales-Ramirez JO, Nguyen BY, Kovacs CM, Steigbigel RT, Cooper DA, et al. Antiretroviral activity, pharmacokinetics, and tolerability of MK-0518, a novel inhibitor of HIV-1 integrase, dosed as monotherapy for 10 days in treatment-naive HIV-1-infected individuals. J Acquir Immune Defic Syndr. 2006;43(5):509–15.PubMedCrossRefGoogle Scholar
  10. 10.
    Murray JM, Emery S, Kelleher AD, Law M, Chen J, Hazuda DJ, et al. Antiretroviral therapy with the integrase inhibitor raltegravir alters decay kinetics of HIV, significantly reducing the second phase. AIDS. 2007;21(17):2315–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Markowitz M, Nguyen BY, Gotuzzo E, Mendo F, Ratanasuwan W, Kovacs C, et al. Rapid and durable antiretroviral effect of the HIV-1 integrase inhibitor raltegravir as part of combination therapy in treatment-naive patients with HIV-1 infection: results of a 48-week controlled study. J Acquir Immune Defic Syndr. 2007;46(2):125–33.PubMedCrossRefGoogle Scholar
  12. 12.
    Markowitz M, Nguyen BY, Gotuzzo E, Mendo F, Ratanasuwan W, Kovacs C, et al. Sustained antiretroviral effect of raltegravir after 96 weeks of combination therapy in treatment-naive patients with HIV-1 infection. J Acquir Immune Defic Syndr. 2009;52(3):350–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Gotuzzo E, Nguyen BY, Markowitz M, Mendo F, Ratanasuwan W, Lu C, et al. Sustained antiretroviral efficacy of raltegravir after 192 weeks of combination ART in treatment-naive HIV-1-infected patients. 17th Conference on retroviruses and opportunistic infections, San Francisco; 2010.Google Scholar
  14. 14.
    Gotuzzo E, Markowitz M, Ratanasuwan W, Smith G, Prada G, Morales-Ramirez JO, et al. Sustained efficacy and safety of raltegravir after 5 years of combination antiretroviral therapy as initial treatment of HIV-1 infection: final results of a randomized, controlled, phase II study (protocol 004). J Acquir Immune Defic Syndr. 2012;71(1):73–7.CrossRefGoogle Scholar
  15. 15.
    Lennox JL, DeJesus E, Lazzarin A, Pollard RB, Madruga JV, Berger DS, et al. Safety and efficacy of raltegravir-based versus efavirenz-based combination therapy in treatment-naive patients with HIV-1 infection: a multicentre, double-blind randomised controlled trial. Lancet. 2009;374(9692):796–806.PubMedCrossRefGoogle Scholar
  16. 16.
    Lennox JL, Dejesus E, Berger DS, Lazzarin A, Pollard RB, Ramalho Madruga JV, et al. Raltegravir versus efavirenz regimens in treatment-naive HIV-1-infected patients: 96-week efficacy, durability, subgroup, safety, and metabolic analyses. J Acquir Immune Defic Syndr. 2010;55(1):39–48.PubMedCrossRefGoogle Scholar
  17. 17.
    Rockstroh JK, Lennox JL, Dejesus E, Saag MS, Lazzarin A, Wan H, et al. Long-term treatment with raltegravir or efavirenz combined with tenofovir/emtricitabine for treatment-naive human immunodeficiency virus-1-infected patients: 156-week results from STARTMRK. Clin Infect Dis. 2011;53(8):807–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Rockstroh JK, DeJesus E, Saag MS, Yazdanpanah Y, Lennox JL, Rodgers AJ, et al. Long-term safety and efficacy of raltegravir (RAL)-based versus efavirenz (EFV)-based combination therapy in treatment-naive HIV-1-infected patients: final 5-year double-blind results from STARTMRK. Washington, DC: XIX International AIDS conference; 2012.Google Scholar
  19. 19.
    Lazzarin A, DeJesus E, Rockstroh JK, Lennox JL, Saag MS, Wan H, et al. Durable and consistent efficacy of raltegravir (RAL) with tenofovir (TDF) and emtricitabine (FTC) across demographic and baseline prognostic factors in treatment-naive patients (pts) from STARTMRK at wk 156. 51st Interscience conference on antimicrobial agents and chemotherapy, Chicago; 2011.Google Scholar
  20. 20.
