Advertisement

Drug Safety

, Volume 42, Issue 1, pp 45–54 | Cite as

POMME: The New Cohort to Evaluate Long-Term Effects After Prenatal Medicine Exposure

  • Justine BeneventEmail author
  • Caroline Hurault-Delarue
  • Mélanie Araujo
  • Jean-Louis Montastruc
  • Isabelle Lacroix
  • Christine Damase-Michel
Original Research Article

Abstract

Introduction

The POMME (PrescriptiOn Médicaments Mères Enfants) cohort has been implemented for the evaluation of the long-term consequences of medicine prenatal exposure. It holds anonymous medical information as well as information on medicine and healthcare reimbursement to the children, from the first day of intra-uterine life until childhood.

Objective

This article provides a description of the cohort regarding its structure and content and presents an outlook of the studies that could be performed with this new data source.

Methods

Data sources include (1) the French Health Insurance Database (medicines and medical care prescriptions and reimbursements to children and mothers during pregnancy) and (2) the Mother and Child Protection Centre Database (child health certificates at birth, 9 months of age and 24 months of age). Children born in Haute-Garonne (south-west France), over a period of 1 year (from 1 July to 30 June), are registered in POMME every 5 years. The cohort began on 1 July, 2010.

Results

To date, 8372 children have been recorded in POMME. They have reached 7 years of age now. Among them, 4249 (50.8%) are boys, 286 (3.4%) were from multiple pregnancies and 519 (6.2%) were born prematurely. They were prenatally exposed to 9.8 ± 6.1 medications. After birth, drug exposure was greatest in children aged 0–2 years. Children were mostly exposed to paracetamol, anti-infective agents and respiratory system drugs; 908 (10.8%) children presented with at least two signs of psychomotor development disorders.

Conclusions

POMME provides an observatory study on drug exposure and medical care use in children. This innovative cohort would make it possible to assess the risk of the long-term consequences of prenatal medicine exposure.

Notes

Acknowledgements

The authors acknowledge the data providers, who made anonymised data available for their research institution: the French Health Insurance System of Haute-Garonne and the Mother and Child Protection Center of Haute-Garonne. The authors are grateful to the POMME collaborators: Protection Maternelle et Infantile de Haute-Garonne and Caisse Primaire d’assurance Maladie de Haute-Garonne.

Compliance with Ethical Standards

Funding

No sources of funding were used to assist in the preparation of this study.

Conflict of interest

Justine Benevent, Caroline Hurault-Delarue, Mélanie Araujo, Jean-Louis Montastruc, Isabelle Lacroix and Christine Damase-Michel have no conflicts of interest that are directly relevant to the content of this study.

Ethics approval

This study was performed on anonymised patient data. For this type of study, formal consent is not required.

Supplementary material

40264_2018_712_MOESM1_ESM.pdf (262 kb)
Supplementary material 1 (PDF 261 kb)

