Drug Safety

, Volume 38, Issue 12, pp 1153–1168 | Cite as

Drug-Induced Hyperglycaemia and Diabetes

  • Neila Fathallah
  • Raoudha Slim
  • Sofien Larif
  • Houssem Hmouda
  • Chaker Ben Salem
Review Article


Drug-induced hyperglycaemia and diabetes is a global issue. It may be a serious problem, as it increases the risk of microvascular and macrovascular complications, infections, metabolic coma and even death. Drugs may induce hyperglycaemia through a variety of mechanisms, including alterations in insulin secretion and sensitivity, direct cytotoxic effects on pancreatic cells and increases in glucose production. Antihypertensive drugs are not equally implicated in increasing serum glucose levels. Glycaemic adverse events occur more frequently with thiazide diuretics and with certain beta-blocking agents than with calcium-channel blockers and inhibitors of the renin–angiotensin system. Lipid-modifying agents may also induce hyperglycaemia, and the diabetogenic effect seems to differ between the different types and daily doses of statins. Nicotinic acid may also alter glycaemic control. Among the anti-infectives, severe life-threatening events have been reported with fluoroquinolones, especially when high doses are used. Protease inhibitors and, to a lesser extent, nucleoside reverse transcriptase inhibitors have been reported to induce alterations in glucose metabolism. Pentamidine-induced hyperglycaemia seems to be related to direct dysfunction in pancreatic cells. Phenytoin and valproic acid may also induce hyperglycaemia. The mechanisms of second-generation antipsychotic-associated hyperglycaemia, diabetes mellitus and ketoacidosis are complex and are mainly due to insulin resistance. Antidepressant agents with high daily doses seem to be more frequently associated with an increased risk of diabetes. Ketoacidosis may occur in patients receiving beta-adrenergic stimulants, and theophylline may also induce hyperglycaemia. Steroid diabetes is more frequently associated with high doses of glucocorticoids. Some chemotherapeutic agents carry a higher risk of hyperglycaemia, and calcineurin inhibitor-induced hyperglycaemia is mainly due to a decrease in insulin secretion. Hyperglycaemia has been associated with oral contraceptives containing high doses of oestrogen. Growth hormone therapy and somatostatin analogues may also induce hyperglycaemia. Clinicians should be aware of medications that may alter glycaemia. Efforts should be made to identify and closely monitor patients receiving drugs that are known to induce hyperglycaemia.


Olanzapine Glycaemic Control Atazanavir Diazoxide Thiazide Diuretic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



All authors attest that they are directly relevant to this work, and there has been no financial support for this work.

Compliance with Ethical Standards


No sources of funding were used in the preparation of this study.

Conflicts of interest

Neila Fathallah, Raoudha Slim, Sofien Larif, Houssem Hmouda and Chaker Ben Salem have no conflicts of interest that are directly relevant to the content of this study.


  1. 1.
    American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care. 2015;38(Suppl):S8–16.CrossRefGoogle Scholar
  2. 2.
    Liu XX, Zhu XM, Miao Q, Ye HY, Zhang ZY, Li YM. Hyperglycemia induced by glucocorticoids in nondiabetic patients: a meta-analysis. Ann Nutr Metab. 2014;65(4):324–32.PubMedCrossRefGoogle Scholar
  3. 3.
    Heisel O, Heisel R, Balshaw R, Keown P. New onset diabetes mellitus in patients receiving calcineurin inhibitors: a systematic review and meta-analysis. Am J Transplant. 2004;4:583–95.PubMedCrossRefGoogle Scholar
  4. 4.
    Luna B, Feinglos MN. Drug-induced hyperglycemia. JAMA. 2001;286(16):1945–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Chan JC, Cockram CS, Critchley JA. Drug-induced disorders of glucose metabolism: mechanisms and management. Drug Saf. 1996;15(2):135–57.PubMedCrossRefGoogle Scholar
  6. 6.
    Pandit MK, Burke J, Gustafson AB, Minocha A, Peiris AN. Drug-induced disorders of glucose tolerance. Ann Intern Med. 1993;118(7):529–39.PubMedCrossRefGoogle Scholar
  7. 7.
    Ferner RE. Drug-induced diabetes. Baillieres Clin Endocrinol Metab. 1992;6(4):849–66.PubMedCrossRefGoogle Scholar
  8. 8.
    Chan JC, Cockram CS. Drug-induced disturbances of carbohydrate metabolism. Adverse Drug React Toxicol Rev. 1991;10(1):1–29.PubMedGoogle Scholar
  9. 9.
    Springer Link. Reactions Weekly. Accessed 24 Aug 2015.
  10. 10.
    Dunder K, Lind L, Zethelius B, Berglund L, Lithell H. Increase in blood glucose concentration during antihypertensive treatment as a predictor of myocardial infarction: population based cohort study. BMJ. 2003;326:681.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Verdecchia P, Reboldi G, Angeli F, Borgioni C, Gattobigio R, Filippucci L, et al. Adverse prognostic significance of new diabetes in treated hypertensive subjects. Hypertension. 2004;43:963–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Dahlöf B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, et al. LIFE Study Group. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint Reduction in Hypertension Study (LIFE): a randomized trial against atenolol. Lancet. 2002;359:995–1003.PubMedCrossRefGoogle Scholar
  13. 13.
    Jandeleit-Dahm KA, Tikellis C, Reid CM, Johnston CI, Cooper ME. Why blockade of the renin–angiotensin system reduces the incidence of new-onset diabetes. J Hypertens. 2005;23:463–73.PubMedCrossRefGoogle Scholar
  14. 14.
    Adverse reactions to bendrofluazide and propranolol for the treatment of mild hypertension. Report of Medical Research Council Working Party on Mild to Moderate Hypertension. Lancet. 1981;2:539–543.Google Scholar
  15. 15.
