Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mechanisms of Severe Cutaneous Adverse Reactions: Recent Advances


Cutaneous adverse drug reactions are unpredictable and include various different skin conditions of varying degrees of severity. The most concerning are usually referred to as severe cutaneous adverse reactions (SCARs) and include acute generalized exanthematous pustulosis (AGEP), drug reaction with eosinophilia and systemic symptoms (DRESS), also known as drug-induced hypersensitivity syndrome (DiHS) or hypersensitivity syndrome (HSS), Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). All are delayed type IV hypersensitivity reactions in which a T-cell-mediated drug-specific immune response is responsible for causing the disease. Nonetheless, specific T-cell subpopulations develop in response to certain environmental conditions and produce cytokines that orchestrate the various phenotypes. Cytotoxic T lymphocytes (CTLs), T-helper type 1 (Th1), Th2, Th17, and regulatory T cells (Treg), among other T-cell subpopulations, participate in the development of SCAR phenotypes. Cell subpopulations belonging to the innate immune system, comprising natural killer cells, innate lymphoid cells, monocytes, macrophages and dendritic cells, can also participate in shaping specific immune responses in various clinical conditions. Additionally, tissue-resident cells, including keratinocytes, can contribute to epidermal damage by secreting chemokines that attract pro-inflammatory immunocytes. The final phenotypes in each clinical entity result from the complex interactions between a variety of cell lineages, their products, soluble mediators and genetic and environmental factors. Although the pathophysiology of these reactions is not fully understood, intensive research in recent years has led to major progress in our understanding of the contribution of certain cell types and soluble mediators to the variability of SCAR phenotypes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet. 2000;356(9237):1255–9.

  2. 2.

    Rawlins MD, Thompson JW. Pathogenesis of adverse drug reactions. In: Davies DM, editor. Textbook of adverse drug reactions. Oxford: Oxford University Press; 1977. p. 10–31.

  3. 3.

    Johansson SG, Bieber T, Dahl R, Friedmann PS, Lanier BQ, Lockey RF, et al. Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol. 2004;113(5):832–6.

  4. 4.

    Paulmann M, Mockenhaupt M. Severe drug-induced skin reactions: clinical features, diagnosis, etiology, and therapy. J Dtsch Dermatol Ges. 2015;13(7):625–45.

  5. 5.

    Bellón T, Cabañas R, González-Herrada C, Ramírez E, González-Ramos J, López San Martín M, et al. Approach to severe cutaneous adverse drug reactions. Curr Treat Options Allergy. 2017;4(2):201–21.

  6. 6.

    Sekula P, Dunant A, Mockenhaupt M, Naldi L, Bouwes Bavinck JN, Halevy S, et al. Comprehensive survival analysis of a cohort of patients with Stevens–Johnson syndrome and toxic epidermal necrolysis. J Investig Dermatol. 2013;133(5):1197–204.

  7. 7.

    Bellón T, Blanca M. The innate immune system in delayed cutaneous allergic reactions to medications. Curr Opin Allergy Clin Immunol. 2011;11(4):292–8.

  8. 8.

    Bellon T. Effector cells and downstream mediators in severe cutaneous adverse reactions. Curr Immunol Rev. 2014;10(1):24–32.

  9. 9.

    Sidoroff A, Dunant A, Viboud C, Halevy S, Bavinck JNB, Naldi L, et al. Risk factors for acute generalized exanthematous pustulosis (AGEP)-results of a multinational case-control study (EuroSCAR). Br J Dermatol. 2007;157(5):989–96.

  10. 10.

    Halevy S, Kardaun SH, Davidovici B, Wechsler J, EuroSCAR and RegiSCAR study group. The spectrum of histopathological features in acute generalized exanthematous pustulosis: a study of 102 cases. Br J Dermatol. 2010;163(6):1245–52.

  11. 11.

    De A, Das S, Sarda A, Pal D, Biswas P. Acute generalised exanthematous pustulosis: an update. Indian J Dermatol. 2018;63(1):22–9.

  12. 12.

    Britschgi M, Steiner UC, Schmid S, Depta JP, Senti G, Bircher A, et al. T-cell involvement in drug-induced acute generalized exanthematous pustulosis. J Clin Investig. 2001;107(11):1433–41.

  13. 13.

    Padial MA, Alvarez-Ferreira J, Tapia B, Blanco R, Mañas C, Blanca M, et al. Acute generalized exanthematous pustulosis associated with pseudoephedrine. Br J Dermatol. 2004;150(1):139–42.

  14. 14.

    Roujeau JC, Haddad C, Paulmann M, Mockenhaupt M. Management of nonimmediate hypersensitivity reactions to drugs. Immunol Allergy Clin N Am. 2014;34(3):473–87.

  15. 15.

    Mockenhaupt M. Epidemiology of cutaneous adverse drug reactions. Chem Immunol Allergy. 2012;97:1–17.

  16. 16.

    Saissi EH, Beau-Salinas F, Jonville-Béra AP, Lorette G, Autret-Leca E, Centres Régionaux de Pharmacovigilance. Drugs associated with acute generalized exanthematic pustulosis. Ann Dermatol Venereol. 2003;130(6–7):612–8.

  17. 17.

    Bocquet H, Bagot M, Roujeau JC. Drug-induced pseudolymphoma and drug hypersensitivity syndrome (Drug Rash with Eosinophilia and Systemic Symptoms: DRESS). Semin Cutan Med Surg. 1996;15(4):250–7.

  18. 18.

    Walsh S, Diaz-Cano S, Higgins E, Morris-Jones R, Bashir S, Bernal W, et al. Drug reaction with eosinophilia and systemic symptoms: is cutaneous phenotype a prognostic marker for outcome? A review of clinicopathological features of 27 cases. Br J Dermatol. 2013;168(2):391–401.

  19. 19.

    Kano Y, Hiraharas K, Sakuma K, Shiohara T. Several herpesviruses can reactivate in a severe drug-induced multiorgan reaction in the same sequential order as in graft-versus-host disease. Br J Dermatol. 2006;155(2):301–6.

  20. 20.

    Shear NH, Spielberg SP. Anticonvulsant hypersensitivity syndrome. In vitro assessment of risk. J Clin Investig. 1988;82(6):1826–32.

  21. 21.

    Lupton GP, Odom RB. The allopurinol hypersensitivity syndrome. J Am Acad Dermatol. 1979;1(4):365–74.

  22. 22.

    Shiohara T, Kano Y. A complex interaction between drug allergy and viral infection. Clin Rev Allergy Immunol. 2007;33(1–2):124–33.

