Advertisement

Drug Safety

, Volume 39, Issue 7, pp 647–659 | Cite as

Drug-Induced QT/QTc Interval Shortening: Lessons from Drug-Induced QT/QTc Prolongation

  • Marek MalikEmail author
Review Article

Abstract

The review discusses safety implications of drugs found to shorten the QT/QTc interval. It uses parallels with drug-induced QT/QTc prolongation. It summarizes the evidence that increases in repolarization heterogeneity are likely more important for arrhythmia induction and maintenance than the absolute changes in the QT/QTc duration. The review further compares the direct evidence of proarrhythmia caused by QT-prolonging and -shortening drugs. At present, there is little proof of QT-shortening drugs causing ventricular fibrillation in more than rare isolated instances. Comparisons of the incidence of the congenital syndromes show that short QT syndrome is much rarer than long QT syndrome, similar to the findings of short QT intervals compared with long QT intervals in the general population. Nevertheless, potential concerns come from experimental drugs developed to increase the current of potassium-rectifying channels. Some of these drugs were found to cause ventricular fibrillation in isolated hearts. Still, population exposure to drug-induced QT shortening is likely substantially lower compared with QT prolongation, especially if considering that most of the processes that decrease the so-called repolarization reserve are associated with QT prolongation. Finally, the review lists reasons why purely theoretical concepts of pharmaceutical risk cannot be used to develop regulatory guidance and concludes that at present, no additional tests and/or general acceptance restrictions are needed for the approval of QT-shortening drugs.

Keywords

Ventricular Fibrillation Moxifloxacin Terfenadine Probucol Pinacidil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I am grateful to Nitin Joshi, the Editor-in-Chief of the Journal, for his invitation and encouragement to write this review.

Compliance with Ethical Standards

Funding

No sources of funding were used to assist in the preparation of this review.

Conflict of interest

Marek Malik has no conflicts of interest that are directly relevant to the content of this review.

