CNS Drugs

, Volume 32, Issue 3, pp 269–287 | Cite as

Efficacy and Safety of the Newer Multiple Sclerosis Drugs Approved Since 2010

  • Simon Faissner
  • Ralf GoldEmail author
Review Article


Multiple sclerosis treatment faces tremendous changes as a result of the approval of new medications. The new medications have differing safety considerations and risks after long-term treatment, which are important for treating physicians to optimize and individualize multiple sclerosis care. Since the approval of the first multiple sclerosis capsule, fingolimod, the armamentarium of multiple sclerosis therapy has grown with the orally available medications dimethyl fumarate and teriflunomide. Fingolimod is mainly associated with cardiac side effects, dimethyl fumarate with bowel symptoms. Several reports about progressive multifocal leukoencephalopathy as a result of dimethyl fumarate or fingolimod therapy raised the awareness of fatal opportunistic infections. Alemtuzumab, a CD52-depleting antibody, is highly effective in reducing relapses but leads to secondary immunity with mainly thyroid disorders in about 30% of patients. Development of secondary B-cell-mediated disease might also be a risk of this antibody. The follow-up drug of the B-cell-depleting antibody rituximab, ocrelizumab, is mainly associated with infusion-related reactions; long-term data are scarce. The medication daclizumab high yield process, acting via the activation of CD56bright natural killer cells, can induce the elevation of liver function enzymes, but also fulminant liver failure has been reported. Therefore, daclizumab has been retracted from the market. Long-term data on the purine nucleoside cladribine in MS therapy, recently authorized in the European Union, have been acquired during the long-term follow-up of the cladribine studies. The small molecule laquinimod is currently under development. We review data of clinical trials and their extensions regarding long-term efficacy and side effects, which might be associated with long-term treatment.


Compliance with Ethical Standards


The authors received no funding for the preparation of this article.

Conflict of interest

Simon Faissner received travel grants from Biogen Idec and Genzyme. Ralf Gold received speaker’s and board honoraria from Baxter, Bayer Schering, Biogen Idec, CLB Behring, Genzyme, Merck Serono, Novartis, Stendhal, Talecris, and TEVA. His department received grant support from Bayer Schering, BiogenIdec, Genzyme, Merck Serono, Novartis, and TEVA.