References

  1. 1.
    Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 2013;309(16):1696–703.CrossRefGoogle Scholar
  2. 2.
    Bliddal M, Broe A, Pottegård A, Olsen J, Langhoff-Roos J. The Danish Medical Birth Register. Eur J Epidemiol. 2018;33(1):27–36.CrossRefGoogle Scholar
  3. 3.
    Magnus P, Birke C, Vejrup K, Haugan A, Alsaker E, Daltveit AK, et al. Cohort profile update: the Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol. 2016;45(2):382–8.CrossRefGoogle Scholar
  4. 4.
    Base des médicaments et informations tarifaires. http://www.codage.ext.cnamts.fr/codif/bdm_it/index_presentation.php?p_site=AMELI. Accessed 19 Jul 2018.
  5. 5.
    US Food and Drug Administration. Pediatric expertise for advisory panels: guidance for industry and FDA staff. https://www.fda.gov/RegulatoryInformation/Guidances/ucm082185.htm. Accessed 1 Mar 2018.
  6. 6.
    Palosse-Cantaloube L, Hurault-Delarue C, Beau A-B, Montastruc J-L, Lacroix I, Damase-Michel C. Risk of infections during the first year of life after in utero exposure to drugs acting on immunity: a population-based cohort study. Pharmacol Res. 2016;113(Pt A):557–62.CrossRefGoogle Scholar
  7. 7.
    Bénard-Laribière A, Jové J, Lassalle R, Robinson P, Droz-Perroteau C, Noize P. Drug use in French children: a population-based study. Arch Dis Child. 2015;100(10):960–5.CrossRefGoogle Scholar
  8. 8.
    Damase-Michel C, Lapeyre-Mestre M, Moly C, Fournié A, Montastruc JL. Drug use during pregnancy: survey in 250 women consulting at a university hospital center [in French]. J Gynecol Obstet Biol Reprod (Paris). 2000;29(1):77–85.Google Scholar
  9. 9.
    Pisa FE, Casetta A, Clagnan E, Michelesio E, Vecchi Brumatti L, Barbone F. Medication use during pregnancy, gestational age and date of delivery: agreement between maternal self-reports and health database information in a cohort. BMC Pregnancy Childbirth. 2015;25(15):310.CrossRefGoogle Scholar
  10. 10.
    Cheung K, El Marroun H, Elfrink ME, Jaddoe VWV, Visser LE, Stricker BHC. The concordance between self-reported medication use and pharmacy records in pregnant women. Pharmacoepidemiol Drug Saf. 2017;26(9):1119–25.CrossRefGoogle Scholar
  11. 11.
    Ylinen S, Hämeen-Anttila K, Sepponen K, Lindblad AK, Ahonen R. The use of prescription medicines and self-medication among children: a population-based study in Finland. Pharmacoepidemiol Drug Saf. 2010;19(10):1000–8.CrossRefGoogle Scholar
  12. 12.
    Martín-Pérez M, López De Andrés A, Barcenilla González MÁ, Jiménez-García R, Hernández-Barrera V, Jiménez-Trujillo I, et al. Parental administration of over-the-counter medication to Spanish children: a population-based national study. J Spec Pediatr Nurs. 2016;21(2):64–73.Google Scholar
  13. 13.
    Du Y, Knopf H. Self-medication among children and adolescents in Germany: results of the National Health Survey for Children and Adolescents (KiGGS). Br J Clin Pharmacol. 2009;68(4):599–608.CrossRefGoogle Scholar
  14. 14.
    Escourrou B, Bouville B, Bismuth M, Durrieu G, Oustric S. Self-medication in children by parents: a real risk? A cross-sectional descriptive study [in French]. Rev Prat. 2010;60(6 Suppl.):27–34.Google Scholar
  15. 15.
    Kogan MD, Pappas G, Yu SM, Kotelchuck M. Over-the-counter medication use among US preschool-age children. JAMA. 1994;272(13):1025–30.CrossRefGoogle Scholar
  16. 16.
    Pereira FS, Bucaretchi F, Stephan C, Cordeiro R. Self-medication in children and adolescents. J Pediatr (Rio J). 2007;83(5):453–8.CrossRefGoogle Scholar
  17. 17.
    Bezin J, Duong M, Lassalle R, Droz C, Pariente A, Blin P, et al. The national healthcare system claims databases in France, SNIIRAM and EGB: powerful tools for pharmacoepidemiology. Pharmacoepidemiol Drug Saf. 2017;26(8):954–62.CrossRefGoogle Scholar
  18. 18.
    Clavenna A, Bonati M. Drug prescriptions to outpatient children: a review of the literature. Eur J Clin Pharmacol. 2009;65(8):749–55.CrossRefGoogle Scholar
  19. 19.
    Pandolfini C, Bonati M. A literature review on off-label drug use in children. Eur J Pediatr. 2005;164(9):552–8.CrossRefGoogle Scholar
  20. 20.
    Sturkenboom MCJM, Verhamme KMC, Nicolosi A, Murray ML, Neubert A, Caudri D, et al. Drug use in children: cohort study in three European countries. BMJ. 2008;24(337):a2245.CrossRefGoogle Scholar
  21. 21.
    Clavenna A, Berti A, Gualandi L, Rossi E, De Rosa M, Bonati M. Drug utilisation profile in the Italian paediatric population. Eur J Pediatr. 2009;168(2):173–80.CrossRefGoogle Scholar
  22. 22.
    Chai G, Governale L, McMahon AW, Trinidad JP, Staffa J, Murphy D. Trends of outpatient prescription drug utilization in US children, 2002–2010. Pediatrics. 2012;130(1):23–31.CrossRefGoogle Scholar
