Advertisement

Drug Safety

pp 1–15 | Cite as

Managing Risks with Immune Therapies in Multiple Sclerosis

  • Moritz Förster
  • Patrick Küry
  • Orhan Aktas
  • Clemens Warnke
  • Joachim Havla
  • Reinhard Hohlfeld
  • Jan Mares
  • Hans-Peter HartungEmail author
  • David KremerEmail author
Review Article

Abstract

Since the introduction of the interferons in the 1990s, a multitude of different immunomodulatory and immunosuppressant disease-modifying therapies for multiple sclerosis (MS) have been developed. They have all shown positive effects on clinical endpoints such as relapse rate and disease progression and are a heterogeneous group of therapeutics comprising recombinant pegylated and non-pegylated interferon-β variants, peptide combinations, monoclonal antibodies, and small molecules. However, they have relevant side effect profiles, which necessitate thorough monitoring and straightforward patient education. In individual cases, side effects can be severe and potentially life-threatening, which is why knowledge about (neurological and non-neurological) adverse drug reactions is essential for prescribing neurologists as well as general practitioners. This paper aims to provide an overview of currently available MS therapies, their modes of action and safety profiles, and the necessary therapy monitoring.

Notes

Compliance with Ethical Standards

Conflict of interest

Moritz Förster, Patrick Küry, and Jan Mares declare that they have no competing interests. Orhan Aktas received grant support from Bayer, Biogen, Novartis, and Sanofi and consultancy or speaking fees from Bayer, Biogen, Novartis, Roche, Sanofi, and Teva. Hans-Peter Hartung received consultancy fees and fees for serving on steering or data monitoring committees and advisory boards from Bayer Healthcare, Biogen, GeNeuro, Genzyme, MedDay, Merck, Novartis, Celgene Receptos, Roche, and Teva. Joachim Havla received grant support for OCT (optical coherence tomography) research from the Friedrich-Baur Foundation in Munich, and personal fees and non-financial support from Merck, Novartis, Roche, Bayer, Biogen, Sanofi, Santhera, and Genzyme. Reinhard Hohlfeld received grant support from Biogen, Genzyme-Sanofi, Merck-Serono, Novartis, and Teva and personal fees from Actelion, Biogen, Genzyme-Sanofi, MedDay, Merck-Serono, Novartis, Roche, and Teva. David Kremer received travel grants from GeNeuro and Merck, refund of congress participation fees from GeNeuro, Merck, and Servier, consulting fees from Grifols, payment for lectures from Grifols, and support for research projects from Teva. Clemens Warnke received support from the Hertie foundation (P1150063) and has received personal fees from Novartis, Bayer, Biogen, and Teva.

Funding

None of the authors received funding for preparation of this manuscript.

