Advertisement

CNS Drugs

, Volume 32, Issue 6, pp 579–591 | Cite as

Activation of the Cannabinoid Type 2 Receptor by a Novel Indazole Derivative Normalizes the Survival Pattern of Lymphoblasts from Patients with Late-Onset Alzheimer’s Disease

  • Patricia del Cerro
  • Carolina Alquézar
  • Fernando Bartolomé
  • Pedro González-Naranjo
  • Concepción Pérez
  • Eva Carro
  • Juan A. Páez
  • Nuria E. Campillo
  • Ángeles Martín-Requero
Original Research Article
  • 100 Downloads

Abstract

Background

Alzheimer’s disease is a multifactorial disorder for which there is no disease-modifying treatment yet. CB2 receptors have emerged as a promising therapeutic target for Alzheimer’s disease because they are expressed in neuronal and glial cells and their activation has no psychoactive effects.

Objective

The aim of this study was to investigate whether activation of the CB2 receptor would restore the aberrant enhanced proliferative activity characteristic of immortalized lymphocytes from patients with late-onset Alzheimer’s disease. It is assumed that cell-cycle dysfunction occurs in both peripheral cells and neurons in patients with Alzheimer’s disease, contributing to the instigation of the disease.

Methods

Lymphoblastoid cell lines from patients with Alzheimer’s disease and age-matched control individuals were treated with a new, in-house-designed dual drug PGN33, which behaves as a CB2 agonist and butyrylcholinesterase inhibitor. We analyzed the effects of this compound on the rate of cell proliferation and levels of key regulatory proteins. In addition, we investigated the potential neuroprotective action of PGN33 in β-amyloid-treated neuronal cells.

Results

We report here that PGN33 normalized the increased proliferative activity of Alzheimer’s disease lymphoblasts. The compound blunted the calmodulin-dependent overactivation of the PI3K/Akt pathway, by restoring the cyclin-dependent kinase inhibitor p27 levels, which in turn reduced the activity of the cyclin-dependent kinase/pRb cascade. Moreover, this CB2 agonist prevented β-amyloid-induced cell death in neuronal cells.

Conclusion

Our results suggest that the activation of CB2 receptors could be considered a useful therapeutic approach for Alzheimer’s disease.

Notes

Compliance with Ethical Standards

Funding

This work has been supported by a Grant from Ministerio de Economía y Competitividad (CTQ2015-66313-R). FB is supported by a Sara Borrell fellowship from the Spanish Instituto de Salud Carlos III.

Conflict of interest

Patricia del Cerro, Carolina Alquézar, Fernando Bartolomé, Pedro González-Naranjo, Concepción Pérez, Eva Carro, Juan A. Páez, Nuria E. Campillo, and Ángeles Martín-Requero have no conflicts of interest directly relevant to the content of this article.

Ethics Approval

All study protocols were approved by the Hospital Doce de Octubre de Madrid and the Spanish Council of Higher Research Institutional Advisory Board, and were in accordance with national and European Union guidelines.

Informed consent

In all cases, peripheral blood samples were taken after written informed consent was obtained from patients or their relatives.