  23. 23.

    Kardaun SH, Sidoroff A, Valeyrie-Allanore L, Halevy S, Davidovici BB, Mockenhaupt M, et al. Variability in the clinical pattern of cutaneous side-effects of drugs with systemic symptoms: does a DRESS syndrome really exist? Br J Dermatol. 2007;156(3):609–11.

  24. 24.

    Shiohara T, Iijima M, Ikezawa Z, Hashimoto K. The diagnosis of a DRESS syndrome has been sufficiently established on the basis of typical clinical features and viral reactivations. Br J Dermatol. 2007;156(5):1083–4.

  25. 25.

    Ishida T, Kano Y, Mizukawa Y, Shiohara T. The dynamics of herpesvirus reactivations during and after severe drug eruptions: their relation to the clinical phenotype and therapeutic outcome. Allergy. 2014;69(6):798–805.

  26. 26.

    Cacoub P, Musette P, Descamps V, Meyer O, Speirs C, Finzi L, et al. The DRESS syndrome: a literature review. Am J Med. 2011;124(7):588–97.

  27. 27.

    Kardaun SH, Sekula P, Valeyrie-Allanore L, Liss Y, Chu CY, Creamer D, et al. Drug reaction with eosinophilia and systemic symptoms (DRESS): an original multisystem adverse drug reaction. Results from the prospective RegiSCAR study. Br J Dermatol. 2013;169(5):1071–80.

  28. 28.

    Peyriere H, Dereure O, Breton H, Demoly P, Cociglio M, Blayac J-P, et al. Variability in the clinical pattern of cutaneous side-effects of drugs with systemic symptoms: does a DRESS syndrome really exist? Br J Dermatol. 2006;155(2):422–8.

  29. 29.

    Shiohara T, Kano Y. Drug reaction with eosinophilia and systemic symptoms (DRESS): incidence, pathogenesis and management. Expert Opin Drug Saf. 2017;16(2):139–47.

  30. 30.

    Phillips E, Mallal S. Successful translation of pharmacogenetics into the clinic: the abacavir example. Mol Diagn Ther. 2009;13(1):1–9.

  31. 31.

    Fernando SL. Drug-reaction eosinophilia and systemic symptoms and drug-induced hypersensitivity syndrome. Australas J Dermatol. 2014;55(1):15–23.

  32. 32.

    Ortonne N, Valeyrie-Allanore L, Bastuji-Garin S, Wechsler J, de Feraudy S, Duong T-A, et al. Histopathology of drug rash with eosinophilia and systemic symptoms syndrome: a morphological and phenotypical study. Br J Dermatol. 2015;173(1):50–8.

  33. 33.

    Cho YT, Liau JY, Chang CY, Yang CW, Chen KL, Chen YC, et al. Co-existence of histopathological features is characteristic in drug reaction with eosinophilia and systemic symptoms and correlates with high grades of cutaneous abnormalities. J Eur Acad Dermatol Venereol. 2016;30(12):2077–84.

  34. 34.

    Shiohara T, Kano Y, Takahashi R, Ishida T, Mizukawa Y. Drug-induced hypersensitivity syndrome: recent advances in the diagnosis, pathogenesis and management. In: French LE, editor. Adverse cutaneous drug eruptions. Basel: Karger; 2012. p. 122–38.

  35. 35.

    George C, Sears A, Selim A-G, Walsh S, Creamer D. Systemic hypersensitivity reaction to Omnipaque radiocontrast medium: a case of mini-DRESS. Clin Case Rep. 2016;4(4):336–8.

  36. 36.

    Ortonne N. Is DRESS syndrome a single entity or within a spectrum of adverse reactions to drug? Br J Dermatol. 2016;175(6):1142–4.

  37. 37.

    Chen YC, Chiu HC, Chu CY. Drug reaction with eosinophilia and systemic symptoms. Arch Dermatol. 2010;146(12):1373–9.

  38. 38.

    Cho Y-T, Chu C-Y. Treatments for severe cutaneous adverse reactions. J Immunol Res. 2017. https://doi.org/10.1155/2017/1503709.

  39. 39.

    Roujeau JC, Moritz S, Guillaume JC, Bombal C, Revuz J, Weil B, et al. Lymphopenia and abnormal balance of T-lymphocyte subpopulations in toxic epidermal necrolysis. Arch Dermatol Res. 1985;277(1):24–7.

  40. 40.

    Correia O, Delgado L, Ramos JP, Resende C, Torrinha JA. Cutaneous T-cell recruitment in toxic epidermal necrolysis. Further evidence of CD8 + lymphocyte involvement. Arch Dermatol. 1993;129(4):466–8.

  41. 41.

    Morel E, Escamochero S, Cabañas R, Díaz R, Fiandor A, Bellón T. CD94/NKG2C is a killer effector molecule in patients with Stevens-Johnson syndrome and toxic epidermal necrolysis. J Allergy Clin Immunol. 2010;125(3):703–10.

  42. 42.

    Bastuji-Garin S, Rzany B, Stern RS, Shear NH, Naldi L, Roujeau JC. Clinical classification of cases of toxic epidermal necrolysis, Stevens–Johnson syndrome, and erythema multiforme. Arch Dermatol. 1993;129(1):92–6.

  43. 43.

    Phillips EJ. New strategies to predict and prevent serious immunologically mediated adverse drug reactions. Trans Am Clin Climatol Assoc. 2018;129:74–87.

  44. 44.

    Le Cleach L, Delaire S, Boumsell L, Bagot M, Bourgault-Villada I, Bensussan A, et al. Blister fluid T lymphocytes during toxic epidermal necrolysis are functional cytotoxic cells which express human natural killer (NK) inhibitory receptors. Clin Exp Immunol. 2000;119(1):225–30.

  45. 45.

    Yang Y, Li F, Du J, Shen Y, Lin J, Zhu X, et al. Variable levels of apoptotic signal-associated cytokines in the disease course of patients with Stevens–Johnson syndrome and toxic epidermal necrolysis. Australas J Dermatol. 2017;58(3):e61–7.

  46. 46.

    Heng YK, Lee HY, Roujeau J-C. Epidermal necrolysis: 60 years of errors and advances. Br J Dermatol. 2015;173(5):1250–4.

  47. 47.

    Hoetzenecker W, Nägeli M, Mehra ET, Jensen AN, Saulite I, Schmid-Grendelmeier P, et al. Adverse cutaneous drug eruptions: current understanding. Semin Immunopathol. 2016;38(1):75–86.

  48. 48.