References

  1. 1.
    Honig PK, Wortham DC, Zamani K, Conner DP, Mullin JC, Cantilena LR. Terfenadine–ketoconazole interaction. Pharmacokinetic and electrocardiographic consequences. JAMA. 1993;269:1513–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Committee for proprietary medicinal products. Points to consider: the assessment of the potential for QT interval prolongation by non-cardiovascular medical products. Document CPMP 868/96, 1997. http://www.fda.gov/ohrms/dockets/ac/03/briefing/pubs/cpmp.pdf.
  3. 3.
    Malik M, Garnett CE, Zhang J. Thorough QT studies. Questions and quandaries. Drug Saf. 2010;33:1–14.PubMedCrossRefGoogle Scholar
  4. 4.
    Garnett CE, Zhu H, Malik M, Fossa AA, Zhang J, Badilini F, Li J, Darpö B, Sager P, Rodriguez I. Methodologies to characterize the QT/corrected QT interval in the presence of drug-induced heart rate changes or other autonomic effects. Am Heart J. 2012;163:912–30.PubMedCrossRefGoogle Scholar
  5. 5.
    Darpo B, Garnett C, Benson CT, Keirns J, Leishman D, Malik M, Mehrotra N, Prasad K, Riley S, Rodriguez I, Sager P, Sarapa N, Wallis R. Cardiac Safety Research Consortium: can the thorough QT/QTc study be replaced by early QT assessment in routine clinical pharmacology studies? Scientific update and a research proposal for a path forward. Am Heart J. 2014;168:262–72.PubMedCrossRefGoogle Scholar
  6. 6.
    E14 Clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. Guidance to industry. Fed Regist. 2005;70:61134–5.Google Scholar
  7. 7.
    E14 Implementation Working Group. ICH E14 guideline: the clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. Questions and answers (R3). 10 December 2015. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E14/E14_Q_As_R3__Step4.pdf.
  8. 8.
    Lu HR, Vlaminckx E, Hermans AN, Rohrbacher J, Van Ammel K, Towart R, Pugsley M, Gallacher DJ. Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B guidelines. Br J Pharmacol. 2008;154:1427–38.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Shah RR, Bjerregaard P, Gussak I. Drug-induced QT interval shortening: an emerging component in integrated assessment of cardiac safety of drugs. J Electrocardiol. 2010;43:386–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Shah RR. Drug-induced QT interval shortening: potential harbinger of proarrhythmia and regulatory perspectives. Br J Pharmacol. 2010;159:58–69.PubMedCrossRefGoogle Scholar
  11. 11.
    Stockbridge N, Zhang J, Garnett C, Malik M. Practice and challenges of thorough QT studies. J Electrocardiol. 2012;45:582–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Gallagher MM, Magliano G, Yap YG, Padula M, Morgia V, Postorino C, Di Liberato F, Leo R, Borzi M, Romeo F. Distribution and prognostic significance of QT intervals in the lowest half centile in 12,012 apparently healthy persons. Am J Cardiol. 2006;98:933–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Anttonen O, Junttila MJ, Rissanen H, Reunanen A, Viitasalo M, Huikuri HV. Prevalence and prognostic significance of short QT interval in a middle-aged Finnish population. Circulation. 2007;116:714–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Funada A, Hayashi K, Ino H, Fujino N, Uchiyama K, Sakata K, Masuta E, Sakamoto Y, Tsubokawa T, Yamagishi M. Assessment of QT intervals and prevalence of short QT syndrome in Japan. Clin Cardiol. 2008;31:270–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Veglio M, Chinaglia A, Cavallo-Perin P. QT interval, cardiovascular risk factors and risk of death in diabetes. J Endocrinol Invest. 2004;27:175–81.PubMedCrossRefGoogle Scholar
  16. 16.
    Pietrobelli A, Rothacker D, Gallagher D, Heymsfield SB. Electrocardiographic QTc interval: short-term weight loss effects. Int J Obes Relat Metab Disord. 1997;21:110–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Koide T, Ozeki K, Kaihara S, Kato A, Murao S, Kono H. Etiology of QT prolongation and T wave changes in chronic alcoholism. Jpn Heart J. 1981;22:151–66.PubMedCrossRefGoogle Scholar
  18. 18.
    Taubel J, Wong AH, Naseem A, Ferber G, Camm AJ. Shortening of the QT interval after food can be used to demonstrate assay sensitivity in thorough QT studies. J Clin Pharmacol. 2012;52:1558–65.PubMedCrossRefGoogle Scholar
  19. 19.
    Hnatkova K, Kowalski D, Keirns JJ, van Gelderen EM, Malik M. Reproducibility of QTc interval changes after meal intake. J Electrocardiol. 2015;48:194–202.PubMedCrossRefGoogle Scholar
  20. 20.