  1. 1.
    Kutzelnigg A, Lassmann H. Pathology of multiple sclerosis and related inflammatory demyelinating diseases. Handb Clin Neurol. 2014;122:15–58.PubMedCrossRefGoogle Scholar
  2. 2.
    Cotsapas C, Hafler DA. Immune-mediated disease genetics: the shared basis of pathogenesis. Trends Immunol. 2013;34(1):22–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Sawcer S, Ban M, Maranian M, Yeo TW, Compston A, Kirby A, et al. A high-density screen for linkage in multiple sclerosis. Am J Hum Genet. 2005;77(3):454–67.PubMedCrossRefGoogle Scholar
  4. 4.
    Ransohoff RM, Hafler DA, Lucchinetti CF. Multiple sclerosis: a quiet revolution. Nat Rev Neurol. 2015;11(3):134–42.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hunter SF, Bowen JD, Reder AT. The direct effects of fingolimod in the central nervous system: implications for relapsing multiple sclerosis. CNS Drugs. 2016;30(2):135–47.PubMedCrossRefGoogle Scholar
  6. 6.
    Noda H, Takeuchi H, Mizuno T, Suzumura A. Fingolimod phosphate promotes the neuroprotective effects of microglia. J Neuroimmunol. 2013;256(1–2):13–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Slowik A, Schmidt T, Beyer C, Amor S, Clarner T, Kipp M. The sphingosine 1-phosphate receptor agonist FTY720 is neuroprotective after cuprizone-induced CNS demyelination. Br J Pharmacol. 2015;172(1):80–92.PubMedCrossRefGoogle Scholar
  8. 8.
    Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362(5):387–401.PubMedCrossRefGoogle Scholar
  9. 9.
    Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):402–15.PubMedCrossRefGoogle Scholar
  10. 10.
    Kappos L, O’Connor P, Radue EW, Polman C, Hohlfeld R, Selmaj K, et al. Long-term effects of fingolimod in multiple sclerosis: the randomized FREEDOMS extension trial. Neurology. 2015;84(15):1582–91.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Montalban X, Comi G, Antel J, O’Connor P, de Vera A, Cremer M, et al. Long-term results from a phase 2 extension study of fingolimod at high and approved dose in relapsing multiple sclerosis. J Neurol. 2015;262(12):2627–34.PubMedCrossRefGoogle Scholar
  12. 12.
    Cohen JA, Khatri B, Barkhof F, Comi G, Hartung HP, Montalban X, et al. Long-term (up to 4.5 years) treatment with fingolimod in multiple sclerosis: results from the extension of the randomised TRANSFORMS study. J Neurol Neurosurg Psychiatry. 2016;87(5):468–75.PubMedCrossRefGoogle Scholar
  13. 13.
    Saida T, Itoyama Y, Kikuchi S, Hao Q, Kurosawa T, Ueda K, et al. Long-term efficacy and safety of fingolimod in Japanese patients with relapsing multiple sclerosis: 3-year results of the phase 2 extension study. BMC Neurol. 2017;17(1):17.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Rojas JI, Patrucco L, Miguez J, Cristiano E. Real-world safety and patient profile of fingolimod in relapsing-remitting multiple sclerosis: a prospective analysis in Buenos Aires, Argentina. Clin Neuropharmacol. 2017;40(6):251–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Izquierdo G, Damas F, Paramo MD, Ruiz-Pena JL, Navarro G. The real-world effectiveness and safety of fingolimod in relapsing-remitting multiple sclerosis patients: an observational study. PloS One. 2017;12(4):e0176174.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Berger JR. Classifying PML risk with disease modifying therapies. Mult Scler Relat Disord. 2017;12:59–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Plavina T, Subramanyam M, Bloomgren G, Richman S, Pace A, Lee S, et al. Anti-JC virus antibody levels in serum or plasma further define risk of natalizumab-associated progressive multifocal leukoencephalopathy. Ann Neurol. 2014;76(6):802–12.PubMedCrossRefGoogle Scholar
  18. 18.
    Ho PR, Koendgen H, Campbell N, Haddock B, Richman S, Chang I. Risk of natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: a retrospective analysis of data from four clinical studies. Lancet Neurol. 2017;16(11):925–33.PubMedCrossRefGoogle Scholar
  19. 19.
    Ziemssen T, Kern R, Cornelissen C. The PANGAEA study design: a prospective, multicenter, non-interventional, long-term study on fingolimod for the treatment of multiple sclerosis in daily practice. BMC Neurol. 2015;15:93.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Selmaj K, Li DK, Hartung HP, Hemmer B, Kappos L, Freedman MS, et al. Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol. 2013;12(8):756–67.PubMedCrossRefGoogle Scholar