    Dodiuk-Gad RP, Chung W-H, Valeyrie-Allanore L, Shear NH. Stevens–Johnson syndrome and toxic epidermal necrolysis: an update. Am J Clin Dermatol. 2015;16(6):475–93.

  49. 49.

    Sassolas B, Haddad C, Mockenhaupt M, Dunant A, Liss Y, Bork K, et al. ALDEN, an algorithm for assessment of drug causality in Stevens–Johnson Syndrome and toxic epidermal necrolysis: comparison with case-control analysis. Clin Pharmacol Ther. 2010;88(1):60–8.

  50. 50.

    Olson D, Watkins LKF, Demirjian A, Lin X, Robinson CC, Pretty K, et al. Outbreak of Mycoplasma pneumoniae-associated Stevens–Johnson syndrome. Pediatrics. 2015;136(2):e386–94.

  51. 51.

    Fournier S, Bastuji-Garin S, Mentec H, Revuz J, Roujeau JC. Toxic epidermal necrolysis associated with Mycoplasma pneumoniae infection. Eur J Clin Microbiol Infect Dis. 1995;14(6):558–9.

  52. 52.

    Chung WH, Shih SR, Chang CF, Lin TY, Huang YC, Chang SC, et al. Clinicopathologic analysis of coxsackievirus a6 new variant induced widespread mucocutaneous bullous reactions mimicking severe cutaneous adverse reactions. J Infect Dis. 2013;208(12):1968–78.

  53. 53.

    Hsu DY, Brieva J, Silverberg NB, Silverberg JI. Morbidity and mortality of Stevens–Johnson syndrome and toxic epidermal necrolysis in United States adults. J Investig Dermatol. 2016;136(7):1387–97.

  54. 54.

    Mittmann N, Knowles SR, Koo M, Shear NH, Rachlis A, Rourke SB. Incidence of toxic epidermal necrolysis and Stevens–Johnson syndrome in an HIV cohort. Am J Clin Dermatol. 2012;13(1):49–54.

  55. 55.

    Palmares J, Correia O, Delgado L, Vazsilva M, Mesquita-Guimaraes J, Castro-Correia J. Ocular involvement in toxic epidermal necrolysis. Ocul Immunol Inflamm. 1993;1(1–2):171–8.

  56. 56.

    Schwartz RA, McDonough PH, Lee BW. Toxic epidermal necrolysis: part II. Prognosis, sequelae, diagnosis, differential diagnosis, prevention, and treatment. J Am Acad Dermatol. 2013;69(2):187–216.

  57. 57.

    Yang CW, Cho YT, Chen KL, Chen YC, Song HL, Chu CY. Long-term sequelae of Stevens–Johnson syndrome/toxic epidermal necrolysis. Acta Dermato Venereol. 2016;96(4):525–9.

  58. 58.

    Coombs R, Gell P. Classification of allergic reactions responsible for drug hypersensitivity reactions. In: Coombs RRA, Gells PGH, editors. Clinical aspects of immunology. Oxford: Blackwell Scientific Publications, Ltd; 1968. p. 575–96.

  59. 59.

    Pichler WJ. Delayed drug hypersensitivity reactions. Ann Intern Med. 2003;139(8):683–93.

  60. 60.

    Pichler WJ. Drug hypersensitivity reactions: classification and relationship to T-cell activation. In: Pichler WJ, editor. Drug hypersensitivity. Basel: Karger; 2007. p. 168–89.

  61. 61.

    Redwood AJ, Pavlos RK, White KD, Phillips EJ. HLAs: key regulators of T-cell-mediated drug hypersensitivity. HLA. 2018;91(1):3–16.

  62. 62.

    Nassif A, Moslehi H, Le Gouvello S, Bagot M, Lyonnet L, Michel L, et al. Evaluation of the potential role of cytokines in toxic epidermal necrolysis. J Investig Dermatol. 2004;123(5):850–5.

  63. 63.

    Takahashi R, Kano Y, Yamazaki Y, Kimishima M, Mizukawa Y, Shiohara T. Defective regulatory T cells in patients with severe drug eruptions: timing of the dysfunction is associated with the pathological phenotype and outcome. J Immunol. 2009;182(12):8071–9.

  64. 64.

    Britschgi M, Pichler WJ. Acute generalized exanthematous pustulosis, a clue to neutrophil-mediated inflammatory processes orchestrated by T cells. Curr Opin Allergy Clin Immunol. 2002;2(4):325–31.

  65. 65.

    Schaerli P, Britschgi M, Keller M, Steiner UC, Steinmann LS, Moser B, et al. Characterization of human T cells that regulate neutrophilic skin inflammation. J Immunol. 2004;173(3):2151–8.

  66. 66.

    Keller M, Spanou Z, Schaerli P, Britschgi M, Yawalkar N, Seitz M, et al. T cell-regulated neutrophilic inflammation in autoinflammatory diseases. J Immunol. 2005;175(11):7678–86.

  67. 67.

    Kabashima R, Sugita K, Sawada Y, Hino R, Nakamura M, Tokura Y. Increased circulating Th17 frequencies and serum IL-22 levels in patients with acute generalized exanthematous pustulosis. J Eur Acad Dermatol Venereol. 2011;25(4):485–8.

  68. 68.

    Kakeda M, Schlapbach C, Danelon G, Tang MM, Cecchinato V, Yawalkar N, et al. Innate immune cells express IL-17A/F in acute generalized exanthematous pustulosis and generalized pustular psoriasis. Arch Dermatol Res. 2014;306(10):933–8.

  69. 69.

    Teunissen MBM, Bos JD, Koomen CW, de Waal Malefyt R, Wierenga EA. Interleukin-17 and interferon-γ synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Investig Dermatol. 1998;111(4):645–9.

  70. 70.

    Albanesi C, Cavani A, Girolomoni G. IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes: synergistic or antagonist effects with IFN-gamma and TNF-alpha. J Immunol. 1999;162(1):494–502.

  71. 71.

    Romagnani S, Maggi E, Liotta F, Cosmi L, Annunziato F. Properties and origin of human Th17 cells. Mol Immunol. 2009;47(1):3–7.

  72. 72.

    Navarini AA, Valeyrie-Allanore L, Setta-Kaffetzi N, Barker JN, Capon F, Creamer D, et al. Rare variations in IL36RN in severe adverse drug reactions manifesting as acute generalized exanthematous pustulosis. J Investig Dermatol. 2013;133(7):1904–7.

  73. 73.