References

  1. 1.
    Hardy J, Bogdanovic N, Winblad B, Portelius E, Andreasen N, Cedazo-Minguez A, et al. Pathways to Alzheimer’s disease. J Intern Med. 2014;275(3):296–303.CrossRefPubMedGoogle Scholar
  2. 2.
    Bloom GS. Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Finch CE, Morgan TE. Systemic inflammation, infection, ApoE alleles, and Alzheimer disease: a position paper. Curr Alzheimer Res. 2007;4(2):185–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Pohanka M. Alzheimer’s disease and oxidative stress: a review. Curr Med Chem. 2014;21(3):356–64.CrossRefPubMedGoogle Scholar
  5. 5.
    Copani A, Uberti D, Sortino MA, Bruno V, Nicoletti F, Memo M. Activation of cell-cycle-associated proteins in neuronal death: a mandatory or dispensable path? Trends Neurosci. 2001;24(1):25–31.CrossRefPubMedGoogle Scholar
  6. 6.
    Herrup K, Neve R, Ackerman SL, Copani A. Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci. 2004;24(42):9232–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Husseman JW, Nochlin D, Vincent I. Mitotic activation: a convergent mechanism for a cohort of neurodegenerative diseases. Neurobiol Aging. 2000;21(6):815–28.CrossRefPubMedGoogle Scholar
  8. 8.
    Howard R, McShane R, Lindesay J, Ritchie C, Baldwin A, Barber R, et al. Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N Engl J Med. 2012;366(10):893–903.CrossRefPubMedGoogle Scholar
  9. 9.
    Hyde C, Peters J, Bond M, Rogers G, Hoyle M, Anderson R, et al. Evolution of the evidence on the effectiveness and cost-effectiveness of acetylcholinesterase inhibitors and memantine for Alzheimer’s disease: systematic review and economic model. Age Ageing. 2013;42(1):14–20.CrossRefPubMedGoogle Scholar
  10. 10.
    Bolognesi ML, Rosini M, Andrisano V, Bartolini M, Minarini A, Tumiatti V, et al. MTDL design strategy in the context of Alzheimer’s disease: from lipocrine to memoquin and beyond. Curr Pharm Des. 2009;15(6):601–13.CrossRefPubMedGoogle Scholar
  11. 11.
    Gonzalez-Naranjo P, Perez-Macias N, Campillo NE, Perez C, Aran VJ, Giron R, et al. Cannabinoid agonists showing BuChE inhibition as potential therapeutic agents for Alzheimer’s disease. Eur J Med Chem. 2014;12(73):56–72.CrossRefGoogle Scholar
  12. 12.
    Campillo NE, Paez JA. Cannabinoid system in neurodegeneration: new perspectives in Alzheimer’s disease. Mini Rev Med Chem. 2009;9(5):539–59.CrossRefPubMedGoogle Scholar
  13. 13.
    Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P, et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem. 1995;232(1):54–61.CrossRefPubMedGoogle Scholar
  14. 14.
    den Boon FS, Chameau P, Schaafsma-Zhao Q, van Aken W, Bari M, Oddi S, et al. Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors. Proc Natl Acad Sci USA. 2012;109(9):3534–9.CrossRefGoogle Scholar
  15. 15.
    Duff G, Argaw A, Cecyre B, Cherif H, Tea N, Zabouri N, et al. Cannabinoid receptor CB2 modulates axon guidance. PLoS One. 2013;8(8):e70849.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li Y, Kim J. Neuronal expression of CB2 cannabinoid receptor mRNAs in the mouse hippocampus. Neuroscience. 2015;17(311):253–67.CrossRefGoogle Scholar
  17. 17.
    Zhang HY, Gao M, Liu QR, Bi GH, Li X, Yang HJ, et al. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci USA. 2014;111(46):E5007–15.CrossRefPubMedGoogle Scholar
  18. 18.
    Li Y, Kim J. CB2 cannabinoid receptor knockout in mice impairs contextual long-term memory and enhances spatial working memory. Neural Plast. 2016;2016:9817089.PubMedGoogle Scholar
  19. 19.
    Aso E, Ferrer I. CB2 cannabinoid receptor as potential target against Alzheimer’s disease. Front Neurosci. 2016;10:243.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Perry EK, Perry RH, Blessed G, Tomlinson BE. Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol Appl Neurobiol. 1978;4(4):273–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 1976;2(8000):1403.CrossRefPubMedGoogle Scholar