  23. 23.
    Noordam R, Aarts N, Verhamme KM, Sturkenboom MCM, Stricker BH, Visser LE. Prescription and indication trends of antidepressant drugs in the Netherlands between 1996 and 2012: a dynamic population-based study. Eur J Clin Pharmacol. 2015;71(3):369–75.CrossRefGoogle Scholar
  24. 24.
    Abbas S, Ihle P, Adler J-B, Engel S, Günster C, Linder R, et al. Psychopharmacological prescriptions in children and adolescents in Germany. Dtsch Arzteblatt Int. 2016;113(22–23):396–403.Google Scholar
  25. 25.
    Sohn M, Moga DC, Blumenschein K, Talbert J. National trends in off-label use of atypical antipsychotics in children and adolescents in the United States. Medicine (Baltimore). 2016;95(23):e3784.CrossRefGoogle Scholar
  26. 26.
    Holstiege J, Schink T, Molokhia M, Mazzaglia G, Innocenti F, Oteri A, et al. Systemic antibiotic prescribing to paediatric outpatients in 5 European countries: a population-based cohort study. BMC Pediatr. 2014;5(14):174.CrossRefGoogle Scholar
  27. 27.
    Skovlund E, Handal M, Selmer R, Brandlistuen RE, Skurtveit S. Language competence and communication skills in 3-year-old children after prenatal exposure to analgesic opioids. Pharmacoepidemiol Drug Saf. 2017;26(6):625–34.CrossRefGoogle Scholar
  28. 28.
    Brandlistuen RE, Ystrom E, Hernandez-Diaz S, Skurtveit S, Selmer R, Handal M, et al. Association of prenatal exposure to benzodiazepines and child internalizing problems: a sibling-controlled cohort study. PLoS One. 2017;12(7):e0181042.CrossRefGoogle Scholar
  29. 29.
    Rai D, Lee BK, Dalman C, Newschaffer C, Lewis G, Magnusson C. Antidepressants during pregnancy and autism in offspring: population based cohort study. BMJ. 2017;19(358):j2811.CrossRefGoogle Scholar
  30. 30.
    Mao Y, Pedersen LH, Christensen J, Vestergaard M, Zhou W, Olsen J, et al. Prenatal exposure to antidepressants and risk of epilepsy in childhood. Pharmacoepidemiol Drug Saf. 2016;25(11):1320–30.CrossRefGoogle Scholar
  31. 31.
    Würtz AM, Rytter D, Vestergaard CH, Christensen J, Vestergaard M, Bech BH. Prenatal exposure to antiepileptic drugs and use of primary healthcare during childhood: a population-based cohort study in Denmark. BMJ Open. 2017;7(1):e012836.CrossRefGoogle Scholar
  32. 32.
    Würtz AML, Høstrup Vestergaard C, Rytter D, Sørensen MJ, Christensen J, Vestergaard M, et al. Prenatal exposure to antipsychotic medication and use of primary health care system in childhood: a population-based cohort study in Denmark. Clin Epidemiol. 2017;9:657–66.CrossRefGoogle Scholar
  33. 33.
    ter Horst PGJ, Bos HJ, de Jong-van de Berg LTW, Wilffert B. In utero exposure to antidepressants and the use of drugs for pulmonary diseases in children. Eur J Clin Pharmacol. 2013;69(3):541–7.CrossRefGoogle Scholar
  34. 34.
    Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, et al. Cohort profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42(1):97–110.CrossRefGoogle Scholar
  35. 35.
    Richiardi L, Baussano I, Vizzini L, Douwes J, Pearce N, Merletti F, et al. Feasibility of recruiting a birth cohort through the internet: the experience of the NINFEA cohort. Eur J Epidemiol. 2007;22(12):831–7.CrossRefGoogle Scholar
  36. 36.
    Poulain T, Baber R, Vogel M, Pietzner D, Kirsten T, Jurkutat A, et al. The LIFE Child study: a population-based perinatal and pediatric cohort in Germany. Eur J Epidemiol. 2017;32(2):145–58.CrossRefGoogle Scholar
  37. 37.
    Meador KJ, Loring DW. Developmental effects of antiepileptic drugs and the need for improved regulations. Neurology. 2016;86(3):297–306.CrossRefGoogle Scholar
  38. 38.
    Mezzacappa A, Lasica P-A, Gianfagna F, Cazas O, Hardy P, Falissard B, et al. Risk for autism spectrum disorders according to period of prenatal antidepressant exposure: a systematic review and meta-analysis. JAMA Pediatr. 2017;171(6):555–63.CrossRefGoogle Scholar
  39. 39.
    Haute Autorité de Santé. Trouble du spectre de l’autisme: signes d’alerte, repérage, diagnostic et évaluation chez l’enfant et l’adolescent. https://www.has-sante.fr/portail/jcms/c_468812/fr/recommandations-pour-la-pratique-professionnelle-du-diagnostic-de-l-autisme. Accessed 1 Mar 2018.

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratoire de Pharmacologie Médicale et CliniqueFaculté de Médecine de ToulouseToulouseFrance
  2. 2.Service de Pharmacologie Médicale et Clinique, Centre Midi-Pyrénées de PharmacoVigilance, Pharmacoépidémiologie et d’Informations sur le Médicament, PharmacopôleCentre Hospitalier Universitaire de ToulouseToulouseFrance
  3. 3.INSERM, UMR 1027, Faculté de Médecine de ToulouseToulouseFrance
  4. 4.CIC 1436Centre Hospitalier Universitaire de ToulouseToulouseFrance

Personalised recommendations