    Song HS, Kim SJ, Park T-I, Jang YH, Lee E-S. Immunohistochemical comparison of IL-36 and the IL-23/Th17 axis of generalized pustular psoriasis and acute generalized exanthematous pustulosis. Ann Dermatol. 2016;28(4):451–6.

  74. 74.

    Meier-Schiesser B, Feldmeyer L, Jankovic D, Mellett M, Satoh TK, Yerly D, et al. Culprit drugs induce specific IL-36 overexpression in acute generalized exanthematous pustulosis. J Investig Dermatol. 2018;139(4):848–58.

  75. 75.

    Mennicke M, Zawodniak A, Keller M, Wilkens L, Yawalkar N, Stickel F, et al. Fulminant liver failure after vancomycin in a sulfasalazine-induced DRESS syndrome: fatal recurrence after liver transplantation. Am J Transplant. 2009;9(9):2197–202.

  76. 76.

    Kitcharoensakkul M, Ree N, Bloomberg GR, Dehner LP, Heidingsfelder JA, White AJ, et al. Vancomycin-induced DRESS with evidence of T-cell activation in a 22-month-old patient. Ann Allergy Asthma Immunol. 2012;109(4):280–1.

  77. 77.

    An J, Lee JH, Lee H, Yu E, Lee DB, Shim JH, et al. Drug rash with eosinophilia and systemic symptoms syndrome following cholestatic hepatitis A: a case report. Korean J Hepatol. 2012;18(1):84–8.

  78. 78.

    Choquet-Kastylevsky G, Intrator L, Chenal C, Bocquet H, Revuz J, Roujeau JC. Increased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. Br J Dermatol. 1998;139(6):1026–32.

  79. 79.

    Ogawa K, Morito H, Hasegawa A, Daikoku N, Miyagawa F, Okazaki A, et al. Identification of thymus and activation-regulated chemokine (TARC/CCL17) as a potential marker for early indication of disease and prediction of disease activity in drug-induced hypersensitivity syndrome (DIHS)/drug rash with eosinophilia and systemic symptoms (DRESS). J Dermatol Sci. 2013;69(1):38–43.

  80. 80.

    Ange N, Alley S, Fernando SL, Coyle L, Yun J. Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) syndrome successfully treated with mepolizumab. J Allergy Clin Immunol Pract. 2018;6(3):1059–60.

  81. 81.

    Teraki Y, Fukuda T. Skin-homing IL-13-producing T cells expand in the circulation of patients with drug rash with eosinophilia and systemic symptoms. Dermatology. 2017;233(2–3):242–9.

  82. 82.

    Ogawa K, Morito H, Hasegawa A, Miyagawa F, Kobayashi N, Watanabe H, et al. Elevated serum thymus and activation-regulated chemokine (TARC/CCL17) relates to reactivation of human herpesvirus 6 in drug reaction with eosinophilia and systemic symptoms (DRESS)/drug-induced hypersensitivity syndrome (DIHS). Br J Dermatol. 2014;171(2):425–7.

  83. 83.

    Picard D, Janela B, Descamps V, D’Incan M, Courville P, Jacquot S, et al. Drug reaction with eosinophilia and systemic symptoms (DRESS): a multiorgan antiviral T cell response. Sci Transl Med. 2010;2(46):46ra62.

  84. 84.

    Tsai YG, Liou JH, Hung SI, Chen CB, Chiu TM, Wang CW, et al. Increased type 2 innate lymphoid cells in patients with drug reaction with eosinophilia and systemic symptom. J Investig Dermatol. 2019;78:98. https://doi.org/10.1016/j.jid.2018.10.048.

  85. 85.

    Paul C, Wolkenstein P, Adle H, Wechsler J, Garchon HJ, Revuz J, et al. Apoptosis as a mechanism of keratinocyte death in toxic epidermal necrolysis. Br J Dermatol. 1996;134(4):710–4.

  86. 86.

    Nassif A, Bensussan A, Dorothée G, Mami-Chouaib F, Bachot N, Bagot M, et al. Drug specific cytotoxic T-cells in the skin lesions of a patient with toxic epidermal necrolysis. J Investig Dermatol. 2002;118(4):728–33.

  87. 87.

    Viard I, Wehrli P, Bullani R, Schneider P, Holler N, Salomon D, et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science. 1998;282(5388):490–3.

  88. 88.

    Paquet P, Piérard GE. Soluble fractions of tumor necrosis factor-alpha, interleukin-6 and of their receptors in toxic epidermal necrolysis: a comparison with second-degree burns. Int J Mol Med. 1998;1(2):459–62.

  89. 89.

    Correia O, Delgado L, Barbosa IL, Campilho F, Fleming-Torrinha J. Increased interleukin 10, tumor necrosis factor alpha, and interleukin 6 levels in blister fluid of toxic epidermal necrolysis. J Am Acad Dermatol. 2002;47(1):58–62.

  90. 90.

    Cho YT, Lin JW, Chen YC, Chang CY, Hsiao CH, Chung WH, et al. Generalized bullous fixed drug eruption is distinct from Stevens–Johnson syndrome/toxic epidermal necrolysis by immunohistopathological features. J Am Acad Dermatol. 2014;70(3):539–48.

  91. 91.

    Chang HY, Cooper ZA, Swetter SM, Marinkovich MP. Kinetics and specificity of Fas ligand induction in toxic epidermal necrolysis. Arch Dermatol. 2004;140(2):242–4.

  92. 92.

    Abe R, Shimizu T, Shibaki A, Nakamura H, Watanabe H, Shimizu H. Toxic epidermal necrolysis and Stevens–Johnson syndrome are induced by soluble Fas ligand. Am J Pathol. 2003;162(5):1515–20.

  93. 93.

    O’Reilly LA, Tai L, Lee L, Kruse EA, Grabow S, Fairlie WD, et al. Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature. 2009;461(7264):659–63.

  94. 94.

    Lotti R, Shu E, Petrachi T, Marconi A, Palazzo E, Quadri M, et al. Soluble Fas ligand is essential for blister formation in pemphigus. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.00370.

  95. 95.

    Hashizume H, Fujiyama T, Tokura Y. Reciprocal contribution of Th17 and regulatory T cells in severe drug allergy. J Dermatol Sci. 2016;81(2):131–4.

  96. 96.

    Teraki Y, Kawabe M, Izaki S. Possible role of TH17 cells in the pathogenesis of Stevens–Johnson syndrome and toxic epidermal necrolysis. J Allergy Clin Immunol. 2013;131(3):907–9.

  97. 97.