    Malik M. Facts, fancies and follies of drug-induced QT/QTc interval shortening. Br J Pharmacol. 2010;159:70–6.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Browne KF, Prystowsky E, Heger JJ, Chilson DA, Zipes DP. Prolongation of the Q-T interval in man during sleep. Am J Cardiol. 1983;52:55–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Rautaharju PM, Warren JW, Calhoun HP. Estimation of QT prolongation. A persistent, avoidable error in computer electrocardiography. J Electrocardiol. 1990;23(Suppl):111–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Malik M. Problems of heart rate correction in assessment of drug-induced QT interval prolongation. J Cardiovasc Electrophysiol. 2001;12:411–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Van Ganse W, Versee L, Eylenbosch W, Vuylsteek K. The electrocardiogram of athletes. Comparison with untrained subjects. Br Heart J. 1970;32:160–4.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chandra N, Bastiaenen R, Papadakis M, Panoulas VF, Ghani S, Duschl J, Foldes D, Raju H, Osborne R, Sharma S. Prevalence of electrocardiographic anomalies in young individuals: relevance to a nationwide cardiac screening program. J Am Coll Cardiol. 2014;63:2028–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Nagy D, DeMeersman R, Gallagher D, Pietrobelli A, Zion AS, Daly D, Heymsfield SB. QTc interval (cardiac repolarization): lengthening after meals. Obes Res. 1997;5:531–7.PubMedCrossRefGoogle Scholar
  27. 27.
    El-Sherif N, Chinushi M, Caref EB, Restivo M. Electrophysiological mechanism of the characteristic electrocardiographic morphology of torsade de pointes tachyarrhythmias in the long-QT syndrome: detailed analysis of ventricular tridimensional activation patterns. Circulation. 1997;96:4392–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Akar FG, Yan GX, Antzelevitch C, Rosenbaum DS. Unique topographical distribution of M cells underlies reentrant mechanism of torsade de pointes in the long-QT syndrome. Circulation. 2002;105:1247–53.PubMedCrossRefGoogle Scholar
  29. 29.
    Poelzing S, Rosenbaum DS. Cellular mechanisms of torsade de pointes. Novartis Found Symp. 2005;266:204–17.PubMedCrossRefGoogle Scholar
  30. 30.
    Boulaksil M, Jungschleger JG, Antoons G, Houtman MJ, de Boer TP, Wilders R, Beekman JD, Maessen JG, van der Hulst FF, van der Heyden MA, van Veen TA, van Rijen HV, de Bakker JM, Vos MA. Drug-induced torsade de pointes arrhythmias in the chronic AV block dog are perpetuated by focal activity. Circ Arrhythm Electrophysiol. 2011;4:566–76.PubMedCrossRefGoogle Scholar
  31. 31.
    Antzelevitch C, Fish J. Electrical heterogeneity within the ventricular wall. Basic Res Cardiol. 2001;96:517–27.PubMedCrossRefGoogle Scholar
  32. 32.
    Fenichel RR, Malik M, Antzelevitch C, Sanguinetti M, Roden DM, Priori SG, Ruskin JN, Lipicky RJ, Cantilena LR. Drug-induced torsades de pointes and implications for drug development. J Cardiovasc Electrophysiol. 2004;15:475–95.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Smetana P, Batchvarov VN, Hnatkova K, Camm AJ, Malik M. Sex differences in repolarization homogeneity and its circadian pattern. Am J Physiol Heart Circ Physiol. 2002;282:H1889–97.PubMedCrossRefGoogle Scholar
  34. 34.
    Antzelevitch C, Brugada P, Borggrefe M, Brugada J, Brugada R, Corrado D, Gussak I, LeMarec H, Nademanee K, Perez Riera AR, Shimizu W, Schulze-Bahr E, Tan H, Wilde A. Brugada syndrome: report of the Second Consensus Conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation. 2005;111:659–70.PubMedCrossRefGoogle Scholar
  35. 35.
    Gaita F, Giustetto C, Bianchi F, Wolpert C, Schimpf R, Riccardi R, Grossi S, Richiardi E, Borggrefe M. Short QT syndrome: a familial cause of sudden death. Circulation. 2003;108:965–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Gollob MH, Redpath CJ, Roberts JD. The short QT syndrome: proposed diagnostic criteria. J Am Coll Cardiol. 2011;57:802–12.PubMedCrossRefGoogle Scholar
  37. 37.
    Pinto YM, van Gelder IC, Heeringa M, Crijns HJ. QT lengthening and life-threatening arrhythmias associated with fexofenadine. Lancet. 1999;353:980.PubMedCrossRefGoogle Scholar
  38. 38.
    Po AL, Kendall MJ. Causality assessment of adverse drug effects: when is rechallenge ethically acceptable? Lancet. 1999;354:683.PubMedCrossRefGoogle Scholar
  39. 39.
    Hanrahan JP, Choo PW, Carlson W, Greineder D, Faich GA, Platt R. Terfenadine-associated ventricular arrhythmias and QTc interval prolongation. A retrospective cohort comparison with other antihistamines among members of a health maintenance organization. Ann Epidemiol. 1995;5:201–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Wysowski DK, Corken A, Gallo-Torres H, Talarico L, Rodriguez EM. Postmarketing reports of QT prolongation and ventricular arrhythmia in association with cisapride and Food and Drug Administration regulatory actions. Am J Gastroenterol. 2001;96:1698–703.PubMedCrossRefGoogle Scholar
  41. 41.
    Saner HE, Pierach CA, Aeppli DM. Relation between serum digoxin concentration and the electrocardiogram. Clin Cardiol. 1988;11:752–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Hornestam B, Held P, Edvardsson N. Effects of digoxin on electrocardiogram in patients with acute atrial fibrillation—a randomized, placebo-controlled study. Digitalis in Acute Atrial Fibrillation (DAAF) Trial Group. Clin Cardiol. 1999;22:96–102.PubMedCrossRefGoogle Scholar