  22. 22.
    Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol. 2006;9(1):101–24.CrossRefPubMedGoogle Scholar
  23. 23.
    Lane RM, He Y. Emerging hypotheses regarding the influences of butyrylcholinesterase-K variant, APOE epsilon 4, and hyperhomocysteinemia in neurodegenerative dementias. Med Hypotheses. 2009;73(2):230–50.CrossRefPubMedGoogle Scholar
  24. 24.
    Nordberg A, Ballard C, Bullock R, Darreh-Shori T, Somogyi M. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim Care Companion CNS Disord. 2013;15(2).  https://doi.org/10.4088/pcc.12r01412.
  25. 25.
    Munoz U, de Las Cuevas N, Bartolome F, Hermida OG, Bermejo F, Martin-Requero A. The cyclopentenone 15-deoxy-delta(12,14)-prostaglandin J2 inhibits G1/S transition and retinoblastoma protein phosphorylation in immortalized lymphocytes from Alzheimer’s disease patients. Exp Neurol. 2005;195(2):508–17.CrossRefPubMedGoogle Scholar
  26. 26.
    de las Cuevas N, Urcelay E, Hermida OG, Saiz-Diaz RA, Bermejo F, Ayuso MS, et al. Ca2+/calmodulin-dependent modulation of cell cycle elements pRb and p27kip1 involved in the enhanced proliferation of lymphoblasts from patients with Alzheimer dementia. Neurobiol Dis. 2003;13(3):254–63.CrossRefPubMedGoogle Scholar
  27. 27.
    Munoz U, Bartolome F, Bermejo F, Martin-Requero A. Enhanced proteasome-dependent degradation of the CDK inhibitor p27(kip1) in immortalized lymphocytes from Alzheimer’s dementia patients. Neurobiol Aging. 2008;29(10):1474–84.CrossRefPubMedGoogle Scholar
  28. 28.
    Hoglinger GU, Breunig JJ, Depboylu C, Rouaux C, Michel PP, Alvarez-Fischer D, et al. The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proc Natl Acad Sci USA. 2007;104(9):3585–90.CrossRefPubMedGoogle Scholar
  29. 29.
    Mosch B, Morawski M, Mittag A, Lenz D, Tarnok A, Arendt T. Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. J Neurosci. 2007;27(26):6859–67.CrossRefPubMedGoogle Scholar
  30. 30.
    Yang Y, Geldmacher DS, Herrup K. DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci. 2001;21(8):2661–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhu X, Raina AK, Perry G, Smith MA. Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol. 2004;3(4):219–26.CrossRefPubMedGoogle Scholar
  32. 32.
    Munoz U, Bartolome F, Esteras N, Bermejo-Pareja F, Martin-Requero A. On the mechanism of inhibition of p27 degradation by 15-deoxy-Delta 12,14-prostaglandin J2 in lymphoblasts of Alzheimer’s disease patients. Cell Mol Life Sci. 2008;65(21):3507–19.CrossRefPubMedGoogle Scholar
  33. 33.
    Sala SG, Munoz U, Bartolome F, Bermejo F, Martin-Requero A. HMG-CoA reductase inhibitor simvastatin inhibits cell cycle progression at the G1/S checkpoint in immortalized lymphocytes from Alzheimer’s disease patients independently of cholesterol-lowering effects. J Pharmacol Exp Ther. 2008;324(1):352–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Bartolome F, Munoz U, Esteras N, Alquezar C, Collado A, Bermejo-Pareja F, et al. Simvastatin overcomes the resistance to serum withdrawal-induced apoptosis of lymphocytes from Alzheimer’s disease patients. Cell Mol Life Sci. 2010;67(24):4257–68.CrossRefPubMedGoogle Scholar
  35. 35.
    Guerra APJ, Campillo NE. Artificial neural networks in ADME modeling: prediction of blood-brain barrier permeation. QSAR Comb Sci. 2008;27:586–94.CrossRefGoogle Scholar
  36. 36.
    Ibarreta D, Parrilla R, Ayuso MS. Altered Ca2+ homeostasis in lymphoblasts from patients with late-onset Alzheimer disease. Alzheimer Dis Assoc Disord. 1997;11(4):220–7.PubMedGoogle Scholar
  37. 37.
    Pruszak J, Just L, Isacson O, Nikkhah G. Isolation and culture of ventral mesencephalic precursor cells and dopaminergic neurons from rodent brains. Curr Protoc Stem Cell Biology. 2009;Chapter 2:Unit 2D.5.Google Scholar
  38. 38.