    Chung WH, Hung SI, Yang JY, Su SC, Huang SP, Wei CY, et al. Granulysin is a key mediator for disseminated keratinocyte death in Stevens–Johnson syndrome and toxic epidermal necrolysis. Nat Med. 2008;14(12):1343–50.

  98. 98.

    Schlapbach C, Zawodniak A, Irla N, Adam J, Hunger RE, Yerly D, et al. NKp46 + cells express granulysin in multiple cutaneous adverse drug reactions. Allergy. 2011;66(11):1469–76.

  99. 99.

    Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23(1):225–74.

  100. 100.

    Su SC, Mockenhaupt M, Wolkenstein P, Dunant A, Le Gouvello S, Chen CB, et al. Interleukin-15 is associated with severity and mortality in Stevens–Johnson syndrome/toxic epidermal necrolysis. J Investig Dermatol. 2017;137(5):1065–73.

  101. 101.

    Sekula P, Liss Y, Davidovici B, Dunant A, Roujeau J-C, Kardaun S, et al. Evaluation of SCORTEN on a cohort of patients with Stevens–Johnson syndrome and toxic epidermal necrolysis included in the RegiSCAR study. J Burn Care Res. 2011;32(2):237–45.

  102. 102.

    Castillo EF, Schluns KS. Regulating the immune system via IL-15 transpresentation. Cytokine. 2012;59(3):479–90.

  103. 103.

    Clayberger C, Krensky AM. Granulysin. Curr Opin Immunol. 2003;15(5):560–5.

  104. 104.

    Stern RS, Divito SJ. Stevens–Johnson syndrome and toxic epidermal necrolysis: associations, outcomes, and pathobiology—thirty years of progress but still much to be done. J Investig Dermatol. 2017;137(5):1004–8.

  105. 105.

    Ueta M, Sawai H, Sotozono C, Hitomi Y, Kaniwa N, Kim MK, et al. IKZF1, a new susceptibility gene for cold medicine–related Stevens–Johnson syndrome/toxic epidermal necrolysis with severe mucosal involvement. J Allergy Clin Immunol. 2015;135(6):1538–45.

  106. 106.

    Tapia B, Padial A, Sánchez-Sabaté E, Alvarez-Ferreira J, Morel E, Blanca M, et al. Involvement of CCL27-CCR106 interactions in drug-induced cutaneous reactions. J Allergy Clin Immunol. 2004;114(2):335–40.

  107. 107.

    Tohyama M, Watanabe H, Murakami S, Shirakata Y, Sayama K, Iijima M, et al. Possible involvement of CD14 + CD16 + monocyte lineage cells in the epidermal damage of Stevens–Johnson syndrome and toxic epidermal necrolysis. Br J Dermatol. 2012;166(2):322–30.

  108. 108.

    de Araujo E, Dessirier V, Laprée G, Valeyrie-Allanore L, Ortonne N, Stathopoulos EN, et al. Death ligand TRAIL, secreted by CD1a + and CD14 + cells in blister fluids, is involved in killing keratinocytes in toxic epidermal necrolysis. Exp Dermatol. 2011;20(2):107–12.

  109. 109.

    Wang CW, Yang LY, Chen CB, Ho HC, Hung SI, Yang CH, et al. Randomized, controlled trial of TNF-α antagonist in CTL-mediated severe cutaneous adverse reactions. J Clin Investig. 2018;128(3):985–96.

  110. 110.

    Bellón T, Alvarez L, Mayorga C, Morel E, Torres MJ, Martín-Díaz MA, et al. Differential gene expression in drug hypersensitivity reactions: induction of alarmins in severe bullous diseases. Br J Dermatol. 2010;162(5):1014–22.

  111. 111.

    Paquet P, Nusgens BV, Piérard GE, Lapière CM. Gelatinases in drug-induced toxic epidermal necrolysis. Eur J Clin Investig. 1998;28(7):528–32.

  112. 112.

    Gaultier F, Ejeil A-L, Igondjo-Tchen S, Dohan D, Dridi SM, Maman L, et al. Possible involvement of gelatinase A (MMP2) and gelatinase B (MMP9) in toxic epidermal necrolysis or Stevens–Johnson syndrome. Arch Dermatol Res. 2004;296(5):220–5.

  113. 113.

    Arafat SN, Suelves AM, Spurr-Michaud S, Chodosh J, Foster CS, Dohlman CH, et al. Neutrophil collagenase, gelatinase, and myeloperoxidase in tears of patients with Stevens–Johnson syndrome and ocular cicatricial pemphigoid. Ophthalmology. 2014;121(1):79–87.

  114. 114.

    Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010. https://doi.org/10.1155/2010/672395.

  115. 115.

    Yang D, Han Z, Oppenheim JJ. Alarmins and immunity. Immunol Rev. 2017;280(1):41–56.

  116. 116.

    Paquet P, Piérard GE. Epidermal calprotectin in drug-induced toxic epidermal necrolysis. J Cutan Pathol. 1999;26(6):301–5.

  117. 117.

    Paquet P, Piérard GE. Keratinocyte injury in drug-induced toxic epidermal necrolysis: simultaneous but distinct topographic expression of CD95R and calprotectin. Int J Mol Med. 2002;10(2):145–7.

  118. 118.

    Morel E, Alvarez L, Cabañas R, Fiandor A, Díaz R, Escamochero S, et al. Expression of α-defensin 1-3 in T cells from severe cutaneous drug-induced hypersensitivity reactions. Allergy. 2011;66(3):360–7.

  119. 119.

    Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3(9):710–20.

  120. 120.

    Lehrer RI, Lu W. α-Defensins in human innate immunity. Immunol Rev. 2012;245(1):84–112.

  121. 121.

    Tewary P, Yang D, de la Rosa G, Li Y, Finn MW, Krensky AM, et al. Granulysin activates antigen-presenting cells through TLR4 and acts as an immune alarmin. Blood. 2010;116(18):3465–74.

  122. 122.

    Deng A, Chen S, Li Q, Lyu S-C, Clayberger C, Krensky AM. Granulysin, a cytolytic molecule, is also a chemoattractant and proinflammatory activator. J Immunol. 2005;174(9):5243–8.

  123. 123.

    Hashizume H, Fujiyama T, Kanebayashi J, Kito Y, Hata M, Yagi H. Skin recruitment of monomyeloid precursors involves human herpesvirus-6 reactivation in drug allergy. Allergy. 2013;68(5):681–9.

  124. 124.

    Fujita H, Matsukura S, Watanabe T, Komitsu N, Watanabe Y, Takahashi Y, et al. The serum level of HMGB1 (high mobility group box 1 protein) is preferentially high in drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms. Br J Dermatol. 2014;171(6):1585–8.