  43. 43.
    Whitbeck MG, Charnigo RJ, Khairy P, Ziada K, Bailey AL, Zegarra MM, Shah J, Morales G, Macaulay T, Sorrell VL, Campbell CL, Gurley J, Anaya P, Nasr H, Bai R, Di Biase L, Booth DC, Jondeau G, Natale A, Roy D, Smyth S, Moliterno DJ, Elayi CS. Increased mortality among patients taking digoxin—analysis from the AFFIRM study. Eur Heart J. 2013;34:1481–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Hohnloser SH, Halperin JL, Camm AJ, Gao P, Radzik D, Connolly SJ, PALLAS investigators. Interaction between digoxin and dronedarone in the PALLAS trial. Circ Arrhythm Electrophysiol. 2014;7:1019–25.PubMedCrossRefGoogle Scholar
  45. 45.
    Frommeyer G, Milberg P, Schulze Grotthoff J, Dechering DG, Kochhäuser S, Stypmann J, Fehr M, Breithardt G, Eckardt L. Dronedarone and digitalis: individually reduced post-repolarization refractoriness enhances life-threatening arrhythmias. Europace. 2015;17:1300–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Hood WB Jr, Dans AL, Guyatt GH, Jaeschke R, McMurray JJ. Digitalis for treatment of heart failure in patients in sinus rhythm. Cochrane Database Syst Rev. 2014;4:CD002901.PubMedGoogle Scholar
  47. 47.
    Gheorghiade M, Adams KFJ, Colucci WS. Digoxin in the management of cardiovascular disorders. Circulation. 2004;109:2959–64.PubMedCrossRefGoogle Scholar
  48. 48.
    Garberoglio L, Giustetto C, Wolpert C, Gaita F. Is acquired short QT due to digitalis intoxication responsible for malignant ventricular arrhythmias? J Electrocardiol. 2007;40:43–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Chiang CE, Roden DM. The long QT syndromes: genetic basis and clinical implications. J Am Coll Cardiol. 2000;36:1–12.PubMedCrossRefGoogle Scholar
  50. 50.
    Lu JT, Kass RS. Recent progress in congenital long QT syndrome. Curr Opin Cardiol. 2010;25:216–21.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hsiao PY, Tien HC, Lo CP, Juang JM, Wang YH, Sung RJ. Gene mutations in cardiac arrhythmias: a review of recent evidence in ion channelopathies. Appl Clin Genet. 2013;6:1–13.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C, Blom N, Brugada J, Chiang CE, Huikuri H, Kannankeril P, Krahn A, Leenhardt A, Moss A, Schwartz PJ, Shimizu W, Tomaselli G, Tracy C. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Heart Rhythm. 2013;10:1932–63.PubMedCrossRefGoogle Scholar
  53. 53.
    Spoonamore KG, Ware SM. Genetic testing and genetic counseling in patients with sudden death risk due to heritable arrhythmias. Heart Rhythm. 2016 (in press).Google Scholar
  54. 54.
    Behere SP, Weindling SN. Inherited arrhythmias: the cardiac channelopathies. Ann Pediatr Cardiol. 2015;8:210–20.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Mazzanti A, Kanthan A, Monteforte N, Memmi M, Bloise R, Novelli V, Miceli C, O’Rourke S, Borio G, Zienciuk-Krajka A, Curcio A, Surducan AE, Colombo M, Napolitano C, Priori SG. Novel insight into the natural history of short QT syndrome. J Am Coll Cardiol. 2014;63:1300–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Khera S, Jacobson JT. Short QT syndrome in current clinical practice. Cardiol Rev. 2015 (in press).Google Scholar
  57. 57.
    Donaldson MR, Yoon G, Fu YH, Ptacek LJ. Andersen–Tawil syndrome: a model of clinical variability, pleiotropy, and genetic heterogeneity. Ann Med. 2004;36(Suppl 1):92–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Barrett CF, Tsien RW. The Timothy syndrome mutation differentially affects voltage- and calcium-dependent inactivation of CaV1.2 L-type calcium channels. Proc Natl Acad Sci USA. 2008;105:2157–62.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Giustetto C, Schimpf R, Mazzanti A, Scrocco C, Maury P, Anttonen O, Probst V, Blanc JJ, Sbragia P, Dalmasso P, Borggrefe M, Gaita F. Long-term follow-up of patients with short QT syndrome. J Am Coll Cardiol. 2011;58:587–95.PubMedCrossRefGoogle Scholar
  60. 60.
    Goldenberg I, Moss AJ. Long QT syndrome. J Am Coll Cardiol. 2008;51:2291–300.PubMedCrossRefGoogle Scholar
  61. 61.
    Turgeon J, Daleau P, Bennett PB, Wiggins SS, Selby L, Roden DM. Block of IKs, the slow component of the delayed rectifier K+ current, by the diuretic agent indapamide in guinea pig myocytes. Circ Res. 1994;75:879–86.PubMedCrossRefGoogle Scholar
  62. 62.