References

  1. 1.
    Graf J, Leussink VI, Dehmel T, Ringelstein M, Goebels N, Adams O, et al. Infectious risk stratification in multiple sclerosis patients receiving immunotherapy. Ann Clin Transl Neurol. 2017;4(12):909–14.  https://doi.org/10.1002/acn3.491.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Williams T, Chataway J. Immune-mediated encephalitis with daclizumab: the final nail. Mult Scler.  https://doi.org/10.1177/1352458518791374 (epub 2018 Aug 3).
  3. 3.
    Devlin M, Swayne A, Newman M, O’Gorman C, Brown H, Ong B, et al. A case of immune-mediated encephalitis related to daclizumab therapy. Mult Scler.  https://doi.org/10.1177/1352458518792403 (epub 2018 Aug 3).
  4. 4.
    Rauer S, Stork L, Urbach H, Stathi A, Marx A, Suss P, et al. Drug reaction with eosinophilia and systemic symptoms after daclizumab therapy. Neurology. 2018;91(4):e359–63.  https://doi.org/10.1212/WNL.0000000000005854.CrossRefPubMedGoogle Scholar
  5. 5.
    Giovannoni G, Kappos L, Gold R, Khatri BO, Selmaj K, Umans K, et al. Safety and tolerability profile of daclizumab in patients with relapsing-remitting multiple sclerosis: an integrated analysis of clinical studies. Mult Scler Relat Disord. 2016;9:36–46.  https://doi.org/10.1016/j.msard.2016.05.010.CrossRefPubMedGoogle Scholar
  6. 6.
    Dhib-Jalbut S, Marks S. Interferon-beta mechanisms of action in multiple sclerosis. Neurology. 2010;74(Suppl 1):S17–24.  https://doi.org/10.1212/WNL.0b013e3181c97d99.CrossRefPubMedGoogle Scholar
  7. 7.
    Walther E, Hohlfeld R. Multiple sclerosis: side effects of interferon beta therapy and their management. Neurology. 1999;53(8):1622.CrossRefGoogle Scholar
  8. 8.
    Elgart GW, Sheremata W, Ahn YS. Cutaneous reactions to recombinant human interferon beta-1b: the clinical and histologic spectrum. J Am Acad Dermatol. 1997;37(4):553–8.  https://doi.org/10.1016/S0190-9622(97)70170-1.CrossRefPubMedGoogle Scholar
  9. 9.
    Ebers GC. Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. Lancet. 1998;352(9139):1498–504.CrossRefGoogle Scholar
  10. 10.
    Frohman EM, Brannon K, Alexander S, Sims D, Phillips JT, O’Leary S, et al. Disease modifying agent related skin reactions in multiple sclerosis: prevention, assessment, and management. Mult Scler. 2004;10(3):302–7.  https://doi.org/10.1191/1352458504ms1002oa.CrossRefPubMedGoogle Scholar
  11. 11.
    Bloomgren G, Sperling B, Cushing K, Wenten M. Assessment of malignancy risk in patients with multiple sclerosis treated with intramuscular interferon beta-1a: retrospective evaluation using a health insurance claims database and postmarketing surveillance data. Ther Clin Risk Manag. 2012;8:313–21.  https://doi.org/10.2147/TCRM.S31347.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sandberg-Wollheim M, Kornmann G, Bischof D, Moraga MS, Hennessy B, Alteri E. The risk of malignancy is not increased in patients with multiple sclerosis treated with subcutaneous interferon beta-la: analysis of data from clinical trial and post-marketing surveillance settings. Mult Scler. 2011;17(4):431–40.  https://doi.org/10.1177/1352458511403642.CrossRefPubMedGoogle Scholar
  13. 13.
    Vaughn C, Bushra A, Kolb C, Weinstock-Guttman B. An update on the use of disease-modifying therapy in pregnant patients with multiple sclerosis. CNS Drugs. 2018;32(2):161–78.  https://doi.org/10.1007/s40263-018-0496-6.CrossRefPubMedGoogle Scholar
  14. 14.
    Link J, Ramanujam R, Auer M, Ryner M, Hassler S, Bachelet D, et al. Clinical practice of analysis of anti-drug antibodies against interferon beta and natalizumab in multiple sclerosis patients in Europe: a descriptive study of test results. PLoS One. 2017;12(2):e0170395.  https://doi.org/10.1371/journal.pone.0170395.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Weber MS, Prod’homme T, Youssef S, Dunn SE, Rundle CD, Lee L, et al. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med. 2007;13(8):935–43.  https://doi.org/10.1038/nm1620.CrossRefPubMedGoogle Scholar
  16. 16.
    Boster A, Bartoszek MP, O’Connell C, Pitt D, Racke M. Efficacy, safety, and cost-effectiveness of glatiramer acetate in the treatment of relapsing–remitting multiple sclerosis. Ther Adv Neurol Disord. 2011;4(5):319–32.  https://doi.org/10.1177/1756285611422108.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mikol DD, Barkhof F, Chang P, Coyle PK, Jeffery DR, Schwid SR, et al. Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol. 2008;7(10):903–14.CrossRefGoogle Scholar
  18. 18.
    Sandberg-Wollheim M, Neudorfer O, Grinspan A, Weinstock-Guttman B, Haas J, Izquierdo G, et al. Pregnancy outcomes from the branded glatiramer acetate pregnancy database. Int J MS Care. 2018;20(1):9–14.CrossRefGoogle Scholar
  19. 19.
    Ingwersen J, Aktas O, Kuery P, Kieseier B, Boyko A, Hartung HP. Fingolimod in multiple sclerosis: mechanisms of action and clinical efficacy. Clin Immunol. 2012;142(1):15–24.  https://doi.org/10.1016/j.clim.2011.05.005.CrossRefPubMedGoogle Scholar