    Rockstroh JK, Lazzarin A, Zhao J, Rodgers AJ, DiNubile MJ, Nguyen BY, et al. Long-term efficacy of raltegravir or efavirenz combined with TDF/FTC in treatment-naive HIV-1-infected patients: week-192 subgroup analyses from STARTMRK. Belgrade: European AIDS conference; 2011.Google Scholar
  21. 21.
    Eron JJ Jr, Rockstroh JK, Reynes J, Andrade-Villanueva J, Ramalho-Madruga JV, Bekker LG, et al. Raltegravir once daily or twice daily in previously untreated patients with HIV-1: a randomised, active-controlled, phase 3 non-inferiority trial. Lancet Infect Dis. 2011;11(12):907–15.PubMedCrossRefGoogle Scholar
  22. 22.
    Rizk ML, Hang Y, Luo WL, Su J, Zhao J, Campbell H, et al. Pharmacokinetics and pharmacodynamics of once-daily versus twice-daily raltegravir in treatment-naive HIV-infected patients. Antimicrob Agents Chemother. 2012;56(6):3101–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Grinsztejn B, Nguyen BY, Katlama C, Gatell JM, Lazzarin A, Vittecoq D, et al. Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial. Lancet. 2007;369(9569):1261–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Gatell JM, Katlama C, Grinsztejn B, Eron JJ, Lazzarin A, Vittecoq D, et al. Long-term efficacy and safety of the HIV integrase inhibitor raltegravir in patients with limited treatment options in a phase II study. J Acquir Immune Defic Syndr. 2010;53(4):456–63.PubMedCrossRefGoogle Scholar
  25. 25.
    Steigbigel RT, Cooper DA, Kumar PN, Eron JE, Schechter M, Markowitz M, et al. Raltegravir with optimized background therapy for resistant HIV-1 infection. N Engl J Med. 2008;359(4):339–54.PubMedCrossRefGoogle Scholar
  26. 26.
    Steigbigel RT, Cooper DA, Teppler H, Eron JJ, Gatell JM, Kumar PN, et al. Long-term efficacy and safety of raltegravir combined with optimized background therapy in treatment-experienced patients with drug-resistant HIV infection: week 96 results of the BENCHMRK 1 and 2 phase III trials. Clin Infect Dis. 2010;50(4):605–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Cooper DA, Steigbigel RT, Gatell JM, Rockstroh JK, Katlama C, Yeni P, et al. Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection. N Engl J Med. 2008;359(4):355–65.PubMedCrossRefGoogle Scholar
  28. 28.
    Eron JE, Cooper DA, Steigbigel RT, Clotet B, Wan H, Meibohm AR, et al. Sustained antiretroviral effect of raltegravir at week 156 in the BENCHMRK studies, and exploratory analysis of late outcomes based on early virologi responses. 17th Conference on retroviruses and opportunistic infections, San Francisco; 2010.Google Scholar
  29. 29.
    Scherrer AU, von Wyl V, Fux CA, Opravil M, Bucher HC, Fayet A, et al. Implementation of raltegravir in routine clinical practice: selection criteria for choosing this drug, virologic response rates, and characteristics of failures. J Acquir Immune Defic Syndr. 2010;53(4):464–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Scherrer AU, von Wyl V, Boni J, Yerly S, Klimkait T, Burgisser P, et al. Viral suppression rates in salvage treatment with raltegravir improved with the administration of genotypic partially active or inactive nucleoside/tide reverse transcriptase inhibitors. J Acquir Immune Defic Syndr. 2011;57(1):24–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Bucciardini R, D’Ettorre G, Baroncelli S, Ceccarelli G, Parruti G, Weimer LE, et al. Virological failure at one year in triple-class experienced patients switching to raltegravir-based regimens is not predicted by baseline factors. Int J STD AIDS. 2012;23(7):459–63.PubMedCrossRefGoogle Scholar
  32. 32.
    Squires KE, Bekker LG, Eron JE, Cheng B, Rockstroh JK, Marquez F, et al. Safety, tolerability, and efficacy of raltegravir (RAL) in a diverse cohort of HIV-infected patients: 48-week results from the REALMRK study. 51st Interscience conference on antimicrobial agents and chemotherapy, Chicago; 2011.Google Scholar
  33. 33.