    He S, Lai Z, Ye Z, Dobbelaar PH, Shah SK, Truong Q, Du W, Guo L, Liu J, Jian T, Qi H, Bakshi RK, Hong Q, Dellureficio J, Reibarkh M, Samuel K, Reddy VB, Mitelman S, Tong SX, Chicchi GG, Tsao KL, Trusca D, Wu M, Shao Q, Trujillo ME, Fernandez G, Nelson D, Bunting P, Kerr J, Fitzgerald P, Morissette P, Volksdorf S, Eiermann GJ, Li C, Zhang B, Howard AD, Zhou YP, Nargund RP, Hagmann WK. Investigation of cardiovascular effects of tetrahydro-β-carboline sstr3 antagonists. ACS Med Chem Lett. 2014;5:748–53.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Yun J, Hwangbo E, Lee J, Chon CR, Kim PA, Jeong IH, Park M, Park R, Kang SJ, Choi D. Analysis of an ECG record database reveals QT interval prolongation potential of famotidine in a large Korean population. Cardiovasc Toxicol. 2015;15:197–202.PubMedCrossRefGoogle Scholar
  64. 64.
    Kang J, Chen XL, Wang H, Ji J, Cheng H, Incardona J, Reynolds W, Viviani F, Tabart M, Rampe D. Discovery of a small molecule activator of the human ether-a-go-go-related gene (HERG) cardiac K+ channel. Mol Pharmacol. 2005;67:827–36.PubMedCrossRefGoogle Scholar
  65. 65.
    Hansen RS, Diness TG, Christ T, Wettwer E, Ravens U, Olesen SP, Grunnet M. Biophysical characterization of the new human ether-a-go-go-related gene channel opener NS3623 [N-(4-bromo-2-(1H-tetrazol-5-yl)-phenyl)-N′-(3′-trifluoromethylphenyl)urea]. Mol Pharmacol. 2006;70:1319–29.PubMedCrossRefGoogle Scholar
  66. 66.
    Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov. 2009;8:982–1001.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Grunnet M, Hansen RS, Olesen SP. hERG1 channel activators: a new anti-arrhythmic principle. Prog Biophys Mol Biol. 2008;98:347–62.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhou J, Augelli-Szafran CE, Bradley JA, Chen X, Koci BJ, Volberg WA, Sun Z, Cordes JS. Novel potent human ether-a-go-go-related gene (hERG) potassium channel enhancers and their in vitro antiarrhythmic activity. Mol Pharmacol. 2005;68:876–84.PubMedGoogle Scholar
  69. 69.
    Nissen JD, Diness JG, Diness TG, Hansen RS, Grunnet M, Jespersen T. Pharmacologically induced long QT type 2 can be rescued by activation of IKs with benzodiazepine R-L3 in isolated guinea pig cardiomyocytes. J Cardiovasc Pharmacol. 2009;54:169–77.PubMedCrossRefGoogle Scholar
  70. 70.
    Zareba W, Rosero S, Zeng D, Moss A, Robinson J, Couderc J-P, Karwatowska-Prokopczuk E, Layug B, Belardinelli L. QTc shortening by GS-6615, a new late sodium current blocker, in LQT3 patients (abstract). Heart Rhythm. 2014;11:S81.CrossRefGoogle Scholar
  71. 71.
    Milberg P, Fink M, Pott C, Frommeyer G, Biertz J, Osada N, Stypmann J, Mönnig G, Koopmann M, Breithardt G, Eckardt L. Blockade of I(Ca) suppresses early afterdepolarizations and reduces transmural dispersion of repolarization in a whole heart model of chronic heart failure. Br J Pharmacol. 2012;166:557–68.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Alves Bento AS, Bacic D, Saran Carneiro J, Nearing BD, Fuller H, Justo FA, Rajamani S, Belardinelli L, Verrier RL. Selective late INa inhibition by GS-458967 exerts parallel suppression of catecholamine-induced hemodynamically significant ventricular tachycardia and T-wave alternans in an intact porcine model. Heart Rhythm. 2015;12:2508–14.PubMedCrossRefGoogle Scholar
  73. 73.
    Watanabe O, Okumura T, Takeda H, Nakamura W, Segawa K, Ito H, Yoshimoto N. Nicorandil, a potassium channel opener, abolished torsades de pointes in a patient with complete atrioventricular block. Pacing Clin Electrophysiol. 1999;22:686–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Testai L, Cecchetti V, Sabatini S, Martelli A, Breschi MC, Calderone V. Effects of K openers on the QT prolongation induced by HERG-blocking drugs in guinea-pigs. J Pharm Pharmacol. 2010;62:924–30.PubMedCrossRefGoogle Scholar
  75. 75.
    Kijtawornrat A, Panyasing Y, Del Rio C, Hamlin RL. Assessment of ECG interval and restitution parameters in the canine model of short QT syndrome. J Pharmacol Toxicol Methods. 2010;61:231–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Wu S, Hayashi H, Lin SF, Chen PS. Action potential duration and QT interval during pinacidil infusion in isolated rabbit hearts. J Cardiovasc Electrophysiol. 2005;16:872–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Stark G, Kasper K, Stark U, Miyawaki N, Decrinis M, Tritthart HA. ffects of semotiadil, a novel Ca2+ channel antagonist, on the electrical activity of Langendorff-perfused guinea pig hearts in comparison with diltiazem, amlodipine and nifedipine. Eur J Pharmacol. 1995;286:71–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Johannesen L, Vicente J, Mason JW, Sanabria C, Waite-Labott K, Hong M, Guo P, Lin J, Sørensen JS, Galeotti L, Florian J, Ugander M, Stockbridge N, Strauss DG. Differentiating drug-induced multichannel block on the electrocardiogram: randomized study of dofetilide, quinidine, ranolazine, and verapamil. Clin Pharmacol Ther. 2014;96:549–58.PubMedCrossRefGoogle Scholar
  79. 79.
    Caballero R, Gómez R, Núñez L, Moreno I, Tamargo J, Delpón E. Diltiazem inhibits hKv1.5 and Kv4.3 currents at therapeutic concentrations. Cardiovasc Res. 2004;64:457–66.PubMedCrossRefGoogle Scholar
  80. 80.