  20. 20.
    Schwab SR, Cyster JG. Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol. 2007;8(12):1295–301.  https://doi.org/10.1038/ni1545.CrossRefPubMedGoogle Scholar
  21. 21.
    Jaillard C, Harrison S, Stankoff B, Aigrot MS, Calver AR, Duddy G, et al. Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J Neurosci. 2005;25(6):1459–69.  https://doi.org/10.1523/JNEUROSCI.4645-04.2005.CrossRefPubMedGoogle Scholar
  22. 22.
    Means CK, Brown JH. Sphingosine-1-phosphate receptor signalling in the heart. Cardiovasc Res. 2009;82(2):193–200.  https://doi.org/10.1093/cvr/cvp086.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Meissner A, Limmroth V. Update on the cardiovascular profile of fingolimod in the therapy of relapsing-remitting multiple sclerosis (MS). Mult Scler Relat Disord. 2016;8:19–26.  https://doi.org/10.1016/j.msard.2016.04.002.CrossRefPubMedGoogle Scholar
  24. 24.
    Mori M. Lethal arrhythmia due to fingolimod, a S1P receptor modulator: are we overestimating or underestimating? J Neurol Neurosurg Psychiatry. 2015;86(8):823.  https://doi.org/10.1136/jnnp-2015-310451.CrossRefPubMedGoogle Scholar
  25. 25.
    Cugati S, Chen CS, Lake S, Lee AW. Fingolimod and macular edema: pathophysiology, diagnosis, and management. Neurol Clin Pract. 2014;4(5):402–9.  https://doi.org/10.1212/CPJ.0000000000000027.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Forrestel AK, Modi BG, Longworth S, Wilck MB, Micheletti RG. Primary cutaneous cryptococcus in a patient with multiple sclerosis treated with fingolimod. JAMA Neurol. 2016;73(3):355–6.  https://doi.org/10.1001/jamaneurol.2015.4259.CrossRefPubMedGoogle Scholar
  27. 27.
    Carpenter AF, Goodwin SJ, Bornstein PF, Larson AJ, Markus CK. Cutaneous cryptococcosis in a patient taking fingolimod for multiple sclerosis: here come the opportunistic infections? Mult Scler. 2017;23(2):297–9.  https://doi.org/10.1177/1352458516670732.CrossRefPubMedGoogle Scholar
  28. 28.
    Souyoul S, Saussy K, Stryjewska BM, Grieshaber E. Leprosy mimicking basal cell carcinoma in a patient on fingolimod. JAAD Case Rep. 2017;3(1):58–60.  https://doi.org/10.1016/j.jdcr.2016.11.005.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Berger JR, Cree BA, Greenberg B, Hemmer B, Ward BJ, Dong VM, et al. Progressive multifocal leukoencephalopathy after fingolimod treatment. Neurology. 2018;90(20):e1815–21.  https://doi.org/10.1212/WNL.0000000000005529.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Leurs CE, van Kempen ZL, Dekker I, Balk LJ, Wattjes MP, Rispens T, et al. Switching natalizumab to fingolimod within 6 weeks reduces recurrence of disease activity in MS patients. Mult Scler. 2018;24(11):1453–60.  https://doi.org/10.1177/1352458517726381.CrossRefPubMedGoogle Scholar
  31. 31.
    Beadnall HN, Gill AJ, Riminton S, Barnett MH. Virus-related Merkel cell carcinoma complicating fingolimod treatment for multiple sclerosis. Neurology. 2016;87(24):2595–7.  https://doi.org/10.1212/WNL.0000000000003434.CrossRefPubMedGoogle Scholar
  32. 32.
    Kappos L, Cohen J, Collins W, de Vera A, Zhang-Auberson L, Ritter S, et al. Fingolimod in relapsing multiple sclerosis: an integrated analysis of safety findings. Mult Scler Relat Disord. 2014;3(4):494–504.  https://doi.org/10.1016/j.msard.2014.03.002.CrossRefPubMedGoogle Scholar
  33. 33.
    Ikumi K, Ando T, Katano H, Katsuno M, Sakai Y, Yoshida M, et al. HSV-2-related hemophagocytic lymphohistiocytosis in a fingolimod-treated patient with MS. Neurol Neuroimmunol Neuroinflamm. 2016;3(4):e247.  https://doi.org/10.1212/NXI.0000000000000247.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Warnke C, Dehmel T, Ramanujam R, Holmen C, Nordin N, Wolfram K, et al. Initial lymphocyte count and low BMI may affect fingolimod-induced lymphopenia. Neurology. 2014;83(23):2153–7.  https://doi.org/10.1212/WNL.0000000000001049.CrossRefPubMedGoogle Scholar
  35. 35.
    Avasarala J, Jain S, Urrea-Mendoza E. Approach to fingolimod-induced lymphopenia in multiple sclerosis patients: do we have a roadmap? J Clin Pharmacol. 2017;57(11):1415–8.  https://doi.org/10.1002/jcph.945.CrossRefPubMedGoogle Scholar
  36. 36.
    Karlsson G, Francis G, Koren G, Heining P, Zhang X, Cohen JA, et al. Pregnancy outcomes in the clinical development program of fingolimod in multiple sclerosis. Neurology. 2014;82(8):674–80.  https://doi.org/10.1212/WNL.0000000000000137.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Meinl I, Havla J, Hohlfeld R, Kümpfel T. Recurrence of disease activity during pregnancy after cessation of fingolimod in multiple sclerosis. Mult Scler. 2017;24(7):991–4.  https://doi.org/10.1177/1352458517731913.CrossRefPubMedGoogle Scholar
  38. 38.
    Werdenberg D, Joshi R, Wolffram S, Merkle HP, Langguth P. Presystemic metabolism and intestinal absorption of antipsoriatic fumaric acid esters. Biopharm Drug Dispos. 2003;24(6):259–73.  https://doi.org/10.1002/bdd.364.CrossRefPubMedGoogle Scholar
  39. 39.