    Eron JJ, Young B, Cooper DA, Youle M, Dejesus E, Andrade-Villanueva J, et al. Switch to a raltegravir-based regimen versus continuation of a lopinavir-ritonavir-based regimen in stable HIV-infected patients with suppressed viraemia (SWITCHMRK 1 and 2): two multicentre, double-blind, randomised controlled trials. Lancet. 2010;375(9712):396–407.PubMedCrossRefGoogle Scholar
  34. 34.
    Martinez E, Larrousse M, Llibre JM, Gutierrez F, Saumoy M, Antela A, et al. Substitution of raltegravir for ritonavir-boosted protease inhibitors in HIV-infected patients: the SPIRAL study. AIDS. 2010;24(11):1697–707.PubMedCrossRefGoogle Scholar
  35. 35.
    Harris M, Larsen G, Montaner JS. Outcomes of multidrug-resistant patients switched from enfuvirtide to raltegravir within a virologically suppressive regimen. AIDS. 2008;22(10):1224–6.PubMedCrossRefGoogle Scholar
  36. 36.
    De Castro N, Braun J, Charreau I, Pialoux G, Cotte L, Katlama C, et al. Switch from enfuvirtide to raltegravir in virologically suppressed multidrug-resistant HIV-1-infected patients: a randomized open-label trial. Clin Infect Dis. 2009;49(8):1259–67.PubMedCrossRefGoogle Scholar
  37. 37.
    Gallien S, Braun J, Delaugerre C, Charreau I, Reynes J, Jeanblanc F, et al. Efficacy and safety of raltegravir in treatment-experienced HIV-1-infected patients switching from enfuvirtide-based regimens: 48 week results of the randomized EASIER ANRS 138 trial. J Antimicrob Chemother. 2011;66(9):2099–106.PubMedCrossRefGoogle Scholar
  38. 38.
    Calcagno A, Tettoni MC, Simiele M, Trentini L, Montrucchio C, D’Avolio A, et al. Pharmacokinetics of 400 mg of raltegravir once daily in combination with atazanavir/ritonavir plus two nucleoside/nucleotide reverse transcriptase inhibitors. J Antimicrob Chemother. Epub 2012 Oct 19.Google Scholar
  39. 39.
    Kozal MJ, Lupo S, DeJesus E, Molina JM, McDonald C, Raffi F, et al. A nucleoside- and ritonavir-sparing regimen containing atazanavir plus raltegravir in antiretroviral treatment-naive HIV-infected patients: SPARTAN study results. HIV Clin Trials. 2012;13(3):119–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Calin R, Paris L, Simon A, Peytavin G, Wirden M, Schneider L, et al. Dual raltegravir/etravirine combination in virologically suppressed HIV-1-infected patients on antiretroviral therapy. Antivir Ther. 2012;17(8):1601–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Goethals O, Vos A, Van Ginderen M, Geluykens P, Smits V, Schols D, et al. Primary mutations selected in vitro with raltegravir confer large fold changes in susceptibility to first-generation integrase inhibitors, but minor fold changes to inhibitors with second-generation resistance profiles. Virology. 2010;402(2):338–46.PubMedCrossRefGoogle Scholar
  42. 42.
    Kobayashi M, Nakahara K, Seki T, Miki S, Kawauchi S, Suyama A, et al. Selection of diverse and clinically relevant integrase inhibitor-resistant human immunodeficiency virus type 1 mutants. Antiviral Res. 2008;80(2):213–22.PubMedCrossRefGoogle Scholar
  43. 43.
    Blanco JL, Varghese V, Rhee SY, Gatell JM, Shafer RW. HIV-1 integrase inhibitor resistance and its clinical implications. J Infect Dis. 2011;203(9):1204–14.PubMedCrossRefGoogle Scholar
  44. 44.
    Lennox JL, DeJesus E, Lazzarin A. Raltegravir demonstrates durable efficacy through 96 weeks: results from STARTMRK, a phase III study of raltegravir (RAL)-based vs efavirenz (EFV)-based combination therapy in treatment-naive HIV-infected patients. 49th Interscience conference on antimicrobial agents and chemotherapy, San Francisco; 2009.Google Scholar
  45. 45.