    Rampe D, Wible B, Fedida D, Dage RC, Brown AM. Verapamil blocks a rapidly activating delayed rectifier K+ channel cloned from human heart. Mol Pharmacol. 1993;44:642–8.PubMedGoogle Scholar
  81. 81.
    Dixon R, Job S, Oliver R, Tompson D, Wright JG, Maltby K, Lorch U, Taubel J. Lamotrigine does not prolong QTc in a thorough QT/QTc study in healthy subjects. Br J Clin Pharmacol. 2008;66:396–404.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Kropeit D, Johnson M, Cawello W, Rudd GD, Horstmann R. Lacosamide cardiac safety: a thorough QT/QTc trial in healthy volunteers. Acta Neurol Scand. 2015;132:346–54.PubMedCrossRefGoogle Scholar
  83. 83.
    Snyder DW. Class IB antiarrhythmic drugs: tocainide, mexiletine, and moricizine. J La State Med Soc. 1989;141:21–5.PubMedGoogle Scholar
  84. 84.
    Malik M, van Gelderen EM, Lee JH, Kowalski DL, Yen M, Goldwater R, Mujais SK, Schaddelee MP, de Koning P, Kaibara A, Moy SS, Keirns JJ. Proarrhythmic safety of repeat doses of mirabegron in healthy subjects: a randomized, double-blind, placebo-, and active-controlled thorough QT study. Clin Pharmacol Ther. 2012;92:696–706.PubMedCrossRefGoogle Scholar
  85. 85.
    Yager N, Wang K, Keshwani N, Torosoff M. Phenytoin as an effective treatment for polymorphic ventricular tachycardia due to QT prolongation in a patient with multiple drug intolerances. BMJ Case Rep. 2015. pii: bcr2015209521.Google Scholar
  86. 86.
    Johannesen L, Vicente J, Mason JW, Erato C, Sanabria C, Waite-Labott K, Hong M, Lin J, Guo P, Mutlib A, Wang J, Crumb WJ, Blinova K, Chan D, Stohlman J, Florian J, Ugander M, Stockbridge N, Strauss DG. Late sodium current block for drug-induced long QT syndrome: results from a prospective clinical trial. Clin Pharmacol Ther. 2016;99:214–23.PubMedCrossRefGoogle Scholar
  87. 87.
    Ford J, Milnes J, El Haou S, Wettwer E, Loose S, Matschke K, Tyl B, Round P, Ravens U. The positive frequency-dependent electrophysiological effects of the IKur inhibitor XEN-D0103 are desirable for the treatment of atrial fibrillation. Heart Rhythm. 2016;13:555–64.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K(+) channels: structure, function, and clinical significance. Physiol Rev. 2012;92:1393–478.PubMedCrossRefGoogle Scholar
  89. 89.
    Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PK, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res. 2003;58:32–45.PubMedCrossRefGoogle Scholar
  90. 90.
    Montenegro S. Lamictal XR (lamotrigine). Division of Epidemiology II FDA. October 31, 2012. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/PediatricAdvisoryCommittee/UCM342241.pdf.
  91. 91.
    Chai G. Sales of antibacterial drugs in kilograms. Division of Epidemiology FDA. November 30, 2010. http://www.fda.gov/downloads/Drugs/DrugSafety/InformationbyDrugClass/UCM261174.pdf.
  92. 92.
    Barrera CM, Mykietiuk A, Metev H, Nitu MF, Karimjee N, Doreski PA, Mitha I, Tanaseanu CM, Molina JM, Antonovsky Y, Van Rensburg DJ, Rowe BH, Flores-Figueroa J, Rewerska B, Clark K, Keedy K, Sheets A, Scott D, Horwith G, Das AF, Jamieson B, Fernandes P, Oldach D; SOLITAIRE-ORAL Pneumonia Team. Efficacy and safety of oral solithromycin versus oral moxifloxacin for treatment of community-acquired bacterial pneumonia: a global, double-blind, multicentre, randomised, active-controlled, non-inferiority trial (SOLITAIRE-ORAL). Lancet Infect Dis. 2016. pii: S1473-3099(16)00017-7.Google Scholar
  93. 93.
    Kannankeril PJ, Roden DM. Drug-induced long QT and torsade de pointes: recent advances. Curr Opin Cardiol. 2007;22:39–43.PubMedCrossRefGoogle Scholar
  94. 94.
    Iribarren C, Round AD, Peng JA, Lu M, Klatsky AL, Zaroff JG, Holve TJ, Prasad A, Stang P. Short QT in a cohort of 1.7 million persons: prevalence, correlates, and prognosis. Ann Noninvasive Electrocardiol. 2014;19:490–500.PubMedCrossRefGoogle Scholar
  95. 95.
    Roden DM. Long QT syndrome: reduced repolarization reserve and the genetic link. J Intern Med. 2006;259:59–69.PubMedCrossRefGoogle Scholar
  96. 96.
    Roden DM, Abraham RL. Refining repolarization reserve. Heart Rhythm. 2011;8:1756–7.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Sauer A, Wilcox JE, Andrei AC, Passman R, Goldberger JJ, Shah SJ. Diastolic electromechanical coupling: association of the ECG T-peak to T-end interval with echocardiographic markers of diastolic dysfunction. Circ Arrhythm Electrophysiol. 2012;5:537–43.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Tuttolomondo A, Buttà C, Casuccio A, Di Raimondo D, Serio A, D’Aguanno G, Pecoraro R, Renda C, Giarrusso L, Miceli G, Cirrincione A, Pinto A. QT indexes in cirrhotic patients: relationship with clinical variables and potential diagnostic predictive value. Arch Med Res. 2015;46:207–13.PubMedCrossRefGoogle Scholar
  99. 99.