    Al-Jaderi Z, Maghazachi AA. Utilization of dimethyl fumarate and related molecules for treatment of multiple sclerosis, cancer, and other diseases. Front Immunol. 2016;7:278.  https://doi.org/10.3389/fimmu.2016.00278.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wierinckx A, Breve J, Mercier D, Schultzberg M, Drukarch B, Van Dam AM. Detoxication enzyme inducers modify cytokine production in rat mixed glial cells. J Neuroimmunol. 2005;166(1–2):132–43.  https://doi.org/10.1016/j.jneuroim.2005.05.013.CrossRefPubMedGoogle Scholar
  41. 41.
    Nakhaei-Nejad M, Barilla D, Lee CH, Blevins G, Giuliani F. Characterization of lymphopenia in patients with MS treated with dimethyl fumarate and fingolimod. Neurol Neuroimmunol Neuroinflamm. 2018;5(2):e432.  https://doi.org/10.1212/NXI.0000000000000432.CrossRefPubMedGoogle Scholar
  42. 42.
    Miclea A, Leussink VI, Hartung HP, Gold R, Hoepner R. Safety and efficacy of dimethyl fumarate in multiple sclerosis: a multi-center observational study. J Neurol. 2016;263(8):1626–32.  https://doi.org/10.1007/s00415-016-8175-3.CrossRefPubMedGoogle Scholar
  43. 43.
    Longbrake EE, Cantoni C, Chahin S, Cignarella F, Cross AH, Piccio L. Dimethyl fumarate induces changes in B- and T-lymphocyte function independent of the effects on absolute lymphocyte count. Mult Scler. 2018;24(6):728–38.  https://doi.org/10.1177/1352458517707069.CrossRefPubMedGoogle Scholar
  44. 44.
    Longbrake EE, Cross AH. Dimethyl fumarate associated lymphopenia in clinical practice. Mult Scler. 2015;21(6):796–7.  https://doi.org/10.1177/1352458514559299.CrossRefPubMedGoogle Scholar
  45. 45.
    Purchiaroni F, Salvetti M, Buscarinu MC, Annibale B. Eosinophilic gastroenteritis in a woman with multiple sclerosis on dimethyl fumarate. Neurology. 2016;87(9):952–3.  https://doi.org/10.1212/WNL.0000000000003045.CrossRefPubMedGoogle Scholar
  46. 46.
    Luo H, Bhatt H, Mohamad S, Uhrik E, Sen S, Mathew T, et al. Acute pancreatitis: possible association of dimethyl fumarate for the treatment of relapsing-remitting multiple sclerosis. J Neurol. 2015;262(3):779–80.  https://doi.org/10.1007/s00415-015-7649-z.CrossRefPubMedGoogle Scholar
  47. 47.
    Phillips JT, Selmaj K, Gold R, Fox RJ, Havrdova E, Giovannoni G, et al. Clinical significance of gastrointestinal and flushing events in patients with multiple sclerosis treated with delayed-release dimethyl fumarate. Int J MS Care. 2015;17(5):236–43.  https://doi.org/10.7224/1537-2073.2014-069.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Longbrake EE, Naismith RT, Parks BJ, Wu GF, Cross AH. Dimethyl fumarate-associated lymphopenia: risk factors and clinical significance. Mult Scler J Exp Transl Clin.  https://doi.org/10.1177/2055217315596994 (epub 2015 Jan–Dec).
  49. 49.
    Lehmann-Horn K, Penkert H, Grein P, Leppmeier U, Teuber-Hanselmann S, Hemmer B, et al. PML during dimethyl fumarate treatment of multiple sclerosis: how does lymphopenia matter? Neurology. 2016;87(4):440–1.  https://doi.org/10.1212/WNL.0000000000002900.CrossRefPubMedGoogle Scholar
  50. 50.
    Palazzo E, Yahia SA. Progressive multifocal leukoencephalopathy in autoimmune diseases. Joint Bone Spine. 2012;79(4):351–5.  https://doi.org/10.1016/j.jbspin.2011.11.002.CrossRefPubMedGoogle Scholar
  51. 51.
    Clifford DB, Ances B, Costello C, Rosen-Schmidt S, Andersson M, Parks D, et al. Rituximab-associated progressive multifocal leukoencephalopathy in rheumatoid arthritis. Arch Neurol. 2011;68(9):1156–64.  https://doi.org/10.1001/archneurol.2011.103.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Rahmlow M, Shuster EA, Dominik J, Deen HG Jr, Dickson DW, Aksamit AJ Jr, et al. Leflunomide-associated progressive multifocal leukoencephalopathy. Arch Neurol. 2008;65(11):1538–9.  https://doi.org/10.1001/archneur.65.11.1538.CrossRefPubMedGoogle Scholar
  53. 53.
    Papadopoulou A, Kappos L, Sprenger T. Safety of teriflunomide for the management of relapsing-remitting multiple sclerosis. Expert Opin Drug Saf. 2015;14(5):749–59.  https://doi.org/10.1517/14740338.2015.1014795.CrossRefPubMedGoogle Scholar
  54. 54.
    Comi G, Freedman MS, Kappos L, Olsson TP, Miller AE, Wolinsky JS, et al. Pooled safety and tolerability data from four placebo-controlled teriflunomide studies and extensions. Mult Scler Relat Disord. 2016;5:97–104.  https://doi.org/10.1016/j.msard.2015.11.006.CrossRefPubMedGoogle Scholar
  55. 55.
    Fukushima R, Kanamori S, Hirashiba M, Hishikawa A, Muranaka RI, Kaneto M, et al. Teratogenicity study of the dihydroorotate-dehydrogenase inhibitor and protein tyrosine kinase inhibitor leflunomide in mice. Reprod Toxicol. 2007;24(3–4):310–6.  https://doi.org/10.1016/j.reprotox.2007.05.006.CrossRefPubMedGoogle Scholar
  56. 56.
    Fukushima R, Kanamori S, Hirashiba M, Hishikawa A, Muranaka R, Kaneto M, et al. Critical periods for the teratogenicity of immune-suppressant Leflunomide in mice. Congenit Anom (Kyoto). 2009;49(1):20–6.  https://doi.org/10.1111/j.1741-4520.2008.00217.x.CrossRefPubMedGoogle Scholar