    Merck&Co. I. ISENTRESS: highlights of prescribing information. 2009. http://www.merck.com/product/usa/pi_circulars/i/isentress/isentress_pi.pdf Accessed 15 August 2012.
  46. 46.
    Lee FJ, Carr A. Tolerability of HIV integrase inhibitors. Curr Opin HIV AIDS. 2012;7(5):422–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Klibanov OM. Elvitegravir, an oral HIV integrase inhibitor, for the potential treatment of HIV infection. Curr Opin Investig Drugs. 2009;10(2):190–200.PubMedGoogle Scholar
  48. 48.
    Sato M, Motomura T, Aramaki H, Matsuda T, Yamashita M, Ito Y, et al. Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J Med Chem. 2006;49(5):1506–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Schafer JJ, Squires KE. Integrase inhibitors: a novel class of antiretroviral agents. Ann Pharmacother. 2010;44(1):145–56.PubMedCrossRefGoogle Scholar
  50. 50.
    DeJesus E, Berger D, Markowitz M, Cohen C, Hawkins T, Ruane P, et al. Antiviral activity, pharmacokinetics, and dose response of the HIV-1 integrase inhibitor GS-9137 (JTK-303) in treatment-naive and treatment-experienced patients. J Acquir Immune Defic Syndr. 2006;43(1):1–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Mathias AA, West S, Hui J, Kearney BP. Dose-response of ritonavir on hepatic CYP3A activity and elvitegravir oral exposure. Clin Pharmacol Ther. 2009;85(1):64–70.PubMedCrossRefGoogle Scholar
  52. 52.
    Ramanathan S, Shen G, Hinkle J, Enejosa J, Kearney BP. Pharmacokinetics of coadministered ritonavir-boosted elvitegravir and zidovudine, didanosine, stavudine, or abacavir. J Acquir Immune Defic Syndr. 2007;46(2):160–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Zolopa AR, Berger DS, Lampiris H, Zhong L, Chuck SL, Enejosa JV, et al. Activity of elvitegravir, a once-daily integrase inhibitor, against resistant HIV Type 1: results of a phase 2, randomized, controlled, dose-ranging clinical trial. J Infect Dis. 2010;201(6):814–22.PubMedCrossRefGoogle Scholar
  54. 54.
    DeJesus E, Rockstroh JK, Henry K, Molina JM, Gathe J, Ramanathan S, et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir disoproxil fumarate versus ritonavir-boosted atazanavir plus co-formulated emtricitabine and tenofovir disoproxil fumarate for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3, non-inferiority trial. Lancet. 2012;379(9835):2429–38.PubMedCrossRefGoogle Scholar
  55. 55.
    DeJesus E, Rockstroh JK, Henry K, Molina JM, Gathe J, Ramanathan S, et al. Analysis of efficacy by baseline viral load: phase 3 study comparing elvitegravir/cobicistat/emtricitabine/tenofovir DF (Quad) versus ritonavir-boosted atazanavir plus emtricitabine/tenofovir DF in treatment-naive HIV-1-positive subjects: week 48 results. Washington, DC: XIX International AIDS conference; 2012.Google Scholar
  56. 56.
    Cohen C, Elion R, Ruane P, Shamblaw D, DeJesus E, Rashbaum B, et al. Randomized, phase 2 evaluation of two single-tablet regimens elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate versus efavirenz/emtricitabine/tenofovir disoproxil fumarate for the initial treatment of HIV infection. AIDS. 2011;25(6):F7–12.PubMedCrossRefGoogle Scholar
  57. 57.
    Sax PE, DeJesus E, Mills A, Zolopa A, Cohen C, Wohl D, et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3 trial, analysis of results after 48 weeks. Lancet. 2012;379(9835):2439–48.PubMedCrossRefGoogle Scholar
  58. 58.
    Sax PE, DeJesus E, Mills A, Zolopa A, Cohen C, Wohl D, et al. Analysis of efficacy by baseline HIV RNA: week 48 results from a phase 3 study of elvitegravir/cobicistat/emtricitabine/tenofovir DF (Quad) compared to efavirenz/emtricitabine/tenofovir DF in treatment-naive HIV-1-positive subjects. Washington, DC: XIX International AIDS conference; 2012.Google Scholar
  59. 59.