  125. 125.

    Adachi A, Komine M, Tsuda H, Nakajima S, Kabashima K, Ohtsuki M. Differential expression of alarmins: IL-33 as a candidate marker for early diagnosis of toxic epidermal necrolysis. J Allergy Clin Immunol Pract. 2019;7(1):325–7.

  126. 126.

    Carr DF, Chung W-H, Jenkiins RE, Chaponda M, Nwikue G, Cornejo Castro EM, et al. 7th drug hypersensitivity meeting: part one. Clin Transl Allergy. 2016;6(S3):31.

  127. 127.

    Nakajima S, Watanabe H, Tohyama M, Sugita K, Iijima M, Hashimoto K, et al. High-mobility group box 1 protein (HMGB1) as a novel diagnostic tool for toxic epidermal necrolysis and Stevens–Johnson syndrome. Arch Dermatol. 2011;147(9):1110–2.

  128. 128.

    Carr DF, Wang C-W, Bellón T, Ressel L, Nwikue G, Shrivastava V, et al. Serum and blister-fluid elevation and decreased epidermal content of HMGB1 protein in drug-induced Stevens–Johnson syndrome/toxic epidermal necrolysis. Br J Dermatol. 2019. https://doi.org/10.1111/bjd.17610.

  129. 129.

    Roujeau JC, Huynh TN, Bracq C, Guillaume JC, Revuz J, Touraine R. Genetic susceptibility to toxic epidermal necrolysis. Arch Dermatol. 1987;123(9):1171–3.

  130. 130.

    Pellicano R, Silvestris A, Iannantuono M, Ciavarella G, Lomuto M. Familial occurrence of fixed drug eruptions. Acta Derm Venereol. 1992;72(4):292–3.

  131. 131.

    Melsom RD. Familial hypersensitivity to allopurinol with subsequent desensitization. Rheumatology (Oxford). 1999;38(12):1301.

  132. 132.

    Mallal S, Nolan D, Witt C, Masel G, Martin AM, Moore C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002;359(9308):727–32.

  133. 133.

    Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL, Spreen W, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet. 2002;359(9312):1121–2.

  134. 134.

    Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, et al. A marker for Stevens–Johnson syndrome. Nature. 2004;428(6982):486.

  135. 135.

    Hung SI, Chung WH, Liou LB, Chu CC, Lin M, Huang HP, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci USA. 2005;102(11):4134–9.

  136. 136.

    White KD, Abe R, Ardern-Jones M, Beachkofsky T, Bouchard C, Carleton B, et al. SJS/TEN 2017: building multidisciplinary networks to drive science and translation. J Allergy Clin Immunol Pract. 2018;6(1):38–69.

  137. 137.

    Sousa-Pinto B, Correia C, Gomes L, Gil-Mata S, Araújo L, Correia O, et al. HLA and delayed drug-induced hypersensitivity. Int Arch Allergy Immunol. 2016;170(3):163–79.

  138. 138.

    Chen CB, Abe R, Pan RY, Wang CW, Hung SI, Tsai YG, et al. An updated review of the molecular mechanisms in drug hypersensitivity. J Immunol Res. 2018. https://doi.org/10.1155/2018/6431694.

  139. 139.

    Phillips EJ. Defining regional differences in drug-induced Stevens–Johnson syndrome/toxic epidermal necrolysis: a tool to improve drug safety? Clin Pharmacol Ther. 2019;105(1):22–5.

  140. 140.

    Sousa-Pinto B, Pinto-Ramos J, Correia C, Gonçalves-Costa G, Gomes L, Gil-Mata S, et al. Pharmacogenetics of abacavir hypersensitivity: a systematic review and meta-analysis of the association with HLA-B*57:01. J Allergy Clin Immunol. 2015;136(4):1092–4.

  141. 141.

    McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperavičiūtė D, Carrington M, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in europeans. N Engl J Med. 2011;364(12):1134–43.

  142. 142.

    Genin E, Chen D-P, Hung S-I, Sekula P, Schumacher M, Chang P-Y, et al. HLA-A*31:01 and different types of carbamazepine-induced severe cutaneous adverse reactions: an international study and meta-analysis. Pharmacogenom J. 2014;14(3):281–8.

  143. 143.

    Hung SI, Chung WH, Jee SH, Chen WC, Chang YT, Lee WR, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genom. 2006;16(4):297–306.

  144. 144.

    Ramírez E, Bellón T, Tong HY, Borobia AM, de Abajo FJ, Lerma V, et al. Significant HLA class I type associations with aromatic antiepileptic drug (AED)-induced SJS/TEN are different from those found for the same AED-induced DRESS in the Spanish population. Pharmacol Res. 2017;115:168–78.

  145. 145.

    Lonjou C, Borot N, Sekula P, Ledger N, Thomas L, Halevy S, et al. A European study of HLA-B in Stevens–Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genom. 2008;18(2):99–107.

  146. 146.

    Shirzadi M, Thorstensen K, Helde G, Moen T, Brodtkorb E. Do HLA-A markers predict skin-reactions from aromatic antiepileptic drugs in a Norwegian population? A case control study. Epilepsy Res. 2015;118:5–9.

  147. 147.

    Moon J, Park H-K, Chu K, Sunwoo J-S, Byun J-I, Lim J-A, et al. The HLA-A*2402/Cw*0102 haplotype is associated with lamotrigine-induced maculopapular eruption in the Korean population. Epilepsia. 2015;56(10):e161–7.

  148. 148.

    Zhang F-R, Liu H, Irwanto A, Fu X-A, Li Y, Yu G-Q, et al. HLA-B*13:01 and the dapsone hypersensitivity syndrome. N Engl J Med. 2013;369(17):1620–8.

  149. 149.

    Tangamornsuksan W, Lohitnavy M. Association between HLA-B*5901 and methazolamide-induced Stevens–Johnson syndrome/toxic epidermal necrolysis: a systematic review and meta-analysis. Pharmacogenom J. 2018. https://doi.org/10.1038/s41397-018-0052-2.

  150. 150.

    Konvinse KC, Trubiano JA, Pavlos R, James I, Shaffer CM, Bejan CA, et al. HLA-A*32:01 is strongly associated with vancomycin-induced drug reaction with eosinophilia and systemic symptoms. J Allergy Clin Immunol. 2019. https://doi.org/10.1016/j.jaci.2019.01.045.

  151. 151.