  57. 57.
    Kieseier BC, Benamor M. Pregnancy outcomes following maternal and paternal exposure to teriflunomide during treatment for relapsing-remitting multiple sclerosis. Neurol Ther. 2014;3(2):133–8.  https://doi.org/10.1007/s40120-014-0020-y.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Miller AE. Oral teriflunomide in the treatment of relapsing forms of multiple sclerosis: clinical evidence and long-term experience. Ther Adv Neurol Disord. 2017;10(12):381–96.  https://doi.org/10.1177/1756285617722500.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Baker D, Herrod SS, Alvarez-Gonzalez C, Zalewski L, Albor C, Schmierer K. Both cladribine and alemtuzumab may effect MS via B-cell depletion. Neurol Neuroimmunol Neuroinflamm. 2017;4(4):e360.  https://doi.org/10.1212/NXI.0000000000000360.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    European Medicines Agency. Withdrawal assessment report for Movectro. International Nonproprietary Name: cladribine. Procedure No. EMEA/H/C/001197.2011. https://www.ema.europa.eu/documents/withdrawal-report/withdrawal-assessment-report-movectro_en.pdf. Accessed 13 Dec 2018.
  61. 61.
    Pakpoor J, Disanto G, Altmann DR, Pavitt S, Turner BP, Marta M, et al. No evidence for higher risk of cancer in patients with multiple sclerosis taking cladribine. Neurol Neuroimmunol Neuroinflamm. 2015;2(6):e158.  https://doi.org/10.1212/NXI.0000000000000158.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Cook S, Comi G, Giovannoni G, Rieckmann P, Sorensen PS, Vermersch P, et al. Rates of lymphopenia in years 1–4 in patients with relapsing multiple sclerosis treated annually with cladribine tablets [abstract no. 039]. J Neurol Neurosurg Psychiatry. 2018;89(6):A16.  https://doi.org/10.1136/jnnp-2018-ANZAN.38.
  63. 63.
    Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):899–910.  https://doi.org/10.1056/NEJMoa044397.CrossRefGoogle Scholar
  64. 64.
    Rudick RA, Stuart WH, Calabresi PA, Confavreux C, Galetta SL, Radue EW, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):911–23.  https://doi.org/10.1056/NEJMoa044396.CrossRefPubMedGoogle Scholar
  65. 65.
    Langer-Gould A, Atlas SW, Green AJ, Bollen AW, Pelletier D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med. 2005;353(4):375–81.  https://doi.org/10.1056/NEJMoa051847.CrossRefPubMedGoogle Scholar
  66. 66.
    Kleinschmidt-DeMasters BK, Tyler KL. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med. 2005;353(4):369–74.  https://doi.org/10.1056/NEJMoa051782.CrossRefPubMedGoogle Scholar
  67. 67.
    Martin R. Understanding risk of PML through multiple sclerosis. Lancet Neurol. 2018;17(5):391–2.  https://doi.org/10.1016/S1474-4422(18)30122-4.CrossRefPubMedGoogle Scholar
  68. 68.
    Ho PR, Koendgen H, Campbell N, Haddock B, Richman S, Chang I. Risk of natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: a retrospective analysis of data from four clinical studies. Lancet Neurol. 2017;16(11):925–33.  https://doi.org/10.1016/S1474-4422(17)30282-X.CrossRefGoogle Scholar
  69. 69.
    Vennegoor A, van Rossum JA, Leurs C, Wattjes MP, Rispens T, Murk JL, et al. High cumulative JC virus seroconversion rate during long-term use of natalizumab. Eur J Neurol. 2016;23(6):1079–85.  https://doi.org/10.1111/ene.12988.CrossRefPubMedGoogle Scholar
  70. 70.
    Clerico M, Artusi CA, Di Liberto A, Rolla S, Bardina V, Barbero P, et al. Long-term safety evaluation of natalizumab for the treatment of multiple sclerosis. Expert Opin Drug Saf. 2017;16(8):963–72.  https://doi.org/10.1080/14740338.2017.1346082.CrossRefPubMedGoogle Scholar
  71. 71.
    Pawlitzki M, Teuber J, Campe C, Wagner M, Schuart C, Paul F, et al. VZV-associated acute retinal necrosis in a patient with MS treated with natalizumab. Neurol Neuroimmunol Neuroinflamm. 2018;5(5):e475.  https://doi.org/10.1212/NXI.0000000000000475.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Nixon M, Menger RP, Kalakoti P, Thakur JD, Dossani RH, Sharma K, et al. Natalizumab-associated primary central nervous system lymphoma. World Neurosurg. 2018;109:152–9.  https://doi.org/10.1016/j.wneu.2017.09.131.CrossRefPubMedGoogle Scholar
  73. 73.
    Gueguen A, Roux P, Deschamps R, Moulignier A, Bensa C, Savatovsky J, et al. Abnormal inflammatory activity returns after natalizumab cessation in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2014;85(9):1038–40.  https://doi.org/10.1136/jnnp-2014-307591.CrossRefPubMedGoogle Scholar
  74. 74.
    Larochelle C, Metz I, Lecuyer MA, Terouz S, Roger M, Arbour N, et al. Immunological and pathological characterization of fatal rebound MS activity following natalizumab withdrawal. Mult Scler. 2017;23(1):72–81.  https://doi.org/10.1177/1352458516641775.CrossRefPubMedGoogle Scholar
  75. 75.
    Van Obberghen EK, Cohen M, Rocher F, Lebrun-Frenay C. Multiple immune disorders after natalizumab discontinuation: after the CIRIS, the SIRIS? Rev Neurol (Paris). 2017;173(4):222–4.  https://doi.org/10.1016/j.neurol.2017.03.008.CrossRefPubMedGoogle Scholar