    Molina JM, Lamarca A, Andrade-Villanueva J, Clotet B, Clumeck N, Liu YP, et al. Efficacy and safety of once daily elvitegravir versus twice daily raltegravir in treatment-experienced patients with HIV-1 receiving a ritonavir-boosted protease inhibitor: randomised, double-blind, phase 3, non-inferiority study. Lancet Infect Dis. 2012;12(1):27–35.PubMedCrossRefGoogle Scholar
  60. 60.
    Elion R, Molina JM, Arribas JR, Cooper DA, Maggiolo F, Wilkins E, et al. Efficacy and safety results from a randomized, double blind, active controlled trial of elvitegravir (once-daily) versus raltegravir (twice-daily) in treatment-experienced HIV-positive patients: long term 96-week data. Washington, DC: XIX International AIDS conference; 2012.Google Scholar
  61. 61.
    Gilead Sciences. Phase 3b open label study to evaluate switching from regimens consisting of a non-nucleoside reverse transcriptase inhibitor plus emtricitabine and tenofovir df to the elvitegravir/cobicistat/emtricitabine/tenofovir DF single-tablet regimen in virologically suppressed, HIV 1 infected patients [ClinicalTrials.gov identifier NCT01495702]. 2012. http://clinicaltrials.gov/ct2/show/NCT01495702?term=GS-US-236-0121&rank=1 Accessed 17 August 2012.
  62. 62.
    Gilead Sciences. Phase 3b open label study to evaluate switching from regimens consisting of a ritonavir-boosted protease inhibitor plus emtricitabine/tenofovir fixed-dose combination to the elvitegravir/cobicistat/emtricitabine/tenofovir df single-tablet regimen in virologically suppressed, HIV 1 infected patients. 2012. http://clinicaltrials.gov/ct2/show/NCT01475838?term=elvitegravir&rank=5 Accessed 17 August 2012.
  63. 63.
    Shimura K, Kodama E, Sakagami Y, Matsuzaki Y, Watanabe W, Yamataka K, et al. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol. 2008;82(2):764–74.PubMedCrossRefGoogle Scholar
  64. 64.
    Goethals O, Clayton R, Van Ginderen M, Vereycken I, Wagemans E, Geluykens P, et al. Resistance mutations in human immunodeficiency virus type 1 integrase selected with elvitegravir confer reduced susceptibility to a wide range of integrase inhibitors. J Virol. 2008;82(21):10366–74.PubMedCrossRefGoogle Scholar
  65. 65.
    McColl D, Fransen S, Gupta S. Resistance and cross-resistance to first generation integrase inhibitors: insights from a phase 2 study of elvitegravir (GS-9137). Bridgetown: XVI International drug resistance workshop; 2007.Google Scholar
  66. 66.
    Metifiot M, Vandegraaff N, Maddali K, Naumova A, Zhang X, Rhodes D, et al. Elvitegravir overcomes resistance to raltegravir induced by integrase mutation Y143. AIDS. 2011;25(9):1175–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Margot N, Rhee SY, Szwarcberg J, Miller MD, Team G-U–S. Low rates of integrase resistance for elvitegravir and raltegravir through week 96 in the phase 3 clinical study GS-US-183-0145. XIX International AIDS conference, Washington, DC; 2012.Google Scholar
  68. 68.
    Katlama C, Murphy R. Dolutegravir for the treatment of HIV. Expert Opin Investig Drugs. 2012;21(4):523–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Sato A, Kobayashi M, Yoshinaga T. S/GSK1349572 is a potent next generation HIV integrase inhibitor. 5th International AIDS Society, Cape Town; 2009.Google Scholar
  70. 70.
    Kobayashi M, Yoshinaga T, Seki T, Wakasa-Morimoto C, Brown KW, Ferris R, et al. In vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob Agents Chemother. 2011;55(2):813–21.PubMedCrossRefGoogle Scholar
  71. 71.