    Yin LH, Shen H, Diaz-Ruiz O, Backman CM, Bae E, Yu SJ, et al. Early post-treatment with 9-cis retinoic acid reduces neurodegeneration of dopaminergic neurons in a rat model of Parkinson’s disease. BMC Neurosci. 2012;06(13):120.CrossRefGoogle Scholar
  39. 39.
    Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986;89(2):271–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Alquezar C, Esteras N, de la Encarnacion A, Alzualde A, Moreno F, Lopez de Munain A, et al. PGRN haploinsufficiency increased Wnt5a signaling in peripheral cells from frontotemporal lobar degeneration-progranulin mutation carriers. Neurobiol Aging. 2014;35(4):886–98.CrossRefPubMedGoogle Scholar
  41. 41.
    Bolos M, Spuch C, Ordonez-Gutierrez L, Wandosell F, Ferrer I, Carro E. Neurogenic effects of beta-amyloid in the choroid plexus epithelial cells in Alzheimer’s disease. Cell Mol Life Sci. 2013;70(15):2787–97.CrossRefPubMedGoogle Scholar
  42. 42.
    Qian YH, Xiao Q, Xu J. The protective effects of tanshinone IIA on beta-amyloid protein (1-42)-induced cytotoxicity via activation of the Bcl-xL pathway in neuron. Brain Res Bull. 2012;88(4):354–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Krishan A. Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol. 1975;66(1):188–93.CrossRefPubMedGoogle Scholar
  44. 44.
    Copani A, Condorelli F, Caruso A, Vancheri C, Sala A, Giuffrida Stella AM, et al. Mitotic signaling by beta-amyloid causes neuronal death. FASEB J. 1999;13(15):2225–34.CrossRefPubMedGoogle Scholar
  45. 45.
    Benito C, Nunez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, et al. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci. 2003;23(35):11136–41.CrossRefPubMedGoogle Scholar
  46. 46.
    Docagne F, Mestre L, Loria F, Hernangomez M, Correa F, Guaza C. Therapeutic potential of CB2 targeting in multiple sclerosis. Expert Opin Ther Targets. 2008;12(2):185–95.CrossRefPubMedGoogle Scholar
  47. 47.
    Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E, et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain. 2009;132(Pt 11):3152–64.CrossRefPubMedGoogle Scholar
  48. 48.
    Wu J, Bie B, Yang H, Xu JJ, Brown DL, Naguib M. Suppression of central chemokine fractalkine receptor signaling alleviates amyloid-induced memory deficiency. Neurobiol Aging. 2013;34(12):2843–52.CrossRefPubMedGoogle Scholar
  49. 49.
    Aso E, Sanchez-Pla A, Vegas-Lozano E, Maldonado R, Ferrer I. Cannabis-based medicine reduces multiple pathological processes in AbetaPP/PS1 mice. J Alzheimers Dis. 2015;43(3):977–91.CrossRefPubMedGoogle Scholar
  50. 50.
    Kofalvi A, Lemos C, Martin-Moreno AM, Pinheiro BS, Garcia-Garcia L, Pozo MA, et al. Stimulation of brain glucose uptake by cannabinoid CB2 receptors and its therapeutic potential in Alzheimer’s disease. Neuropharmacology. 2016;110(1):519–29.CrossRefPubMedGoogle Scholar
  51. 51.
    Mackie K. Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol. 2006;46:101–22.CrossRefPubMedGoogle Scholar
  52. 52.
    Morris JK, Honea RA, Vidoni ED, Swerdlow RH, Burns JM. Is Alzheimer’s disease a systemic disease? Biochim Biophys Acta. 2014;1842(9):1340–9.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Leuner K, Schulz K, Schutt T, Pantel J, Prvulovic D, Rhein V, et al. Peripheral mitochondrial dysfunction in Alzheimer’s disease: focus on lymphocytes. Mol Neurobiol. 2012;46(1):194–204.CrossRefPubMedGoogle Scholar
  54. 54.
    Wojsiat J, Prandelli C, Laskowska-Kaszub K, Martin-Requero A, Wojda U. Oxidative stress and aberrant cell cycle in Alzheimer’s disease lymphocytes: diagnostic prospects. J Alzheimers Dis. 2015;46(2):329–50.CrossRefPubMedGoogle Scholar
  55. 55.