  76. 76.
    Calabresi PA, Giovannoni G, Confavreux C, Galetta SL, Havrdova E, Hutchinson M, et al. The incidence and significance of anti-natalizumab antibodies: results from AFFIRM and SENTINEL. Neurology. 2007;69(14):1391–403.  https://doi.org/10.1212/01.wnl.0000277457.17420.b5.CrossRefPubMedGoogle Scholar
  77. 77.
    Sorensen PS, Jensen PE, Haghikia A, Lundkvist M, Vedeler C, Sellebjerg F, et al. Occurrence of antibodies against natalizumab in relapsing multiple sclerosis patients treated with natalizumab. Mult Scler. 2011;17(9):1074–8.  https://doi.org/10.1177/1352458511404271.CrossRefPubMedGoogle Scholar
  78. 78.
    Ruck T, Bittner S, Wiendl H, Meuth SG. Alemtuzumab in multiple sclerosis: mechanism of action and beyond. Int J Mol Sci. 2015;16(7):16414–39.  https://doi.org/10.3390/ijms160716414.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Hartung HP, Aktas O, Boyko AN. Alemtuzumab: a new therapy for active relapsing-remitting multiple sclerosis. Mult Scler. 2015;21(1):22–34.  https://doi.org/10.1177/1352458514549398.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Cox AL, Thompson SA, Jones JL, Robertson VH, Hale G, Waldmann H, et al. Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. Eur J Immunol. 2005;35(11):3332–42.  https://doi.org/10.1002/eji.200535075.CrossRefPubMedGoogle Scholar
  81. 81.
    Gilleece MH, Dexter TM. Effect of Campath-1H antibody on human hematopoietic progenitors in vitro. Blood. 1993;82(3):807–12.PubMedGoogle Scholar
  82. 82.
    Zhang X, Tao Y, Chopra M, Ahn M, Marcus KL, Choudhary N, et al. Differential reconstitution of T cell subsets following immunodepleting treatment with alemtuzumab (anti-CD52 monoclonal antibody) in patients with relapsing-remitting multiple sclerosis. J Immunol. 2013;191(12):5867–74.  https://doi.org/10.4049/jimmunol.1301926.CrossRefPubMedGoogle Scholar
  83. 83.
    McCarthy CL, Tuohy O, Compston DA, Kumararatne DS, Coles AJ, Jones JL. Immune competence after alemtuzumab treatment of multiple sclerosis. Neurology. 2013;81(10):872–6.  https://doi.org/10.1212/WNL.0b013e3182a35215.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Buggins AG, Mufti GJ, Salisbury J, Codd J, Westwood N, Arno M, et al. Peripheral blood but not tissue dendritic cells express CD52 and are depleted by treatment with alemtuzumab. Blood. 2002;100(5):1715–20.PubMedGoogle Scholar
  85. 85.
    Kumar S, Kimlinger TK, Lust JA, Donovan K, Witzig TE. Expression of CD52 on plasma cells in plasma cell proliferative disorders. Blood. 2003;102(3):1075–7.  https://doi.org/10.1182/blood-2002-12-3784.CrossRefPubMedGoogle Scholar
  86. 86.
    Wray S, Havrdova E, Snydman DR, Arnold DL, Cohen JA, Coles AJ, et al. Infection risk with alemtuzumab decreases over time: pooled analysis of 6-year data from the CAMMS223, CARE-MS I, and CARE-MS II studies and the CAMMS03409 extension study. Mult Scler.  https://doi.org/10.1177/1352458518796675 (epub 2018 Oct 5).
  87. 87.
    Gaitan MI, Ysrraelit MC, Correale J. Neutropenia in patients with multiple sclerosis treated with alemtuzumab. JAMA Neurol. 2017;74(9):1143–4.  https://doi.org/10.1001/jamaneurol.2017.1456.CrossRefPubMedGoogle Scholar
  88. 88.
    Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1829–39.  https://doi.org/10.1016/S0140-6736(12)61768-1.CrossRefGoogle Scholar
  89. 89.
    Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1819–28.  https://doi.org/10.1016/S0140-6736(12)61769-3.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Clerico M, De Mercanti S, Artusi CA, Durelli L, Naismith RT. Active CMV infection in two patients with multiple sclerosis treated with alemtuzumab. Mult Scler. 2017;23(6):874–6.  https://doi.org/10.1177/1352458516688350.CrossRefPubMedGoogle Scholar
  91. 91.
    Brownlee WJ, Chataway J. Opportunistic infections after alemtuzumab: new cases of norcardial infection and cytomegalovirus syndrome. Mult Scler. 2017;23(6):876–7.  https://doi.org/10.1177/1352458517693440.CrossRefPubMedGoogle Scholar
  92. 92.
    Sheikh-Taha M, Corman LC. Pulmonary Nocardia beijingensis infection associated with the use of alemtuzumab in a patient with multiple sclerosis. Mult Scler. 2017;23(6):872–4.  https://doi.org/10.1177/1352458517694431.CrossRefPubMedGoogle Scholar
  93. 93.
    Penkert H, Delbridge C, Wantia N, Wiestler B, Korn T. Fulminant central nervous system nocardiosis in a patient treated with alemtuzumab for relapsing-remitting multiple sclerosis. JAMA Neurol. 2016;73(6):757–9.  https://doi.org/10.1001/jamaneurol.2016.0146.CrossRefPubMedGoogle Scholar
  94. 94.