    Min S, Carrod A, Curtis L, Stainsby C, Brothers C, Yeo J, et al. Safety profile of dolutegravir (DTG, S/GSK1349572), in combination with other antiretrovirals in antiretroviral (ART)-naive and ART-experienced adults from two phase IIb studies. Rome: XIII International AIDS conference; 2011.Google Scholar
  72. 72.
    Eron JE, Durant J, Poizot-Martin I, Reynes J, Soriano V, Kumar PN, et al. Activity of a next generation integrase inhibitor (INI), S/GSK1349572, in subjects with HIV exhibiting raltegravir resistance: initial results of VIKING study (ING112961). Vienna: XVII International AIDS conference; 2010.Google Scholar
  73. 73.
    Clotet B, DeJesus E, Lazzarin A, Livrozet J-M, Moriat P, Vavro C, et al. HIV integrase genotypic and phenotypic changes between day 1 and day 11 in subjects with raltegravir (RAL) resistant HIV treated with S/GSK1349572: results of VIKING study (ING112961). Vienna: XVII International AIDS conference; 2010.Google Scholar
  74. 74.
    Eron JE, Kumar PN, Lazzarin A, Richmond G, Soriano V, Huang J, et al. DTG in subjects with HIV exhibiting RAL resistance: functional monotherapy results of VIKING study cohort II. 18th Conference on retroviruses and opportunistic infections, Boston; 2011.Google Scholar
  75. 75.
    van Lunzen J, Maggiolo F, Arribas JR, Rakhmanova A, Yeni P, Young B, et al. Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naive adults with HIV: planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial. Lancet Infect Dis. 2012;12(2):111–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Stellbrink H, Reynes J, Lazzarin A, Voronin E, Pulido F, Felizarta F, et al. Dolutegravir in combination therapy exhibits rapid and sustained antiviral response in ARV-naive adults: 96-week results from SPRING-1. 19th Conference on retroviruses and opportunistic infections, Seattle; 2012.Google Scholar
  77. 77.
    Raffi F, Rachlis A, Stellbrink H, Hardy WD, Torti C, Orkin C, et al. Once-daily dolutegravir (DTG; S/GSK1345972) is non-inferior to raltegravir (RAL) in antiretroviral-naive adults: 48 week results from SPRING-2 (ING113086). Washington, DC: XIX International AIDS conference; 2012.Google Scholar
  78. 78.
    ViiV Healthcare. A phase III randomized, double-blind trial investigating the activity of dolutegravir 50 mg BID vs placebo over 7 days in HIV-1-infected subjects with RAL/ELV resistance, followed by an open-label phase with an optimized background regimen. 2012. http://clinicaltrials.gov/ct2/show/NCT01568892?term=dolutegravir&rank=2 Accessed 17 August 2012.
  79. 79.
    ViiV Healthcare. A phase IIIb, randomized, open-label study of the safety and efficacy of GSK1349572 (Dolutegravir, DTG) 50 mg once daily compared to darunavir/ritonavir (DRV/r) 800 mg/100 mg once daily each administered with fixed-dose dual nucleoside reverse transcriptase inhibitor therapy over 96 weeks in HIV-1 infected antiretroviral naïve adult subjects. 2012. http://clinicaltrials.gov/ct2/show/NCT01449929?term=dolutegravir&rank=9 Accessed 17 August 2012.
  80. 80.
    ViiVHealthcare. Shionogi-ViiV Healthcare starts phase III trial for “572-Trii” fixed-dose combination HIV therapy. 2011. http://www.viivhealthcare.com/media-room/press-releases/2011-02-03.aspx?sc_lang=en&p=1 Accessed 2 August 2012.
  81. 81.
    Walmsley S, Antela A, Clumeck N, Diuiculescu D, Eberhard A, Gutierrez F, et al. Dolutegravir (DTG; S/GSK1349572) + abacavir/lamivudine once daily statistically superior to tenofovir/emtricitabine/efavirenz: 48-week results - SINGLE (ING114467). 52nd Interscience conference on antimicrobial agents and chemotherapy, San Francisco; 2012.Google Scholar
  82. 82.
    Saladini F, Meini G, Bianco C, Monno L, Punzi G, Pecorari M, et al. Prevalence of HIV-1 integrase mutations related to resistance to dolutegravir in raltegravir naive and pretreated patients. Clin Microbiol Infect. Epub 2012 May 28.Google Scholar
  83. 83.