    Nagy Z. The dysregulation of the cell cycle and the diagnosis of Alzheimer’s disease. Biochim Biophys Acta. 2007;1772(4):402–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Bartolome F, de Las Cuevas N, Munoz U, Bermejo F, Martin-Requero A. Impaired apoptosis in lymphoblasts from Alzheimer’s disease patients: cross-talk of Ca2+/calmodulin and ERK1/2 signaling pathways. Cell Mol Life Sci. 2007;64(11):1437–48.CrossRefPubMedGoogle Scholar
  57. 57.
    Malfitano AM, Matarese G, Bifulco M. From cannabis to endocannabinoids in multiple sclerosis: a paradigm of central nervous system autoimmune diseases. Curr Drug Targets CNS Neurol Disord. 2005;4(6):667–75.CrossRefPubMedGoogle Scholar
  58. 58.
    Preet A, Qamri Z, Nasser MW, Prasad A, Shilo K, Zou X, et al. Cannabinoid receptors, CB1 and CB2, as novel targets for inhibition of non-small cell lung cancer growth and metastasis. Cancer Prev Res (Phila). 2011;4(1):65–75.CrossRefGoogle Scholar
  59. 59.
    Borner C, Smida M, Hollt V, Schraven B, Kraus J. Cannabinoid receptor type 1- and 2-mediated increase in cyclic AMP inhibits T cell receptor-triggered signaling. J Biol Chem. 2009;284(51):35450–60.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Perez-Gomez E, Andradas C, Blasco-Benito S, Caffarel MM, Garcia-Taboada E, Villa-Morales M, et al. Role of cannabinoid receptor CB2 in HER2 pro-oncogenic signaling in breast cancer. J Natl Cancer Inst. 2015;107(6):jdv077.CrossRefGoogle Scholar
  61. 61.
    Chaudhuri P, Rosenbaum MA, Sinharoy P, Damron DS, Birnbaumer L, Graham LM. Membrane translocation of TRPC6 channels and endothelial migration are regulated by calmodulin and PI3 kinase activation. Proc Natl Acad Sci USA. 2016;113(8):2110–5.CrossRefPubMedGoogle Scholar
  62. 62.
    Yang Y, Varvel NH, Lamb BT, Herrup K. Ectopic cell cycle events link human Alzheimer’s disease and amyloid precursor protein transgenic mouse models. J Neurosci. 2006;26(3):775–84.CrossRefPubMedGoogle Scholar
  63. 63.
    Kamal MA, Qu X, Yu QS, Tweedie D, Holloway HW, Li Y, et al. Tetrahydrofurobenzofuran cymserine, a potent butyrylcholinesterase inhibitor and experimental Alzheimer drug candidate, enzyme kinetic analysis. J Neural Transm (Vienna). 2008;115(6):889–98.CrossRefGoogle Scholar
  64. 64.
    Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc Natl Acad Sci USA. 2005;102(47):17213–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Rickle A, Bogdanovic N, Volkman I, Winblad B, Ravid R, Cowburn RF. Akt activity in Alzheimer’s disease and other neurodegenerative disorders. Neuroreport. 2004;15(6):955–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Griffin RJ, Moloney A, Kelliher M, Johnston JA, Ravid R, Dockery P, et al. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology. J Neurochem. 2005;93(1):105–17.CrossRefPubMedGoogle Scholar
  67. 67.
    McKee AC, Kosik KS, Kennedy MB, Kowall NW. Hippocampal neurons predisposed to neurofibrillary tangle formation are enriched in type II calcium/calmodulin-dependent protein kinase. J Neuropathol Exp Neurol. 1990;49(1):49–63.CrossRefPubMedGoogle Scholar
  68. 68.
    Klegeris A, Bissonnette CJ, McGeer PL. Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br J Pharmacol. 2003;139(4):775–86.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Velez-Pardo C, Del Rio MJ. Avoidance of Abeta[(25-35)]/(H(2)O(2))-induced apoptosis in lymphocytes by the cannabinoid agonists CP55,940 and JWH-015 via receptor-independent and PI3K-dependent mechanisms: role of NF-kappaB and p53. Med Chem. 2006;2(5):471–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cellular and Molecular MedicineCentro de Investigaciones Biológicas (CSIC)MadridSpain
  2. 2.Neurodegenerative Disorders GroupInstituto de Investigacion HospitalMadridSpain
  3. 3.CIBER de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
  4. 4.Instituto de Química Médica (CSIC)MadridSpain
  5. 5.Department of Chemical and Physical BiologyCentro de Investigaciones Biológicas (CSIC)MadridSpain
  6. 6.CIBER de Enfermedades Raras (CIBERER)MadridSpain

Personalised recommendations