    Savage PJ, Pressel SL, Curb JD, Schron EB, Applegate WB, Black HR, et al. Influence of long-term, low dose, diuretic-based, antihypertensive therapy on glucose, lipid, uric acid, and potassium levels in older men and women with isolated systolic hypertension: the Systolic Hypertension in the Elderly Program. SHEP Cooperative Research Group. Arch Intern Med. 1998;158:741–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Brown MJ, Palmer CR, Castaigne A, de Leeuw PW, Mancia G, Rosenthal T, et al. Morbidity and mortality in patients randomized to double-blind treatment with a long-acting calcium-channel blocker or diuretic in the International Nifedipine GITS Study: Intervention as a Goal in Hypertension Treatment (INSIGHT). Lancet. 2000;356:366–72.PubMedCrossRefGoogle Scholar
  17. 17.
    ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288:2981–97.CrossRefGoogle Scholar
  18. 18.
    Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network metaanalysis. Meta-analysis of clinical trials showing of all antihypertensives analyzed, β-blockers and thiazide diuretics are associated with the highest risk of diabetes. Lancet. 2007;369(9557):201–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Alderman MH. New onset diabetes during antihypertensive therapy. Am J Hypertens. 2008;21(5):493–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Hirst JA, Farmer AJ, Feakins BG, Aronson JK, Stevens RJ. Quantifying the effects of diuretics and beta-blockers on glycaemic control in diabetes mellitus—a systematic review and meta-analysis. Br J Clin Pharmacol. 2015;79(5):733–43.PubMedCrossRefGoogle Scholar
  21. 21.
    Duarte JD, Cooper-DeHoff RM. Mechanisms for blood pressure lowering and metabolic effects of thiazide and thiazide-like diuretics. Expert Rev Cardiovasc Ther. 2010;8(6):793–802.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Ben Salem C, Hmouda H, Bouraoui K. Drug-induced hypokalaemia. Curr Drug Saf. 2009;4(1):55–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Tourniaire J, Bajard L, Harfouch M, Rebattu B, Garrel D. Restoration of insulin sensitivity after correction of hypokalemia due to chronic tubulopathy in a diabetic patient. Diabete Metab. 1988;14(6):717–20.PubMedGoogle Scholar
  24. 24.
    Ayvaz G, Balos Törüner F, Karakoç A, Yetkin I, Cakir N, Arslan M. Acute and chronic effects of different concentrations of free fatty acids on the insulin secreting function of islets. Diabetes Metab. 2002;28:3S7–12.PubMedGoogle Scholar
  25. 25.
    Eriksson JW, Jansson PA, Carlberg B, Hägg A, Kurland L, Svensson MK, et al. Hydrochlorothiazide, but not candesartan, aggravates insulin resistance and causes visceral and hepatic fat accumulation: the Mechanisms For the Diabetes Preventing Effect of Candesartan (MEDICA) study. Hypertension. 2008;52(6):1030–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Fernandez PG, Snedden W, Vasdev S, Bolli P. Bevantolol attenuates thiazide stimulated renin secretion and catecholamine release in diuretic resistant hypertensives. Can J Cardiol. 1989;5(2):93–7.PubMedGoogle Scholar
  27. 27.
    Messerli FH, Bangalore S, Yao SS, Steinberg JS. Cardioprotection with beta-blockers: myths, facts and Pascal’s wager. J Intern Med. 2009;266(3):232–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Shen L, Shah BR, Reyes EM, Thomas L, Wojdyla D, Diem P, et al. Role of diuretics, β blockers, and statins in increasing the risk of diabetes in patients with impaired glucose tolerance: reanalysis of data from the NAVIGATOR study. BMJ. 2013;347.Google Scholar
  29. 29.
    Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis Risk in Communities Study. N Engl J Med. 2000;342:905–12.PubMedCrossRefGoogle Scholar
  30. 30.
    Kostis JB, Wilson AC, Freudenberger RS, Cosgrove NM, Pressel SL, Davis BR. Long-term effect of diuretic-based therapy on fatal outcomes in subjects with isolated systolic hypertension with and without diabetes. Am J Cardiol. 2005;95:29–35.PubMedCrossRefGoogle Scholar
  31. 31.
    Rizos CV, Elisaf MS. Antihypertensive drugs and glucose metabolism. World J Cardiol. 2014. 26;6(7):517–530.Google Scholar
  32. 32.
    Samuelsson O, Hedner T, Berglund G, Persson B, Andersson OK, Wilhelmsen L. Diabetes mellitus in treated hypertension: incidence, predictive factors and the impact of non-selective beta-blockers and thiazide diuretics during 15 years treatment of middle-aged hypertensive men in the Primary Prevention Trial Goteborg, Sweden. J Hum Hypertens. 1994;8:257–63.PubMedGoogle Scholar
  33. 33.
    Bangalore S, Parkar S, Grossman E, Messerli FH. A meta-analysis of 94,492 patients with hypertension treated with beta blockers to determine the risk of new-onset diabetes mellitus. Am J Cardiol. 2007;100(8):1254–62.PubMedCrossRefGoogle Scholar
  34. 34.
    Jacob S, Rett K, Wicklmayr M, Agrawal B, Augustin HJ, Dietze GJ. Differential effect of chronic treatment with two beta-blocking agents on insulin sensitivity: the Carvedilol–Metoprolol Study. J Hypertens. 1996;14:489–94.PubMedCrossRefGoogle Scholar
  35. 35.
    Bakris GL, Fonseca V, Katholi RE, McGill JB, Messerli FH, Phillips RA, et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial. JAMA. 2004;292(18):2227–36.PubMedCrossRefGoogle Scholar
  36. 36.
    Rosei EA, Rizzoni D. Metabolic profile of nebivolol, a beta-adrenoreceptor antagonist with unique characteristics. Drugs. 2007;67:1097–107.CrossRefGoogle Scholar
  37. 37.