    Underwood MR, Johns BA, Sato A, Martin JN, Deeks SG, Fujiwara T. The Activity of the Integrase Inhibitor Dolutegravir Against HIV-1 variants isolated from raltegravir-treated adults. J Acquir Immune Defic Syndr. Epub 2012 Aug 8.Google Scholar
  84. 84.
    Yoshinaga T, Kanamori-Koyama M, Seki T, Ishida K, Akihisa E, Kobayashi M, et al. Strong inhibition of wild-type and integrase inhibitor (INI)-resistant HIV integrase (IN) strand transfer reaction by the novel INI S/GSK1349572. Dubrovnik: International HIV and hepatitis virus drug resistance workshop; 2010.Google Scholar
  85. 85.
    Seki T, Wakasa-Morimoto C, Yoshinaga T, Sato A, Fujiwara T, Underwood M, et al. S/GSK1349572 is a potent next generation HIV integrase inhibitor and demonstrates a superior resistance profile substantiated with 60 integrase mutant molecular clones,. 17th Conference on retroviruses and opportunistic infections, San Francisco; 2010.Google Scholar
  86. 86.
    Underwood M, St Clair M, Johns B, Sato A, Fujiwara T, Spreen W. S/GSK1265744: a next generation integrase inhibitor (INI) with activity against raltegravir-resistant clinical isolates. XVIII International AIDS conference, Vienna; 2010.Google Scholar
  87. 87.
    Malet I, Wirden M, Fourati S, Armenia D, Masquelier B, Fabeni L, et al. Prevalence of resistance mutations related to integrase inhibitor S/GSK1349572 in HIV-1 subtype B raltegravir-naive and -treated patients. J Antimicrob Chemother. 2011;66(7):1481–3.PubMedCrossRefGoogle Scholar
  88. 88.
    Canducci F, Ceresola ER, Boeri E, Spagnuolo V, Cossarini F, Castagna A, et al. Cross-resistance profile of the novel integrase inhibitor dolutegravir (S/GSK1349572) using clonal viral variants selected in patients failing raltegravir. J Infect Dis. 2011;204(11):1811–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Hightower KE, Wang R, Deanda F, Johns BA, Weaver K, Shen Y, et al. Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob Agents Chemother. 2011;55(10):4552–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Min S, Sloan L, DeJesus E, Hawkins T, McCurdy L, Song I, et al. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of dolutegravir as 10-day monotherapy in HIV-1-infected adults. AIDS. 2011;25(14):1737–45.PubMedCrossRefGoogle Scholar
  91. 91.
    Koteff J, Borland J, Chen S, et al. An open label, placebo-controlled study to evaluate the effect of dolutegravir (DTG, S/GSK1349572) on iohexol and para-aminohippurate clearance in healthy subjects. 51st Interscience conference on antimicrobial agents and chemotherapy, Chicago; 2011.Google Scholar
  92. 92.
    Koteff J, Borland J, Chen S. An open-label, placebo-controlled study to evaluate the effect of dolutegravir (DTG, S/GSK1349572) on iohexol and para-aminohippurate clearance in healthy subjects. 51st Interscience conference on antimicrobial agents and chemotherapy, Chicago; 2011.Google Scholar
  93. 93.
    Min S, DeJesus E, McCurdy L. Pharmacokinetics (PK) and safety in healthy and HIV-infected subjects and short-term antiviral efficacy of S/GSK1265744, a next generation once daily HIV integrase inhibitor. 49th Interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco; 2009.Google Scholar
  94. 94.
    ViiV Healthcare. Dose ranging study of GSK 1265744 plus nucleoside reverse transcriptase inhibitors for induction of human immunodeficiency virus-1 (HIV-1) irologic suppression followed by virologic suppression maintenance by GSK 1265744 plus rilpivirine. 2012. http://clinicaltrials.goc/ct2/show/NCT01641809?term=viiv&rank=6 Accessed 15 August 2012.
  95. 95.
    Spreen W, Ford SL, Chen S, Gould E, Wilfret D, Subich D, et al. Pharmacokinetics, safety and tolerability of the HIV integrase inhibitor S/GSK1265744 long acting parenteral nanosuspension following single dose administration to healthy adults. Washington, DC: XIX International AIDS conference; 2012.Google Scholar
  96. 96.