  21. 21.
    Kappos L, Li DK, Stuve O, Hartung HP, Freedman MS, Hemmer B, et al. Safety and efficacy of siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis: dose-blinded, randomized extension of the Phase 2 BOLD Study. JAMA Neurol. 2016;73(9):1089–98.PubMedCrossRefGoogle Scholar
  22. 22.
    Linker RA, Lee DH, Ryan S, van Dam AM, Conrad R, Bista P, et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain. 2011;134(Pt 3):678–92.PubMedCrossRefGoogle Scholar
  23. 23.
    Gross CC, Schulte-Mecklenbeck A, Klinsing S, Posevitz-Fejfar A, Wiendl H, Klotz L. Dimethyl fumarate treatment alters circulating T helper cell subsets in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2016;3(1):e183.PubMedCrossRefGoogle Scholar
  24. 24.
    Li R, Rezk A, Ghadiri M, Luessi F, Zipp F, Li H, et al. Dimethyl fumarate treatment mediates an anti-inflammatory shift in B cell subsets of patients with multiple sclerosis. J Immunol. 2017;198(2):691–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Parodi B, Rossi S, Morando S, Cordano C, Bragoni A, Motta C, et al. Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS. Acta Neuropathol. 2015;130(2):279–95.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Schimrigk S, Brune N, Hellwig K, Lukas C, Bellenberg B, Rieks M, et al. Oral fumaric acid esters for the treatment of active multiple sclerosis: an open-label, baseline-controlled pilot study. Eur J Neurol. 2006;13(6):604–10.PubMedCrossRefGoogle Scholar
  27. 27.
    Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012;367(12):1098–107.PubMedCrossRefGoogle Scholar
  28. 28.
    Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med. 2012;367(12):1087–97.PubMedCrossRefGoogle Scholar
  29. 29.
    Gold R, Arnold DL, Bar-Or A, Hutchinson M, Kappos L, Havrdova E, et al. Long-term effects of delayed-release dimethyl fumarate in multiple sclerosis: interim analysis of ENDORSE, a randomized extension study. Mult Scler. 2017;23(2):253–65.PubMedCrossRefGoogle Scholar
  30. 30.
    Marrie RA, Reider N, Cohen J, Stuve O, Trojano M, Sorensen PS, et al. A systematic review of the incidence and prevalence of cancer in multiple sclerosis. Mult Scler. 2015;21(3):294–304.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Rosenkranz T, Novas M, Terborg C. PML in a patient with lymphocytopenia treated with dimethyl fumarate. N Engl J Med. 2015;372(15):1476–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Alroughani R, Ahmed SF, Behbehani R, Al-Hashel J. Effectiveness and safety of dimethyl fumarate treatment in relapsing multiple sclerosis patients: real-world evidence. Neurol Ther. 2017;6(2):189–96.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Miclea A, Leussink VI, Hartung HP, Gold R, Hoepner R. Safety and efficacy of dimethyl fumarate in multiple sclerosis: a multi-center observational study. J Neurol. 2016;263(8):1626–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Fox RJ, Chan A, Gold R, Phillips JT, Selmaj K, Chang I, et al. Characterizing absolute lymphocyte count profiles in dimethyl fumarate-treated patients with MS: patient management considerations. Neurol Clin Pract. 2016;6(3):220–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ermis U, Weis J, Schulz JB. PML in a patient treated with fumaric acid. N Engl J Med. 2013;368(17):1657–8.PubMedCrossRefGoogle Scholar
  36. 36.
    van Oosten BW, Killestein J, Barkhof F, Polman CH, Wattjes MP. PML in a patient treated with dimethyl fumarate from a compounding pharmacy. N Engl J Med. 2013;368(17):1658–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Stoppe M, Thoma E, Liebert UG, Major EO, Hoffmann KT, Classen J, et al. Cerebellar manifestation of PML under fumarate and after efalizumab treatment of psoriasis. J Neurol. 2014;261(5):1021–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Nieuwkamp DJ, Murk JL, van Oosten BW, Cremers CH, Killestein J, Viveen MC, et al. PML in a patient without severe lymphocytopenia receiving dimethyl fumarate. N Engl J Med. 2015;372(15):1474–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Hoepner R, Faissner S, Klasing A, Schneider R, Metz I, Bellenberg B, et al. Progressive multifocal leukoencephalopathy during fumarate monotherapy of psoriasis. Neurol Neuroimmunol Neuroinflamm. 2015;2(3):e85.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Li L, Liu J, Delohery T, Zhang D, Arendt C, Jones C. The effects of teriflunomide on lymphocyte subpopulations in human peripheral blood mononuclear cells in vitro. J Neuroimmunol. 2013;265(1–2):82–90.PubMedCrossRefGoogle Scholar