    Rau D, Lang M, Harth A, Naumann M, Weber F, Tumani H, et al. Listeria meningitis complicating alemtuzumab treatment in multiple sclerosis–report of two cases. Int J Mol Sci. 2015;16(7):14669–76.  https://doi.org/10.3390/ijms160714669.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Metz I, Rieckmann P, Kallmann B-A, Brück W. Disseminated necrotizing leukoencephalopathy eight months after alemtuzumab treatment for multiple sclerosis. Acta Neuropathol Commun. 2016;4:81.  https://doi.org/10.1186/s40478-016-0352-1.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Canham LJW, Manara A, Fawcett J, Rolinski M, Mortimer A, Inglis KEA, et al. Mortality from Listeria monocytogenes meningoencephalitis following escalation to alemtuzumab therapy for relapsing-remitting multiple sclerosis. Mult Scler Relat Disord. 2018;24:38–41.  https://doi.org/10.1016/j.msard.2018.05.014.CrossRefPubMedGoogle Scholar
  97. 97.
    Holmoy T, von der Lippe H, Leegaard TM. Listeria monocytogenes infection associated with alemtuzumab—a case for better preventive strategies. BMC Neurol. 2017;17(1):65.  https://doi.org/10.1186/s12883-017-0848-8.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Giovannoni G, Marta M, Davis A, Turner B, Gnanapavan S, Schmierer K. Switching patients at high risk of PML from natalizumab to another disease-modifying therapy. Pract Neurol. 2016;16(5):389–93.  https://doi.org/10.1136/practneurol-2015-001355.CrossRefPubMedGoogle Scholar
  99. 99.
    Beaumier L, Chanoine S, Camara B, Pison C, Bedouch P. Alemtuzumab and de novo pulmonary arterial hypertension: a potential association? J Heart Lung Transpl. 2017;36(3):370–1.  https://doi.org/10.1016/j.healun.2016.10.013.CrossRefGoogle Scholar
  100. 100.
    Gallo P, Centonze D, Marrosu MG. Alemtuzumab for multiple sclerosis: the new concept of immunomodulation. Mult Scler Demyelinating Disord. 2017;2(1):7.  https://doi.org/10.1186/s40893-017-0024-4.CrossRefGoogle Scholar
  101. 101.
    Sauer EM, Schliep S, Manger B, Lee DH, Linker RA. Microscopic polyangiitis after alemtuzumab treatment in relapsing-remitting MS. Neurol Neuroimmunol Neuroinflamm. 2018;5(5):e488.  https://doi.org/10.1212/NXI.0000000000000488.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Haghikia A, Dendrou CA, Schneider R, Gruter T, Postert T, Matzke M, et al. Severe B-cell-mediated CNS disease secondary to alemtuzumab therapy. Lancet Neurol. 2017;16(2):104–6.  https://doi.org/10.1016/S1474-4422(16)30382-9.CrossRefPubMedGoogle Scholar
  103. 103.
    Rinaldi F, Federle L, Puthenparampil M, Perini P, Grassivaro F, Gallo P. Evidence of B-cell dysregulation in severe CNS inflammation after alemtuzumab therapy. Neurol Neuroimmunol Neuroinflamm. 2018;5(1):e420.  https://doi.org/10.1212/NXI.0000000000000420.CrossRefPubMedGoogle Scholar
  104. 104.
    Leussink VI, Reifenberger J, Hartung H-P. Case of alopecia universalis associated with alemtuzumab treatment in MS. Neurol Neuroimmunol Neuroinflamm.  https://doi.org/10.1212/nxi.0000000000000454 (epub 2018 Mar 16).
  105. 105.
    Willis MD, Hope-Gill B, Flood-Page P, Joseph F, Needham E, Jones J, et al. Sarcoidosis following alemtuzumab treatment for multiple sclerosis. Mult Scler. 2018;24(13):1779–82.  https://doi.org/10.1177/1352458518790391.CrossRefPubMedGoogle Scholar
  106. 106.
    Pfeuffer S, Beuker C, Ruck T, Lenze F, Wiendl H, Melzer N, et al. Acute cholecystitis during treatment with alemtuzumab in 3 patients with RRMS. Neurology. 2016;87(22):2380–1.  https://doi.org/10.1212/WNL.0000000000003379.CrossRefPubMedGoogle Scholar
  107. 107.
    Saarela M, Senthil K, Jones J, Tienari PJ, Soilu-Hänninen M, Airas L, et al. Hemophagocytic lymphohistiocytosis in 2 patients with multiple sclerosis treated with alemtuzumab. Neurology. 2018;90(18):849–51.  https://doi.org/10.1212/wnl.0000000000005420.CrossRefPubMedGoogle Scholar
  108. 108.
    Devonshire V, Phillips R, Wass H, Da Roza G, Senior P. Monitoring and management of autoimmunity in multiple sclerosis patients treated with alemtuzumab: practical recommendations. J Neurol. 2018;265(11):2494–505.  https://doi.org/10.1007/s00415-018-8822-y.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Demko S, Summers J, Keegan P, Pazdur R. FDA drug approval summary: alemtuzumab as single-agent treatment for B-cell chronic lymphocytic leukemia. Oncologist. 2008;13(2):167–74.  https://doi.org/10.1634/theoncologist.2007-0218.CrossRefPubMedGoogle Scholar
  110. 110.
    Baker D, Herrod SS, Alvarez-Gonzalez C, Giovannoni G, Schmierer K. Interpreting lymphocyte reconstitution data from the pivotal phase 3 trials of alemtuzumab. JAMA Neurol. 2017;74(8):961–9.  https://doi.org/10.1001/jamaneurol.2017.0676.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Krupica T Jr, Fry TJ, Mackall CL. Autoimmunity during lymphopenia: a two-hit model. Clin Immunol. 2006;120(2):121–8.  https://doi.org/10.1016/j.clim.2006.04.569.CrossRefPubMedGoogle Scholar
  112. 112.
    Guarnera C, Bramanti P, Mazzon E. Alemtuzumab: a review of efficacy and risks in the treatment of relapsing remitting multiple sclerosis. Ther Clin Risk Manag. 2017;13:871–9.  https://doi.org/10.2147/tcrm.s134398.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Palanichamy A, Jahn S, Nickles D, Derstine M, Abounasr A, Hauser SL, et al. Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J Immunol. 2014;193(2):580–6.  https://doi.org/10.4049/jimmunol.1400118.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Hohlfeld R, Meinl E. Ocrelizumab in multiple sclerosis: markers and mechanisms. Lancet Neurol. 2017;16(4):259–61.CrossRefGoogle Scholar