    ViiV Healthcare. A study to investigate the safety, tolerability and pharmacokinetics of repeat dose administration of long-acting GSK1265744 and long-acting TMC278 intramuscular and subcutaneous injections in healthy adult subjects. 2012. http://clinicaltrials.gov/ct2/show/NCT01593046 Accessed 16 August 2012.
  97. 97.
    Yoshinaga T, Kobayashi M, Seki T, Kawasuji T, Taishi T, Sato A, et al. Antiviral characteristics of S/GSK1265744, an HIV integrase inhibitor (INI) dosed by oral or long-acting parenteral injection. 52nd Interscience conference on antimicrobial agents and chemotherapy, San Francisco; 2012.Google Scholar
  98. 98.
    Di Santo R. Diketo acids derivatives as dual inhibitors of human immunodeficiency virus type 1 integrase and the reverse transcriptase RNase H domain. Curr Med Chem. 2011;18(22):3335–42.PubMedCrossRefGoogle Scholar
  99. 99.
    De Luca L, Ferro S, Morreale F, Chimirri A. Inhibition of the interaction between HIV-1 integrase and its cofactor LEDGF/p75: a promising approach in anti-retroviral therapy. Mini Rev Med Chem. 2011;11(8):714–27.PubMedCrossRefGoogle Scholar
  100. 100.
    Meehan AM, Saenz DT, Morrison J, Hu C, Peretz M, Poeschla EM. LEDGF dominant interference proteins demonstrate prenuclear exposure of HIV-1 integrase and synergize with LEDGF depletion to destroy viral infectivity. J Virol. 2011;85(7):3570–83.PubMedCrossRefGoogle Scholar
  101. 101.
    Christ F, Pickford C, Demeulemeester J, Shaw S, Desimmie BA, Smith-Burchnell C, et al. Pre-clinical evaluation of HIV replication inhibitors that target the HIV-integrase-LEDGF/p75 interaction. Washington, DC: XIX International AIDS conference; 2012.Google Scholar
  102. 102.
    Christ F, Pickford C, Shaw S, Demeulemeester J, Desimmie BA, Smith-Burchnell C, et al. Preclinical evaluation of HIV replication inhibitors that target the HIV integrase-LEDGF/p75 interaction. 19th Conference on retroviruses and opportunistic infections, Seattle; 2012.Google Scholar
  103. 103.
    Christ F, Shaw S, Demeulemeester J, Desimmie BA, Marchand A, Butler S, et al. Small molecule inhibitors of the LEDGF/p75 binding site of integrase (LEDGINs) block HIV replication and modulate integrase multimerization. Antimicrob Agents Chemother. Epub 2012 Jun 4.Google Scholar
  104. 104.
    Fenwick C, Bethell R, Cordingley M, Edwards P, Quinson A-M, Robinson P, et al. BI 224436, a non-catalytic site integrase inhibitor, is a potent inhibitor of the replication of treatment-naive and raltegravir-resistant clinical isolates of HIV-1. 51st Interscience conference on antimicrobial agents and chemotherapy, Chicago; 2011.Google Scholar
  105. 105.
    Brown AN, McSharry J, Kulawy R. Pharmacodynamics of BI 224436 for HIV-1 in an in vitro hollow fiber infection model system. 51st Interscience conference on antimicrobial agents and chemotherapy, Chicago; 2011.Google Scholar
  106. 106.
    Aslanyan S, Ballow CH, Sabo JP, Habeck J, Roos D, Macgregor TR, et al. Safety and pharmacokinetics (PK) of single rising oral doses of a novel HIV integrase inhibitor in healthy volunteers. 51st Interscience conference on antimicrobial agents and chemotherapy, Chicago; 2011.Google Scholar
  107. 107.
    Pommier Y, Johnson AA, Marchand C. Integrase inhibitors to treat HIV/AIDS. Nat Rev Drug Discov. 2005;4(3):236–48.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Aaron Diamond AIDS Research CenterNew YorkUSA
  2. 2.Rockefeller UniversityNew YorkUSA

Personalised recommendations