    Wollheim CB, Kikuchi M, Renold AE, Sharp GW. The roles of intracellular and extracellular Ca++ in glucose-stimulated biphasic insulin release by rat islets. J Clin Investig. 1978;62(2):451–8.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Amorim S, Dias P, Rocha G, Gama G, de Campos M, Pires S. Poisoning with calcium channel blockers—a case report and review of the literature. Rev Port Cardiol. 2001;20(12):1249–57.PubMedGoogle Scholar
  39. 39.
    Noto H, Goto A, Tsujimoto T, Noda M. Effect of calcium channel blockers on incidence of diabetes: a meta-analysis. Diabetes Metab Syndr Obes. 2013;6:257–61.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Ahmad S. Nicardipine-induced hyperglycemia. Am Fam Physician. 1992;45(2):449–52.PubMedGoogle Scholar
  41. 41.
    Sharma SN, Iyengar SS, Hegde KP. Nifedipine induced hyperglycaemia. J Assoc Physicians India. 1990;38(9):673–4.PubMedGoogle Scholar
  42. 42.
    Levine M, Boyer EW, Pozner CN, Geib AJ, Thomsen T, Mick N, et al. Assessment of hyperglycemia after calcium channel blocker overdoses involving diltiazem or verapamil. Crit Care Med. 2007;35(9):2071–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Salerno DM, Fifield J, Krejci J, Hodges M. Encainide-induced hyperglycemia. Am J Med. 1988;84(1):39–44.PubMedCrossRefGoogle Scholar
  44. 44.
    Winter WE, Funahashi M, Koons J. Encainide-induced diabetes: analysis of islet cell function. Res Commun Chem Pathol Pharmacol. 1992;76(3):259–68.PubMedGoogle Scholar
  45. 45.
    Politi A, Poggio G, Margiotta A. Can amiodarone induce hyperglycaemia and hypertriglyceridaemia? Br Med J. 1984;288:285.CrossRefGoogle Scholar
  46. 46.
    Yildirim SV, Azak E, Varan B, Tokel K. Unusual and early hyperglycemia following amiodarone infusion in two infants. Pediatr Cardiol. 2005;26(5):715–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Bang CN, Okin PM. Statin treatment, new-onset diabetes, and other adverse effects: a systematic review. Curr Cardiol Rep. 2014;16(3):461.PubMedCrossRefGoogle Scholar
  48. 48.
    Rajpathak SN, Kumbhani DJ, Crandall J, Barzilai N, Alderman M, Ridker PM. Statin therapy and risk of developing type 2 diabetes: a meta-analysis. Diabetes Care. 2009;32:1924–9.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJ, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375:735–42.PubMedCrossRefGoogle Scholar
  50. 50.
    Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, et al. Pravastatin in Elderly Individuals at Risk of Vascular Disease (PROSPER): a randomized controlled trial. Lancet. 2002;360:1623–30.PubMedCrossRefGoogle Scholar
  51. 51.
    The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med. 1998;339:1349–57.CrossRefGoogle Scholar
  52. 52.
    Sever PS, Dahlöf B, Poulter NR, Wedel H, Beevers G, Caulfield M, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003;361:1149–58.PubMedCrossRefGoogle Scholar
  53. 53.
    Waters DD, Ho JE, DeMicco DA, Breazna A, Arsenault BJ, Wun CC, et al. Predictors of new-onset diabetes in patients treated with atorvastatin: results from 3 large randomized clinical trials. J Am Coll Cardiol. 2011;57:1535–45.PubMedCrossRefGoogle Scholar
  54. 54.
    Freeman DJ, Norrie J, Sattar N, Neely RD, Cobbe SM, Ford I, et al. Pravastatin and the development of diabetes mellitus evidence for a protective treatment effect in the West of Scotland Coronary Prevention Study. Circulation. 2001;103:357–62.PubMedCrossRefGoogle Scholar
  55. 55.
    Ridker PM, Pradhan A, MacFadyen JG, Libby P, Glynn RJ. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet. 2012;380:565–71.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Ray K. Statin diabetogenicity: guidance for clinicians. Cardiovasc Diabetol. 2013;12:S3.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Chan DC, Pang J, Watts GF. Pathogenesis and management of the diabetogenic effect of statins: a role for adiponectin and coenzyme q10? Curr Atheroscler Rep. 2015;17(1):472.PubMedCrossRefGoogle Scholar
  58. 58.
    Pieper JA. Overview of niacin formulations: differences in pharmacokinetics, efficacy, and safety. Am J Health Syst Pharm. 2003;60:S9–14.PubMedGoogle Scholar
  59. 59.
    Molnar GD, Berge KG, Rosevear JW, McGuckin WF, Achor RW. The effect of nicotinic acid in diabetes mellitus. Metabolism. 1964;13:181–90.PubMedCrossRefGoogle Scholar
  60. 60.
    Chang AM, Smith MJ, Galecki AT, Bloem CJ, Halter JB. Impaired beta-cell function in human aging: response to nicotinic acid-induced insulin resistance. J Clin Endocrinol Metab. 2006;91(9):3303–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Koh Y, Bidstrup H, Nichols DL. Niacin increased glucose, insulin, and C-peptide levels in sedentary nondiabetic postmenopausal women. Int J Womens Health. 2014;6:913–20.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Kahn SE, Beard JC, Schwartz MW, Ward WK, Ding HL, Bergman RN, et al. Increased beta-cell secretory capacity as mechanism for islet adaptation to nicotinic acid-induced insulin resistance. Diabetes. 1989;38(5):562–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Mariot P, Gilon P, Nenquin M, Henquin JC. Tolbutamide and diazoxide influence insulin secretion by changing the concentration but not the action of cytoplasmic Ca2+inβ-cells. Diabetes. 1998;47:365–73.PubMedCrossRefGoogle Scholar
  64. 64.
    Gill GV, Rauf O, MacFarlane IA. Diazoxide treatment for insulinoma: a national UK survey. Postgrad Med J. 1997;73:640–1.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Catero M. Dysglycemia and fluoroquinolones: are you putting patients at risk? J Fam Pract. 2007;56(2):101–7.PubMedGoogle Scholar
  66. 66.