  115. 115.
    Sorensen PS, Blinkenberg M. The potential role for ocrelizumab in the treatment of multiple sclerosis: current evidence and future prospects. Ther Adv Neurol Disord. 2016;9(1):44–52.  https://doi.org/10.1177/1756285615601933.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Emery P, Rigby W, Tak PP, Dorner T, Olech E, Martin C, et al. Safety with ocrelizumab in rheumatoid arthritis: results from the ocrelizumab phase III program. PLoS One. 2014;9(2):e87379.  https://doi.org/10.1371/journal.pone.0087379.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Kappos L, Li D, Calabresi PA, O’Connor P, Bar-Or A, Barkhof F, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet. 2011;378(9805):1779–87.  https://doi.org/10.1016/S0140-6736(11)61649-8.CrossRefGoogle Scholar
  118. 118.
    Montalban X, Belachew S, Wolinsky JS. Ocrelizumab in primary progressive and relapsing multiple sclerosis. N Engl J Med. 2017;376(17):1694.  https://doi.org/10.1056/NEJMc1702076.CrossRefPubMedGoogle Scholar
  119. 119.
    Mulero P, Midaglia L, Montalban X. Ocrelizumab: a new milestone in multiple sclerosis therapy. Ther Adv Neurol Disord. 2018;11:1756286418773025.  https://doi.org/10.1177/1756286418773025.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Gelfand JM, Cree BAC, Hauser SL. Ocrelizumab and other CD20(+) B-cell-depleting therapies in multiple sclerosis. Neurotherapeutics. 2017;14(4):835–41.  https://doi.org/10.1007/s13311-017-0557-4.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Roberts DM, Jones RB, Smith RM, Alberici F, Kumaratne DS, Burns S, et al. Rituximab-associated hypogammaglobulinemia: incidence, predictors and outcomes in patients with multi-system autoimmune disease. J Autoimmun. 2015;57:60–5.  https://doi.org/10.1016/j.jaut.2014.11.009.CrossRefPubMedGoogle Scholar
  122. 122.
    Wolach O, Bairey O, Lahav M. Late-onset neutropenia after rituximab treatment: case series and comprehensive review of the literature. Medicine. 2010;89(5):308–18.  https://doi.org/10.1097/MD.0b013e3181f2caef.CrossRefPubMedGoogle Scholar
  123. 123.
    Hauser SL, Kappos L, Montalban X, Koendgen H, Chognot C, Li C, et al. Safety of ocrelizumab in multiple sclerosis: updated analysis in patients with relapsing and primary progressive multiple sclerosis. In: 70th American academy of neurology (AAN) annual meeting; 21–27 Apr 2018. Los Angeles; 2018.Google Scholar
  124. 124.
    Hauser SL, Kappos L, Montalban X, Chin P, Green MC, et al. Incidence rates of malignancies in patients with multiple sclerosis in clinical trials and epidemiological studies [poster no. P686]. In: 7th Joint European committee for treatment and research in multiple sclerosis (ECTRIMS) and Americas committee for treatment and research in multiple sclerosis (ACTRIMS) meeting; 25–28 Oct 2017. Paris; 2017.Google Scholar
  125. 125.
    Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–34.  https://doi.org/10.1056/NEJMoa1601277.CrossRefGoogle Scholar
  126. 126.
    Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209–20.  https://doi.org/10.1056/NEJMoa1606468.CrossRefGoogle Scholar
  127. 127.
    Hartung HP, Gonsette R, Konig N, Kwiecinski H, Guseo A, Morrissey SP, et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet. 2002;360(9350):2018–25.  https://doi.org/10.1016/S0140-6736(02)12023-X.CrossRefGoogle Scholar
  128. 128.
    Ghalie RG, Edan G, Laurent M, Mauch E, Eisenman S, Hartung HP, et al. Cardiac adverse effects associated with mitoxantrone (Novantrone) therapy in patients with MS. Neurology. 2002;59(6):909–13.CrossRefGoogle Scholar
  129. 129.
    Buttmann M, Seuffert L, Mader U, Toyka KV. Malignancies after mitoxantrone for multiple sclerosis: a retrospective cohort study. Neurology. 2016;86(23):2203–7.  https://doi.org/10.1212/WNL.0000000000002745.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Marriott JJ, Miyasaki JM, Gronseth G, O’Connor PW, Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Evidence report: the efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis: report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology. Neurology. 2010;74(18):1463–70.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Neurology, Medical FacultyHeinrich-Heine-UniversityDüsseldorfGermany
  2. 2.Department of NeurologyUniversity Hospital CologneCologneGermany
  3. 3.Institute of Clinical Neuroimmunology, Biomedical Center and University HospitalLudwig-Maximilian-Universität MünchenMunichGermany
  4. 4.The Munich Cluster for Systems Neurology (SyNergy)MunichGermany
  5. 5.Department of NeurologyUniversity Hospital and Faculty of Medicine and Dentistry, Palacky UniversityOlomoucCzech Republic

Personalised recommendations