    Jung J-W, Kim D-K, Park H-W, Oh K-H, Joo K-W, Kim Y-S, et al. An effective strategy to prevent allopurinol-induced hypersensitivity by HLA typing. Genet Med. 2015;17(10):807–14.

  152. 152.

    White KD, Chung WH, Hung SI, Mallal S, Phillips EJ. Evolving models of the immunopathogenesis of T cell-mediated drug allergy: the role of host, pathogens, and drug response. J Allergy Clin Immunol. 2015;136(2):219–34.

  153. 153.

    Chen P, Lin J-J, Lu C-S, Ong C-T, Hsieh PF, Yang C-C, et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med. 2011;364(12):1126–33.

  154. 154.

    Venturi V, Price DA, Douek DC, Davenport MP. The molecular basis for public T-cell responses? Nat Rev Immunol. 2008;8(3):231–8.

  155. 155.

    Pichler WJ, Adam J, Watkins S, Wuillemin N, Yun J, Yerly D. Drug hypersensitivity: how drugs stimulate T cells via pharmacological interaction with immune receptors. Int Arch Allergy Immunol. 2015;168(1):13–24.

  156. 156.

    Illing PT, Vivian JP, Dudek NL, Kostenko L, Chen Z, Bharadwaj M, et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature. 2012;486(7404):554–8.

  157. 157.

    Norcross MA, Luo S, Lu L, Boyne MT, Gomarteli M, Rennels AD, et al. Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS. 2012;26(11):F21–9.

  158. 158.

    Ostrov DA, Grant BJ, Pompeu YA, Sidney J, Harndahl M, Southwood S, et al. Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc Natl Acad Sci USA. 2012;109(25):9959–64.

  159. 159.

    Illing PT, Vivian JP, Purcell AW, Rossjohn J, McCluskey J. Human leukocyte antigen-associated drug hypersensitivity. Curr Opin Immunol. 2013;25(1):81–9.

  160. 160.

    Wei CY, Chung WH, Huang HW, Chen YT, Hung SI. Direct interaction between HLA-B and carbamazepine activates T cells in patients with Stevens–Johnson syndrome. J Allergy Clin Immunol. 2012;129(6):1562–9.

  161. 161.

    Ko TM, Chung WH, Wei CY, Shih HY, Chen JK, Lin CH, et al. Shared and restricted T-cell receptor use is crucial for carbamazepine-induced Stevens–Johnson syndrome. J Allergy Clin Immunol. 2011;128(6):1266–76.

  162. 162.

    Lichtenfels M, Farrell J, Ogese MO, Bell CC, Eckle S, McCluskey J, et al. HLA restriction of carbamazepine-specific T-cell clones from an HLA-A*31:01-positive hypersensitive patient. Chem Res Toxicol. 2014;27(2):175–7.

  163. 163.

    Yun J, Mattsson J, Schnyder K, Fontana S, Largiadèr CR, Pichler WJ, et al. Allopurinol hypersensitivity is primarily mediated by dose-dependent oxypurinol-specific T cell response. Clin Exp Allergy. 2013;43(11):1246–55.

  164. 164.

    Yun J, Marcaida MJ, Eriksson KK, Jamin H, Fontana S, Pichler WJ, et al. Oxypurinol directly and immediately activates the drug-specific T cells via the preferential use of HLA-B*58:01. J Immunol. 2014;192(7):2984–93.

  165. 165.

    Chung WH, Pan RY, Chu MT, Chin SW, Huang YL, Wang WC, et al. Oxypurinol-specific T cells possess preferential TCR clonotypes and express granulysin in allopurinol-induced severe cutaneous adverse reactions. J Investig Dermatol. 2015;135(9):2237–48.

  166. 166.

    Chen WT, Wang CW, Lu CW, Chen CB, Lee HE, Hung SI, et al. The function of HLA-B*13:01 involved in the pathomechanism of dapsone-induced severe cutaneous adverse reactions. J Investig Dermatol. 2018;138(7):1546–54.

  167. 167.

    Zhao Q, Alhilali K, Alzahrani A, Almutairi M, Amjad J, Liu H, et al. Dapsone- and nitroso dapsone-specific activation of T-cells from hypersensitive patients expressing the risk allele HLA-B*13:01. Allergy. 2019. https://doi.org/10.1111/all.13769.

  168. 168.

    Illing PT, Mifsud NA, Purcell AW. Allotype specific interactions of drugs and HLA molecules in hypersensitivity reactions. Curr Opin Immunol. 2016;42:31–40.

  169. 169.

    Rodriguez-Pena R, Lopez S, Mayorga C, Antunez C, Fernandez TD, Torres MJ, et al. Potential involvement of dendritic cells in delayed-type hypersensitivity reactions to β-lactams. J Allergy Clin Immunol. 2006;118(4):949–56.

  170. 170.

    Lavergne SN, Wang H, Callan HE, Park BK, Naisbitt DJ. “Danger” conditions increase sulfamethoxazole-protein adduct formation in human antigen-presenting cells. J Pharmacol Exp Ther. 2009;331(2):372–81.

  171. 171.

    Gonçalo M, Martins J, Silva A, Neves B, Figueiredo A, Cruz T, et al. Systemic drugs inducing non-immediate cutaneous adverse reactions and contact sensitizers evoke similar responses in THP-1 cells. J Appl Toxicol. 2015;35(4):398–406.

  172. 172.

    Welsh RM, Selin LK. No one is naive: the significance of heterologous T-cell immunity. Nat Rev Immunol. 2002;2(6):417–26.

  173. 173.

    Pavlos R, White KD, Wanjalla C, Mallal SA, Phillips EJ. Severe delayed drug reactions: role of genetics and viral infections. Immunol Allergy Clin N Am. 2017;37(4):785–815.

  174. 174.

    Pavlos R, Mallal S, Ostrov D, Pompeu Y, Phillips E. Fever, rash, and systemic symptoms: understanding the role of virus and HLA in severe cutaneous drug allergy. J Allergy Clin Immunol Pract. 2014;2(1):21–33.

  175. 175.

    Lucas A, Lucas M, Strhyn A, Keane NM, McKinnon E, Pavlos R, et al. Abacavir-reactive memory T cells are present in drug naïve individuals. PLoS One. 2015. https://doi.org/10.1371/journal.pone.0117160.

  176. 176.

    Adam J, Wuillemin N, Watkins S, Jamin H, Eriksson KK, Villiger P, et al. Abacavir induced T cell reactivity from drug naïve individuals shares features of allo-immune responses. PLoS One. 2014. https://doi.org/10.1371/journal.pone.0095339.

  177. 177.