    Anderson VR, Perry CM. Levofloxacin: a review of its use as a high-dose, short-course treatment for bacterial infection. Drugs. 2008;68(4):535–65.PubMedCrossRefGoogle Scholar
  67. 67.
    Liu HH. Safety profile of the fluoroquinolones: focus on levofloxacin. Drug Saf. 2010;33(5):353–69.PubMedCrossRefGoogle Scholar
  68. 68.
    Yip C, Lee AJ. Gatifloxacin-induced hyperglycemia: a case report and summary of the current literature. Clin Ther. 2006;28(11):1857–66.PubMedCrossRefGoogle Scholar
  69. 69.
    Ben Salem C, Fathallah N, Hmouda H, Bouraoui K. Drug-induced hypoglycaemia: an update. Drug Saf. 2011;34(1):21–45.PubMedCrossRefGoogle Scholar
  70. 70.
    Pugi A, Longo L, Bartoloni A, Rossolini GM, Mugelli A, Vannacci A, et al. Cardiovascular and metabolic safety profiles of the fluoroquinolones. Expert Opin Drug Saf. 2012;11(1):53–69.PubMedCrossRefGoogle Scholar
  71. 71.
    Ovartlarnporn M, Jongjaroenprasert W. Advancing age and renal impairment as important predisposing factors of gatifloxacin-induced hyperglycemia in non-diabetes patients. J Med Assoc Thai. 2007;90:569–73.PubMedGoogle Scholar
  72. 72.
    Aspinall SL, Good CB, Jiang R, McCarren M, Dong D, Cunningham FE. Severe dysglycemia with the fluoroquinolones: a class effect? Clin Infect Dis. 2009;49(3):402–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Park-Wyllie LY, Juurlink DN, Kopp A, Shah BR, Stukel TA, Stumpo C, et al. Outpatient gatifloxacin therapy and dysglycemia in older adults. N Engl J Med. 2006;354:1352–61.PubMedCrossRefGoogle Scholar
  74. 74.
    Manish G, Keshav GK, Syed RM, Sukriti K, Abhinav G. Isoniazid induced childhood diabetes: a rare phenomenon. J Basic Clin Pharm. 2015;6(2):74–6.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Takasu N, Yamada T, Miura H, Sakamoto S, Korenaga M, Nakajima K, et al. Rifampicin-induced early phase hyperglycemia in humans. Am Rev Respir Dis. 1982;125(1):23–7.PubMedGoogle Scholar
  76. 76.
    Hardy H, Esch LD, Morse GD. Glucose disorders associated with HIV and its drug therapy. Ann Pharmacother. 2001;35(3):343–51.PubMedCrossRefGoogle Scholar
  77. 77.
    Albrecht H, Stellbrink HJ, Arastéh K. Didanosine-induced disorders of glucose tolerance. Ann Intern Med. 1993;119(10):1050.PubMedCrossRefGoogle Scholar
  78. 78.
    Modest GA, Fuller J. Abacavir and diabetes. N Engl J Med. 2001;344(2):142–4.PubMedGoogle Scholar
  79. 79.
    Reus S, Arroyo E, Boix V, Portilla J. Lipodystrophy and hyperglycemia produced by protease inhibitors. An Med Interna. 2000;17(3):123–6.PubMedGoogle Scholar
  80. 80.
    Gómez-Vera J, de Alarcón A, Jiménez-Mejías ME, Acosta D, Prados D, Viciana P. Hyperglycemia associated with protease inhibitors in HIV-1-infected patients. Clin Microbiol Infect. 2000;6:391–4.PubMedGoogle Scholar
  81. 81.
    Carr A, Samaras K, Thorisdottir A, Kaufmann GR, Chisholm DJ, Cooper DA. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet. 1999;353(9170):2093–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Dubé MP, Edmondson-Melançon H, Qian D, Aqeel R, Johnson D, Buchanan TA. Prospective evaluation of the effect of initiating indinavir-based therapy on insulin sensitivity and B-cell function in HIV-infected patients. J Acquir Immune Defic Syndr. 2001;27(2):130–4.PubMedCrossRefGoogle Scholar
  83. 83.
    Vyas AK, Koster JC, Tzekov A, Hruz PW. Effects of the HIV protease inhibitor ritonavir on GLUT4 knock-out mice. J Biol Chem. 2010;285(47):36395–400.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Johnston SS, Juday T, Esker S, Espindle D, Chu BC, Hebden T, et al. Comparative incidence and health care costs of medically attended adverse effects among US Medicaid HIV patients on atazanavir- or darunavir-based antiretroviral therapy. Value Health. 2013;16(2):418–25.PubMedCrossRefGoogle Scholar
  85. 85.
    Kulkarni R, Kinikar A. Transient hyperglycemia in a H1N1 positive child on oseltamivir. Indian Pediatr. 2010;47(9):812–3.PubMedCrossRefGoogle Scholar
  86. 86.
    Liegl U, Bogner JR, Goebel FD. Insulin-dependent diabetes mellitus following pentamidine therapy in a patient with AIDS. Clin Investig. 1994;72:1027–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Coyle P, Carr AD, Depczynski BB, Chisholm DJ. Diabetes mellitus associated with pentamidine use in HIV-infected patients. Med J Aust. 1996;165:587–8.PubMedGoogle Scholar
  88. 88.
    Shen M, Orwoll ES, Conte JE Jr, Prince MJ. Pentamidine-induced pancreatic beta-cell dysfunction. Am J Med. 1989;86:726–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Fariss BL, Lutcher CL. Diphenylhdantoin-induced hyperglycemia and impaired insulin release: effect of dosage. Diabetes. 1971;20(3):177–81.CrossRefGoogle Scholar
  90. 90.
    Al-Rubeaan K, Ryan EA. Phenytoin-induced insulin insensitivity. Diabet Med. 1991;8:968–70.PubMedCrossRefGoogle Scholar
  91. 91.