    Sherif KA, Abo-Salem E, Panikkath R, Nusrat M, Tuncel M. Cardiac repolarization abnormalities among patients with various stages of chronic kidney disease. Clin Cardiol. 2014;37:417–21.PubMedCrossRefGoogle Scholar
  100. 100.
    Frommeyer G, Schulze Grotthoff J, Fischer C, Bogossian H, Reinke F, Kochhäuser S, Dechering DG, Fehr M, Milberg P, Eckardt L. Vernakalant in an experimental model of pacing-induced heart failure: lack of proarrhythmia despite prolongation of repolarization. J Card Fail. 2014;20:786–92.PubMedCrossRefGoogle Scholar
  101. 101.
    Malik M, Hnatkova K, Kowalski D, Keirns JJ, van Gelderen EM. QT/RR curvatures in healthy subjects: sex differences and covariates. Am J Physiol Heart Circ Physiol. 2013;305:H1798–806.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Malik M, Hnatkova K, Novotny T, Schmidt G. Subject-specific profiles of QT/RR hysteresis. Am J Physiol Heart Circ Physiol. 2008;295:H2356–63.PubMedCrossRefGoogle Scholar
  103. 103.
    Nakajima T, Misu K, Iwasawa K, Tamiya E, Segawa K, Matsuo H, Hada K. Auditory stimuli as a major cause of syncope in a patient with idiopathic long QT syndrome. Jpn Circ J. 1995;59:241–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Bari V, Valencia JF, Vallverdu M, Girardengo G, Bassani T, Marchi A, Calvillo L, Caminal P, Cerutti S, Brink PA, Crotti L, Schwartz PJ, Porta A. Refined multiscale entropy analysis of heart period and QT interval variabilities in long QT syndrome type-1 patients. Proceedings of the 35th Annual International Conference of the IEEE EMBS, Osaka, Japan, 2013, p. 5554–7.Google Scholar
  105. 105.
    Wellens HJ, Schwartz PJ, Lindemans FW, Buxton AE, Goldberger JJ, Hohnloser SH, Huikuri HV, Kääb S, La Rovere MT, Malik M, Myerburg RJ, Simoons ML, Swedberg K, Tijssen J, Voors AA, Wilde AA. Risk stratification for sudden cardiac death: current status and challenges for the future. Eur Heart J. 2014;35:1642–51.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Malik M, Hnatkova K, Schmidt A, Smetana P. Correction for QT/RR hysteresis in the assessment of drug-induced QTc changes—cardiac safety of gadobutrol. Ann Noninvas Electrocardiol. 2009;14:242–50.CrossRefGoogle Scholar
  107. 107.
    Makkar RR, Fromm BS, Steinman RT, Meissner MD, Lehmann MH. Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA. 1993;270:2590–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Frommeyer G, Eckardt L. Drug-induced proarrhythmia: risk factors and electrophysiological mechanisms. Nat Rev Cardiol. 2015. doi: 10.1038/nrcardio.2015.110.
  109. 109.
    Rao KA, Adlakha A, Verma-Ansil B, Meloy TD, Stanton MS. Torsades de pointes ventricular tachycardia associated with overdose of astemizole. Mayo Clin Proc. 1994;69:589–93.PubMedCrossRefGoogle Scholar
  110. 110.
    Paris DG, Parente TF, Bruschetta HR, Guzman E, Niarchos AP. Torsades de pointes induced by erythromycin and terfenadine. Am J Emerg Med. 1994;12:636–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Doig JC. Drug-induced cardiac arrhythmias: incidence, prevention and management. Drug Saf. 1997;17:265–75.PubMedCrossRefGoogle Scholar
  112. 112.
    Verrier RL, Klingenheben T, Malik M, El-Sherif N, Exner DV, Hohnloser SH, Ikeda T, Martinez JP, Narayan SM, Nieminen T, Rosenbaum DS. Microvolt T-wave alternans: physiological basis, methods of measurement, and clinical utility consensus guideline by International Society for Holter and Noninvasive Electrocardiology. J Am Coll Cardiol. 2011;58:1309–24.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Zabel M, Acar B, Klingenheben T, Franz MR, Hohnloser SH, Malik M. Analysis of 12-lead T-wave morphology for risk stratification after myocardial infarction. Circulation. 2000;102:1252–7.PubMedCrossRefGoogle Scholar
  114. 114.
    Kardys I, Kors JA, van der Meer IM, Hofman A, van der Kuip DA, Witteman JC. Spatial QRS-T angle predicts cardiac death in a general population. Eur Heart J. 2003;24:1357–64.PubMedCrossRefGoogle Scholar
  115. 115.
    Baumert M, Porta A, Vos MA, Malik M, Couderc J-P, Laguna P, Piccirillo G, Smith GL, Tereshchenko LG, Volders PGA. QT interval variability in body surface ECG: Measurement, physiological basis, and clinical value: position statement and consensus guidance endorsed by the European Heart Rhythm Association jointly with the ESC Working Group on Cardiac Cellular Electrophysiology. Europace. 2016 (in press).Google Scholar
  116. 116.
    Zabel M, Malik M, Hnatkova K, Papademetriou V, Pittaras A, Fletcher RD, Franz MR. Analysis of T-wave morphology from the 12-lead electrocardiogram for prediction of long-term prognosis in male US veterans. Circulation. 2002;105:1066–70.PubMedCrossRefGoogle Scholar
  117. 117.
    Malik M, Acar B, Gang Y, Yap Y-G, Hnatkova K, Camm AJ. QT Dispersion does not represent electrocardiographic interlead heterogeneity of ventricular repolarisation. J Cardiovasc Electrophysiol. 2000;11:835–43.PubMedCrossRefGoogle Scholar