    Shiohara T, Ushigome Y, Kano Y, Takahashi R. Crucial role of viral reactivation in the development of severe drug eruptions: a comprehensive review. Clin Rev Allergy Immunol. 2015;49(2):192–202.

  178. 178.

    Omenetti S, Pizarro TT. The Treg/Th17 axis: a dynamic balance regulated by the gut microbiome. Front Immunol. 2015. https://doi.org/10.3389/fimmu.2015.00639.

  179. 179.

    Chen X, Oppenheim JJ. Th17 cells and T regs: unlikely allies. J Leukoc Biol. 2014;95(5):723–31.

  180. 180.

    Ushigome Y, Mizukawa Y, Kimishima M, Yamazaki Y, Takahashi R, Kano Y, et al. Monocytes are involved in the balance between regulatory T cells and Th17 cells in severe drug eruptions. Clin Exp Allergy. 2018;48(11):1453–63.

  181. 181.

    Yang C, Mosam A, Mankahla A, Dlova N, Saavedra A. HIV infection predisposes skin to toxic epidermal necrolysis via depletion of skin-directed CD4 + T cells. J Am Acad Dermatol. 2014;70(6):1096–102.

  182. 182.

    Cardone M, Garcia K, Tilahun ME, Boyd LF, Gebreyohannes S, Yano M, et al. A transgenic mouse model for HLA-B*57:01–linked abacavir drug tolerance and reactivity. J Clin Investig. 2018;128(7):2819–32.

  183. 183.

    Inachi S, Mizutani H, Shimizu M. Epidermal apoptotic cell death in erythema multiforme and Stevens–Johnson syndrome. Contribution of perforin-positive cell infiltration. Arch Dermatol. 1997;133(7):845–9.

  184. 184.

    Viard-Leveugle I, Gaide O, Jankovic D, Feldmeyer L, Kerl K, Pickard C, et al. TNF-α and IFN-γ are potential inducers of Fas-mediated keratinocyte apoptosis through activation of inducible nitric oxide synthase in toxic epidermal necrolysis. J Investig Dermatol. 2013;133(2):489–98.

  185. 185.

    Nassif A, Bensussan A, Boumsell L, Deniaud A, Moslehi H, Wolkenstein P, et al. Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells. J Allergy Clin Immunol. 2004;114(5):1209–15.

  186. 186.

    Ewen CL, Kane KP, Bleackley RC. A quarter century of granzymes. Cell Death Differ. 2012;19(1):28–35.

  187. 187.

    Ichihara A, Wang Z, Jinnin M, Izuno Y, Shimozono N, Yamane K, et al. Upregulation of miR-18a-5p contributes to epidermal necrolysis in severe drug eruptions. J Allergy Clin Immunol. 2014;133(4):1065–74.

  188. 188.

    Saito N, Qiao H, Yanagi T, Shinkuma S, Nishimura K, Suto A, et al. An annexin A1-FPR1 interaction contributes to necroptosis of keratinocytes in severe cutaneous adverse drug reactions. Sci Transl Med. 2014. https://doi.org/10.1126/scitranslmed.3008227.

  189. 189.

    Kearney CJ, Martin SJ. An inflammatory perspective on necroptosis. Mol Cell. 2017;65(6):965–73.

  190. 190.

    Kim SK, Kim W-J, Yoon J-H, Ji J-H, Morgan MJ, Cho H, et al. Upregulated RIP3 expression potentiates MLKL phosphorylation-mediated programmed necrosis in toxic epidermal necrolysis. J Investig Dermatol. 2015;135(8):2021–30.

  191. 191.

    Choi S-W, Park H-H, Kim S, Chung JM, Noh H-J, Kim SK, et al. PELI1 selectively targets kinase-active RIP3 for ubiquitylation-dependent proteasomal degradation. Mol Cell. 2018;70(5):920–35.

  192. 192.

    Mizukawa Y, Hirahara K, Kano Y, Shiohara T. Drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms severity score: a useful tool for assessing disease severity and predicting fatal cytomegalovirus disease. J Am Acad Dermatol. 2019;80(3):670–8.

  193. 193.

    Coopman SA, Johnson RA, Platt R, Stern RS. Cutaneous disease and drug reactions in HIV infection. N Engl J Med. 1993;328(23):1670–4.

  194. 194.

    Chung W-H, Chang W-C, Stocker SL, Juo C-G, Graham GG, Lee M-HH, et al. Insights into the poor prognosis of allopurinol-induced severe cutaneous adverse reactions: the impact of renal insufficiency, high plasma levels of oxypurinol and granulysin. Ann Rheum Dis. 2015;74(12):2157–64.

  195. 195.

    Chung WH, Chang WC, Lee YS, Wu YY, Yang CH, Ho HC, et al. Genetic variants associated with phenytoin-related severe cutaneous adverse reactions. JAMA. 2014;312(5):525–34.

  196. 196.

    Ciccacci C, Di Fusco D, Marazzi MC, Zimba I, Erba F, Novelli G, et al. Association between CYP2B6 polymorphisms and nevirapine-induced SJS/TEN: a pharmacogenetics study. Eur J Clin Pharmacol. 2013;69(11):1909–16.

  197. 197.

    Ciccacci C, Latini A, Politi C, Mancinelli S, Marazzi MC, Novelli G, et al. Impact of glutathione transferases genes polymorphisms in nevirapine adverse reactions: a possible role for GSTM1 in SJS/TEN susceptibility. Eur J Clin Pharmacol. 2017;73(10):1253–9.

  198. 198.

    Nicoletti P, Bansal M, Lefebvre C, Guarnieri P, Shen Y, Peer I, et al. ABC transporters and the proteasome complex are implicated in susceptibility to Stevens–Johnson syndrome and toxic epidermal necrolysis across multiple drugs. PLoS One. 2015. https://doi.org/10.1371/journal.pone.0131038.

  199. 199.

    Turner CT, Lim D, Granville DJ. Granzyme B in skin inflammation and disease. Matrix Biol. 2019. https://doi.org/10.1016/j.matbio.2017.12.005.

Download references

Author information

Correspondence to Teresa Bellón.

Ethics declarations

Conflict of interest

Teresa Bellón has no conflicts of interest that are directly relevant to the content of this review.


This work was supported by Grant FIS PI13/01768 from Instituto de Salud Carlos III (co-founded by FEDER).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bellón, T. Mechanisms of Severe Cutaneous Adverse Reactions: Recent Advances. Drug Saf 42, 973–992 (2019). https://doi.org/10.1007/s40264-019-00825-2

Download citation