    Hurel SJ, Taylor R. Drugs and glucose tolerance. Advers Drug React Bull. 1995;174:659–62.CrossRefGoogle Scholar
  92. 92.
    Verrotti A, Manco R, Agostinelli S, Coppola G, Chiarelli F. The metabolic syndrome in overweight epileptic patients treated with valproic acid. Epilepsia. 2010;51:268–73.PubMedCrossRefGoogle Scholar
  93. 93.
    Fertig MK, Brooks VG, Shelton PS, English CW. Hyperglycemia associated with olanzapine. J Clin Psychiatry. 1998;59:687–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Avella J, Wetli CV, Wilson JC, Katz M, Hahn T. Fatal olanzapine-induced hyperglycemic ketoacidosis. Am J Forensic Med Pathol. 2004;25:172–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Henderson DC, Cagliero E, Gray C, Nasrallah RA, Hayden DL, Schoenfeld DA, et al. Clozapine, diabetes mellitus, weight gain, and lipid abnormalities: a five-year naturalistic study. Am J Psychiatry. 2000;157:975–81.PubMedCrossRefGoogle Scholar
  96. 96.
    Nakamura M, Nagamine T. Severe hyperglycemia induced by olanzapine was improved with a recovery of insulin secretion after switching to risperidone and introducing insulin therapy. Intern Med. 2010;49:2635–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Isaac MT, Isaac MB. Consensus development conference on antipsychotic drugs and obesity and diabetes: response to consensus statement. Diabetes Care. 2004;27:2088.PubMedCrossRefGoogle Scholar
  98. 98.
    Casey DE, Haupt DW, Newcomer JW, Henderson DC, Sernyak MJ, Davidson M, et al. Antipsychotic-induced weight gain and metabolic abnormalities: implications for increased mortality in patients with schizophrenia. J Clin Psychiatry. 2004;65:4–18.PubMedCrossRefGoogle Scholar
  99. 99.
    Lean ME, Pajonk FG. Patients on atypical antipsychotic drugs: another high-risk group for type 2 diabetes. Diabetes Care. 2003;26(5):1597–605.PubMedCrossRefGoogle Scholar
  100. 100.
    Koller EA, Doraiswamy PM. Olanzapine-associated diabetes mellitus. Pharmacotherapy. 2002;22:841–52.PubMedCrossRefGoogle Scholar
  101. 101.
    Létourneau G, Abdel-Baki A, Dubreucq S, Mahone M, Granger B. Hyperosmolar hyperglycemic state associated with ziprasidone treatment: a case report. J Clin Psychopharmacol. 2011;31:671–3.PubMedCrossRefGoogle Scholar
  102. 102.
    Tsuchiyama N, Ando H, Ota T, Sakurai M, Takamura T. Modulating effects of olanzapine on the development of diabetic ketoacidosis. Diabet Med. 2004;21:300–1.PubMedCrossRefGoogle Scholar
  103. 103.
    Baptista T, Lacruz A, de Mendoza S, Mendoza Guillen JM, Silvera R, Angeles F, et al. Body weight gain after administration of antipsychotic drugs: correlation with leptin, insulin and reproductive hormones. Pharmacopsychiatry. 2000;33:81–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signalling cascade. Diabetes. 1999;48:1270–4.PubMedCrossRefGoogle Scholar
  105. 105.
    Wirshing DA, Spellberg BJ, Erhart SM, Marder SR, Wirshing WC. Novel antipsychotics and new onset diabetes. Biol Psychiatry. 1998;44:778–83.PubMedCrossRefGoogle Scholar
  106. 106.
    American Diabetes Association. Position statement: standards of medical care in diabetes. Diabetes Care. 2011;34:S11–61.PubMedCentralCrossRefGoogle Scholar
  107. 107.
    Rubin RR, Ma Y, Marrero DG, Peyrot M, Barrett-Connor EL, Kahn SE, et al. Elevated depression symptoms, antidepressant medicine use, and risk of developing diabetes during the Diabetes Prevention Program. Diabetes Care. 2008;31:420–6.PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Andersohn F, Schade R, Suissa S, Garbe E. Long-term use of antidepressants for depressive disorders and the risk of diabetes mellitus. Am J Psychiatry. 2009;166:591–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Derijks HJ, Meyboom RH, Heerdink ER, De Koning FH, Janknegt R, Lindquist M, et al. The association between antidepressant use and disturbances in glucose homeostasis: evidence from spontaneous reports. Eur J Clin Pharmacol. 2008;64:531–8.PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Kivimäki M, Batty GD, Jokela M, Ebmeier KP, Vahtera J, Virtanen M, et al. Antidepressant medication use and risk of hyperglycemia and diabetes mellitus: a noncausal association? Biol Psychiatry. 2011;70:978–84.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Khoza S, Barner JC. Glucose dysregulation associated with antidepressant agents: an analysis of 17 published case reports. Int J Clin Pharm. 2011;33:484–92.PubMedCrossRefGoogle Scholar
  112. 112.
    Aronne LJ, Segal KR. Weight gain in the treatment of mood disorders. J Clin Psychiatry. 2003;64:22–9.PubMedGoogle Scholar
  113. 113.
    Lustman PJ, Freedland KE, Griffith LS, Clouse RE. Fluoxetine for depression in diabetes: a randomized double-blind placebo-controlled trial. Diabetes Care. 2000;23:618–23.PubMedCrossRefGoogle Scholar
  114. 114.
    Maheux P, Ducros F, Bourque J, Garon J, Chiasson JL. Fluoxetine improves insulin sensitivity in obese patients with non-insulin-dependent diabetes mellitus independently of weight loss. Int J Obes Relat Metab Disord. 1997;21:97–102.PubMedCrossRefGoogle Scholar
  115. 115.
    Lustman PJ, Clouse RE, Nix BD, Freedland KE, Rubin EH, McGill JB, et al. Sertraline for prevention of depression recurrence in diabetes mellitus: a randomized, double-blind, placebo-controlled trial. Arch Gen Psychiatry. 2006;63:521–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Demyttenaere K, Jaspers L. Review: bupropion and SSRI-induced side effects. Psychopharmacology. 2008;22:792–804.CrossRefGoogle Scholar
  117. 117.
    Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:593–602.PubMedCrossRefGoogle Scholar
  118. 118.
    Tollefson G, Lesar T. Nonketotic hyperglycemia associated with loxapine and amoxapine: case report. J Clin Psychiatry. 1983;44:347–8.PubMedGoogle Scholar
  119. 119.
    Danenberg HD. Salbutamol intoxication. Harefuah. 1997;132:549–51.PubMedGoogle Scholar
  120. 120.
    Thomas DJ, Gill B, Brown P, Stubbs WA. Salbutamol-induced diabetic ketoacidosis. Br Med J. 1977;2(6084):438.PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Moustafa F, Garrouste C, Bertrand PM, Kauffmann S, Schmidt J. Lactic acidosis after inhaled beta-2 agonists: about 2 cases. Ann Fr Anesth Reanim. 2014;33:49–51.PubMedCrossRefGoogle Scholar
  122. 122.
    Chapman MG. Salbutamol-induced acidosis in pregnant diabetics. Br Med J. 1977;1(6061):639–40.PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Dawson KP, Penna AC, Manglick P. Acute asthma, salbutamol and hyperglycaemia. Acta Paediatr. 1995;84(3):305–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Koh YI, Choi IS. Lactic acidosis associated with the usual theophylline dose in a patient with asthma. Korean J Intern Med. 2002;17(2):147–9.PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Higbee MD, Kumar M, Galant SP. Stimulation of endogenous catecholamine release by theophylline: a proposed additional mechanism of action for theophylline effects. J Allergy Clin Immunol. 1982;70:377–82.PubMedCrossRefGoogle Scholar
  126. 126.
    Kearney TE, Manoguerra AS, Curtis GP, Ziegler MG. Theophylline toxicity and the beta-adrenergic system. Ann Intern Med. 1985;102:766–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Shannon M, Lovejoy FH. The influence of age vs peak serum concentration on life-threatening events after chronic theophylline intoxication. Arch Intern Med. 1990;150:2045–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Yang JY, Cui XL, He XJ. Non-ketotic hyperosmolar coma complicating steroid treatment in childhood nephrosis. Pediatr Nephrol. 1995;9(5):621–2.PubMedCrossRefGoogle Scholar
  129. 129.
    Jensen K, Steinthorsdottir KJ, Brandt B. In-hospital cardiac arrest due to unobserved steroid-induced hyperglycaemic hyperosmolar syndrome. Ugeskr Laeger. 2013;175(15):1044–5.PubMedGoogle Scholar
  130. 130.
    Clore JN, Thurby-Hay L. Glucocorticoid-induced hyperglycemia. Endocr Pract. 2009;15:469–74.PubMedCrossRefGoogle Scholar
  131. 131.
    Dhikav V, Anand KS. Inhaled steroids: hyperglycaemia—a side effect. J Indian Acad Clin Med. 2011;2:149.Google Scholar
  132. 132.
    Kallock E, Neher JO, Safranek S. Clinical inquiries. Do intra-articular steroid injections affect glycemic control in patients with diabetes? J Fam Pract. 2010;59:709–10.PubMedGoogle Scholar
  133. 133.
    Fleming P, Drazek L, Shaw JC. Hyperglycemia following intralesional corticosteroid injection in a patient with type I diabetes mellitus. J Cutan Med Surg. 2014;18:275–6.PubMedCrossRefGoogle Scholar
  134. 134.
    Gurwitz JH, Bohn RL, Glynn RJ, Monane M, Mogun H, Avorn J. Glucocorticoids and the risk for initiation of hypoglycemic therapy. Arch Intern Med. 1994;154:97–101.PubMedCrossRefGoogle Scholar
  135. 135.
    Delaunay F, Khan A, Cintra A, Davani B, Ling ZC, Andersson A, et al. Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids. J Clin Investig. 1997;100:2094–8.PubMedCentralPubMedCrossRefGoogle Scholar
  136. 136.
    Crouthamel MC, Kahana JA, Korenchuk S, Zhang SY, Sundaresan G, Eberwein DJ, et al. Mechanism and management of AKT inhibitor-induced hyperglycemia. Clin Cancer Res. 2009;15(1):217–25.PubMedCrossRefGoogle Scholar
  137. 137.
    Hershey DS, Bryant AL, Olausson J, Davis ED, Brady VJ, Hammer M. Hyperglycemic-inducing neoadjuvant agents used in treatment of solid tumors: a review of the literature. Oncol Nurs Forum. 2014;41:E343–54.PubMedCrossRefGoogle Scholar
  138. 138.
    Derr RL, Ye X, Islas MU, Desideri S, Saudek CD, Grossman SA. Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. J Clin Oncol. 2009;27(7):1082–6.PubMedCentralPubMedCrossRefGoogle Scholar
  139. 139.
    Haas NB, Quirt I, Hotte S, McWhirter E, Polintan R, Litwin S, et al. Phase II trial of vorinostat in advanced melanoma. Investig New Drugs. 2014;32(3):526–34.CrossRefGoogle Scholar
  140. 140.
    Benton CB, Thomas DA, Yang H, Ravandi F, Rytting M, O’Brien S, et al. Safety and clinical activity of 5-aza-2′-deoxycytidine (decitabine) with or without hyper-CVAD in relapsed/refractory acute lymphocytic leukaemia. Br J Haematol. 2014;167:356–65.PubMedCentralPubMedCrossRefGoogle Scholar
  141. 141.
    Ciombor KK, Feng Y, Benson AB 3rd, Su Y, Horton L, Short SP, et al. Phase II trial of bortezomib plus doxorubicin in hepatocellular carcinoma (E6202): a trial of the Eastern Cooperative Oncology Group. Investig New Drugs. 2014;32:1017–27.CrossRefGoogle Scholar
  142. 142.