  118. 118.
    Vanoli E, De Ferrari GM, Stramba Badiale M, Hull SS Jr, Foreman RD, Schwartz PJ. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res. 1991;68:1471–81.PubMedCrossRefGoogle Scholar
  119. 119.
    Lown B, Verrier RL. Neural activity and ventricular fibrillation. N Engl J Med. 1976;294:1165–70.PubMedCrossRefGoogle Scholar
  120. 120.
    Nault MA, Milne B, Parlow JL. Effects of the selective H1 and H2 histamine receptor antagonists loratadine and ranitidine on autonomic control of the heart. Anesthesiology. 2002;96:336–41.PubMedCrossRefGoogle Scholar
  121. 121.
    Zaliūnas R, Brazdzionyte J, Zabiela V, Jurkevicius R. Effects of amlodipine and lacidipine on heart rate variability in hypertensive patients with stable angina pectoris and isolated left ventricular diastolic dysfunction. Int J Cardiol. 2005;101:347–53.PubMedCrossRefGoogle Scholar
  122. 122.
    Manolio TA, Baughman KL, Rodeheffer R, Pearson TA, Bristow JD, Michels VV, Abelmann WH, Harlan WR. Prevalence and etiology of idiopathic dilated cardiomyopathy (summary of a National Heart, Lung, and Blood Institute workshop). Am J Cardiol. 1992;69:1458–66.PubMedCrossRefGoogle Scholar
  123. 123.
    Baig MK, Goldman JH, Caforio AL, Coonar AS, Keeling PJ, McKenna WJ. Familial dilated cardiomyopathy: cardiac abnormalities are common in asymptomatic relatives and may represent early disease. J Am Coll Cardiol. 1998;31:195–201.PubMedCrossRefGoogle Scholar
  124. 124.
    Jordaens L, de Pauw M, Caes F. Familial dilated cardiomyopathy and spontaneous ventricular arrhythmias. Am J Cardiol. 1996;78:102–4.PubMedCrossRefGoogle Scholar
  125. 125.
    Bhattacharya S. The facts about penicillin allergy: a review. J Adv Pharm Technol Res. 2010;1:11–7.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Simons FE, Kesselman MS, Giddins NG, Pelech AN, Simons KJ. Astemizole-induced torsade de pointes. Lancet. 1988;8611:624.CrossRefGoogle Scholar
  127. 127.
    Amankwa K, Krishnan SC, Tisdale JE. Torsades de pointes associated with fluoroquinolones: importance of concomitant risk factors. Clin Pharmacol Ther. 2004;75:242–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Deamer RL, Wilson DR, Clark DS, Prichard JG. Torsades de pointes associated with high dose levomethadyl acetate (ORLAAM). J Addict Dis. 2001;20:7–14.PubMedCrossRefGoogle Scholar
  129. 129.
    Pratt C, Brown AM, Rampe D, Mason J, Russell T, Reynolds R, Ahlbrandt R. Cardiovascular safety of fexofenadine HCl. Clin Exp Allergy. 1999;29(Suppl 3):212–6.PubMedCrossRefGoogle Scholar
  130. 130.
    BANZEL® (rufinamide) Tablet, prescribing information. http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021911s005lbl.pdf.
  131. 131.
    Schimpf R, Veltmann C, Papavassiliu T, Rudic B, Göksu T, Kuschyk J, Wolpert C, Antzelevitch C, Ebner A, Borggrefe M, Brandt C. Drug-induced QT-interval shortening following antiepileptic treatment with oral rufinamide. Heart Rhythm. 2012;9:776–81.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    FDA drug review. Postapproval risks. 1990:1976–85. http://archive.gao.gov/d24t8/141456.pdf.
  133. 133.
    Browne KF, Prystowsky EN, Heger JJ, Cerimele BJ, Fineberg N, Zipes DP. Prolongation of the QT interval induced by probucol: demonstration of a method for determining QT interval change induced by a drug. Am Heart J. 1984;107:680–4.PubMedCrossRefGoogle Scholar
  134. 134.
    Matsuhashi H, Onodera S, Kawamura Y, Hasebe N, Kohmura C, Yamashita H, Tobise K. Probucol-induced QT prolongation and torsades de pointes. Jpn J Med. 1989;28:612–5.az.Google Scholar
  135. 135.
    Gohn DC, Simmons TW. Polymorphic ventricular tachycardia (torsade de pointes) associated with the use of probucol. N Engl J Med. 1992;326:1435–6.PubMedGoogle Scholar
  136. 136.
    Baštecký J, Kvasnička J, Vortel J, Tauchman M, Wasylivová V. Závažná intoxikace antihistaminiky komplikovaná komorovou tachykardií. (In Czech: severe antihistamine poisoning complicated by ventricular tachycardia). Vnitr Lek. 1990;36:266–9.PubMedGoogle Scholar
  137. 137.
    Sager PT, Gintant G, Turner JR, Pettit S, Stockbridge N. Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. Am Heart J. 2014;167:292–300.PubMedCrossRefGoogle Scholar
  138. 138.
    Cavero I, Holzgrefe H. Comprehensive in vitro proarrhythmia assay, a novel in vitro/in silico paradigm to detect ventricular proarrhythmic liability: a visionary 21st century initiative. Expert Opin Drug Saf. 2014;13:745–58.PubMedCrossRefGoogle Scholar
  139. 139.
    Cavero I, Holzgrefe H. CiPA: ongoing testing, future qualification procedures, and pending issues. J Pharmacol Toxicol Methods. 2015;76:27–37.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.St. Paul’s Cardiac ElectrophysiologyUniversity of London, NHLI, Imperial CollegeLondonEngland

Personalised recommendations