    Atlan-Gepner C, Bouabdallah R, Valero R, Coso D, Vialettes B. A cyclophosphamide-induced autoimmune diabetes. Lancet. 1998;352(9125):373–4.PubMedCrossRefGoogle Scholar
  143. 143.
    Spinola-Castro AM, Siviero-Miachon AA, Andreoni S, Tosta-Hernandez PD, Macedo CR, Lee ML. Transient hyperglycemia during childhood acute lymphocytic leukemia chemotherapy: an old event revisited. Clin Adv Hematol Oncol. 2009;7(7):465–72.PubMedGoogle Scholar
  144. 144.
    Mondal R, Nandi M, Tiwari A, Chakravorti S. Diabetic ketoacidosis with L-asparaginase therapy. Indian Pediatr. 2011;48(9):735–6.PubMedGoogle Scholar
  145. 145.
    Roberson JR, Raju S, Shelso J, Pui CH, Howard SC. Diabetic ketoacidosis during therapy for pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer. 2008;50(6):1207–12.PubMedCrossRefGoogle Scholar
  146. 146.
    Hsu YJ, Chen YC, Ho CL, Kao WY, Chao TY. Diabetic ketoacidosis and persistent hyperglycemia as long-term complications of L-asparaginase-induced pancreatitis. Zhonghua Yi Xue Za Zhi (Taipei). 2002;65(9):441–5.Google Scholar
  147. 147.
    Penfornis A, Kury-Paulin S. Immunosuppressive drug-induced diabetes. Diabetes Metab. 2006;32:539–46.PubMedCrossRefGoogle Scholar
  148. 148.
    Boots JM, van Duijnhoven EM, Christiaans MH, Wolffenbuttel BH, van Hooff JP. Glucose metabolism in renal transplant recipients on tacrolimus: the effect of steroid withdrawal and tacrolimus trough level reduction. J Am Soc Nephrol. 2002;13:221–7.PubMedGoogle Scholar
  149. 149.
    Marchetti P, Vincenti F, Friman S. New-onset diabetes imapaired fasting glucose after renal transplantation: results of a prospective, randomised trial comparing cyclosporine versus tacrolimus. Diabetologia. 2006;49:500.Google Scholar
  150. 150.
    Bäckman LA. Post-transplant diabetes mellitus: the last 10 years with tacrolimus. Nephrol Dial Transplant. 2004;19:13–6.CrossRefGoogle Scholar
  151. 151.
    Teutonico A, Schena PF, Di Paolo S. Glucose metabolism in renal transplant recipients: effect of calcineurin inhibitor withdrawal and conversion to sirolimus. J Am Soc Nephrol. 2005;16:3128–35.PubMedCrossRefGoogle Scholar
  152. 152.
    Gonwa T, Mendez R, Yang HC, Prograf Study Group. Randomized trial of tacrolimus in combination with sirolimus or mycophenolate mofetil in kidney transplantation: results at 6 months. Transplantation. 2005;75:1213–20.CrossRefGoogle Scholar
  153. 153.
    Okanoue T, Sakamoto S, Itoh Y, Minami M, Yasui K, Sakamoto M, et al. Side effects of high-dose interferon therapy for chronic hepatitis C. J Hepatol. 1996;25:283–91.PubMedCrossRefGoogle Scholar
  154. 154.
    Fattovich G, Giustina G, Favarato S, Ruol A. A survey of adverse events in 11 241 patients with chronic viral hepatitis treated with alpha interferon. J Hepatol. 1996;24:38–47.PubMedCrossRefGoogle Scholar
  155. 155.
    Fabris P, Floreani A, Tositti G, Vergani D, De Lalla F, Betterle C. Type 1 diabetes mellitus in patients with chronic hepatitis C before and after interferon therapy. Aliment Pharmacol Ther. 2003;18:549–58.PubMedCrossRefGoogle Scholar
  156. 156.
    Panetta JD, Gilani N. Interferon-induced retinopathy and its risk in patients with diabetes and hypertension undergoing treatment for chronic hepatitis C virus infection. Aliment Pharmacol Ther. 2009;30:597–602.PubMedCrossRefGoogle Scholar
  157. 157.
    Yamazaki M, Sato A, Takeda T, Komatsu M. Distinct clinical courses in type 1 diabetes mellitus induced by peg-interferon-alpha treatment for chronic hepatitis C. Intern Med. 2010;49(5):403–7.PubMedCrossRefGoogle Scholar
  158. 158.
    Shiba T, Higashi N, Nishimura Y. Hyperglycaemia due to insulin resistance caused by interferon-gamma. Diabet Med. 1998;15:435–6.PubMedCrossRefGoogle Scholar
  159. 159.
    Wu JJ, Tsai TF. Recurrent hyperglycemia during adalimumab treatment in a patient with psoriasis. Arch Dermatol. 2008;144(10):1403–4.PubMedCrossRefGoogle Scholar
  160. 160.
    Crook D, Godsland I. Safety evaluation of modern oral contraceptives: effects on lipoprotein and carbohydrate metabolism. Contraception. 1998;57:189–201.PubMedCrossRefGoogle Scholar
  161. 161.
    Friedrich A, Ludwig AK, Jauch-Chara K, Loebig M, Rudolf S, Tauchert S, et al. Oral contraception enhances growth hormone responsiveness to hyper- and hypoglycaemia. Diabet Med. 2012;29(3):345–50.PubMedCrossRefGoogle Scholar
  162. 162.
    Lopez LM, Grimes DA, Schulz KF. Steroidal contraceptives: effect on carbohydrate metabolism in women without diabetes mellitus. Cochrane Database Syst Rev. 2014;4:CD006133.PubMedGoogle Scholar
  163. 163.
    Reed ML, Merriam GR, Kargi AY. Adult growth hormone deficiency—benefits, side effects, and risks of growth hormone replacement. Front Endocrinol (Lausanne). 2013;4:64.Google Scholar
  164. 164.
    Dominici FP, Turyn D. Growth hormone-induced alterations in the insulin-signaling system. Exp Biol Med (Maywood). 2002;227:149–57.Google Scholar
  165. 165.
    Garg AK. Hyperglycemia during replacement growth hormone therapy. J Pediatr. 1994;125:329.PubMedCrossRefGoogle Scholar
  166. 166.
    Johannsson G, Rosén T, Bengtsson B. Individualized dose titration of growth hormone (GH) during GH replacement in hypopituitary adults. Clin Endocrinol (Oxf). 1997;47:571–81.CrossRefGoogle Scholar
  167. 167.
    Hoffman A, Kuntze JE, Baptista J, Baum HB, Baumann GP, Biller BM, et al. Growth hormone replacement therapy in adult-onset GH deficiency: effects on body composition in men and women in a double-blind, randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2004;89:204–56.Google Scholar
  168. 168.
    Hwang IT. Efficacy and safety of growth hormone treatment for children born small for gestational age. Korean J Pediatr. 2014;57(9):379–83.PubMedCentralPubMedCrossRefGoogle Scholar
  169. 169.
    Batra YK, Rajeev S, Samra T, Rao KL. Octreotide-induced severe paradoxical hyperglycemia and bradycardia during subtotal pancreatectomy for congenital hyperinsulinism in an infant. Paediatr Anaesth. 2007;17(11):1117–9.PubMedCrossRefGoogle Scholar
  170. 170.
    Samson SL. Long-term medical treatment of Cushing’s disease with pasireotide: a review of current evidence and clinical experience. Exp Clin Endocrinol Diabetes. 2014;122(8):445–50.PubMedCrossRefGoogle Scholar
  171. 171.
    Singh PK, Kumar P. Acitretin induced reversible hyperglycemia. Indian J Dermatol Venereol Leprol. 2004;70(3):183.PubMedGoogle Scholar
  172. 172.
    Pathak RD, Jayaraj K, Blonde L. Thalidomide-associated hyperglycemia and diabetes: case report and review of literature. Diabetes Care. 2003;26(4):1322–3.PubMedCrossRefGoogle Scholar
  173. 173.
    Blanco-Coronado JL, Repetto M, Ginestal RJ, Vicente JR, Yelamos F, Lardelli A. Acute intoxication by endosulfan. J Toxicol Clin Toxicol. 1992;30(4):575–83.PubMedCrossRefGoogle Scholar
  174. 174.
    Polo-Garvín A, García-Sánchez MJ, Perán F, Almazán A. Evaluation of the hemodynamic and endocrino-metabolic response to tracheal intubation in patients anesthetized with thiopental or propofol. Rev Esp Anestesiol Reanim. 1993;40(6):344–8.PubMedGoogle Scholar
  175. 175.
    Hirai M, Yasuhi I, Ishimaru T, Yamabe T, Kubota K. Effect of prolonged intravenous ritodrine tocolysis on diurnal glucose profiles in pregnant women with normal carbohydrate tolerance. Nihon Sanka Fujinka Gakkai Zasshi. 1996;48(7):488–94.PubMedGoogle Scholar
  176. 176.
    Jain P, Girardi LS, Sherman L, Berelowicz M, Smith LG. Insulin resistance and development of diabetes mellitus associated with megestrol acetate therapy. Postgrad Med J. 1996;72(848):365–7.PubMedCentralPubMedCrossRefGoogle Scholar
  177. 177.
    Tkach JR. Indomethacin-induced hyperglycemia in psoriatic arthritis. J Am Acad Dermatol. 1982;7(6):802–3.PubMedCrossRefGoogle Scholar
  178. 178.
    Gattereau A, Bielmann P, Durivage J, Davignon J, Larochelle P. Effect of acute and chronic administration of calcitonin on serum glucose in patients with Paget’s disease of bone. J Clin Endocrinol Metab. 1980;51(2):354–7.PubMedCrossRefGoogle Scholar
  179. 179.
    Mimouni-Bloch A, Mimouni M. Clonidine-induced hyperglycemia in a young diabetic girl. Ann Pharmacother. 1993;27(7–8):980.PubMedGoogle Scholar
  180. 180.
    Mandal AK, Hiebert LM. Is diuretic-induced hyperglycemia reversible and inconsequential? J Diabetes Res Clin Metab. 2012;1:1–5.CrossRefGoogle Scholar
  181. 181.
    Cohen MH, Nihill MR. Postoperative ketotic hyperglycaemia during prostaglandin E infusion in infancy. Pediatrics. 1983;71:842–4.PubMedGoogle Scholar
  182. 182.
    Adams ME. Hype about glucosamine. Lancet. 1999;354:353–4.PubMedCrossRefGoogle Scholar
  183. 183.
    Kurz M. Diamox and manifestation of diabetes mellitus. Wien Med Wochenschr. 1968;118(11):239–41.PubMedGoogle Scholar
  184. 184.
    Ipp E, Schusdziarra V, Harris V, Unger RH. Morphine-induced hyperglycemia: role of insulin and glucagon. Endocrinology. 1980;107(2):461–3.PubMedCrossRefGoogle Scholar
  185. 185.
    Cowley AJ, Elkeles RS. Diabetes and therapy with potent diuretics. Lancet. 1978;1:154.PubMedCrossRefGoogle Scholar
  186. 186.
    Korenyi C, Lowenstein B. Chlorpromazine induced diabetes. Dis Nerv Syst. 1968;29(12):827–8.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Neila Fathallah
    • 1
    • 3
  • Raoudha Slim
    • 1
  • Sofien Larif
    • 1
  • Houssem Hmouda
    • 2
  • Chaker Ben Salem
    • 1
  1. 1.Department of PharmacovigilanceFaculty of Medicine of SousseSousseTunisia
  2. 2.Department of Medical Intensive Care UnitSahloul University HospitalSousseTunisia
  3. 3.Department of Clinical PharmacologyFaculty of Medicine of SousseSousseTunisia

Personalised recommendations