  41. 41.
    Ringheim GE, Lee L, Laws-Ricker L, Delohery T, Liu L, Zhang D, et al. Teriflunomide attenuates immunopathological changes in the dark agouti rat model of experimental autoimmune encephalomyelitis. Front Neurol. 2013;4:169.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wostradowski T, Prajeeth CK, Gudi V, Kronenberg J, Witte S, Brieskorn M, et al. In vitro evaluation of physiologically relevant concentrations of teriflunomide on activation and proliferation of primary rodent microglia. J Neuroinflamm. 2016;13(1):250.CrossRefGoogle Scholar
  43. 43.
    O’Connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011;365(14):1293–303.PubMedCrossRefGoogle Scholar
  44. 44.
    Radue EW, Sprenger T, Gaetano L, Mueller-Lenke N, Cavalier S, Thangavelu K, et al. Teriflunomide slows BVL in relapsing MS: a reanalysis of the TEMSO MRI data set using SIENA. Neurol Neuroimmunol Neuroinflamm. 2017;4(5):e390.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Freedman MS, Wolinsky JS, Wamil B, Confavreux C, Comi G, Kappos L, et al. Teriflunomide added to interferon-beta in relapsing multiple sclerosis: a randomized phase II trial. Neurology. 2012;78(23):1877–85.PubMedCrossRefGoogle Scholar
  46. 46.
    Confavreux C, Li DK, Freedman MS, Truffinet P, Benzerdjeb H, Wang D, et al. Long-term follow-up of a phase 2 study of oral teriflunomide in relapsing multiple sclerosis: safety and efficacy results up to 8.5 years. Mult Scler. 2012;18(9):1278–89.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    O’Connor P, Comi G, Freedman MS, Miller AE, Kappos L, Bouchard JP, et al. Long-term safety and efficacy of teriflunomide: nine-year follow-up of the randomized TEMSO study. Neurology. 2016;86(10):920–30.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Elkjaer ML, Molnar T, Illes Z. Teriflunomide for multiple sclerosis in real-world setting. Acta Neurol Scand. 2017;136(5):447–53.PubMedCrossRefGoogle Scholar
  49. 49.
    Comi G, Freedman MS, Kappos L, Olsson TP, Miller AE, Wolinsky JS, et al. Pooled safety and tolerability data from four placebo-controlled teriflunomide studies and extensions. Mult Scler Relat Disord. 2016;5:97–104.PubMedCrossRefGoogle Scholar
  50. 50.
    Kieseier BC, Benamor M. Pregnancy outcomes following maternal and paternal exposure to teriflunomide during treatment for relapsing-remitting multiple sclerosis. Neurol Ther. 2014;3(2):133–8.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Garcia-Enguidanos A, Calle ME, Valero J, Luna S, Dominguez-Rojas V. Risk factors in miscarriage: a review. Eur J Obstet Gynecol Reprod Biol. 2002;102(2):111–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Bar-Or A, Wiendl H, Miller B, Benamor M, Truffinet P, Church M, et al. Randomized study of teriflunomide effects on immune responses to neoantigen and recall antigens. Neurol Neuroimmunol Neuroinflamm. 2015;2(2):e70.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Bar-Or A, Freedman MS, Kremenchutzky M, Menguy-Vacheron F, Bauer D, Jodl S, et al. Teriflunomide effect on immune response to influenza vaccine in patients with multiple sclerosis. Neurology. 2013;81(6):552–8.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Beutler E. Cladribine (2-chlorodeoxyadenosine). Lancet. 1992;340(8825):952–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Singh V, Voss EV, Benardais K, Stangel M. Effects of 2-chlorodeoxyadenosine (cladribine) on primary rat microglia. J Neuroimmune Pharmacol. 2012;7(4):939–50.PubMedCrossRefGoogle Scholar
  56. 56.
    Mitosek-Szewczyk K, Tabarkiewicz J, Wilczynska B, Lobejko K, Berbecki J, Nastaj M, et al. Impact of cladribine therapy on changes in circulating dendritic cell subsets, T cells and B cells in patients with multiple sclerosis. J Neurol Sci. 2013;332(1–2):35–40.PubMedCrossRefGoogle Scholar
  57. 57.
    Pakpoor J, Disanto G, Altmann DR, Pavitt S, Turner BP, Marta M, et al. No evidence for higher risk of cancer in patients with multiple sclerosis taking cladribine. Neurol Neuroimmunol Neuroinflamm. 2015;2(6):e158.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Soelberg Sorensen P, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):416–26.PubMedCrossRefGoogle Scholar
  59. 59.
    Cook S, Vermersch P, Comi G, Giovannoni G, Rammohan K, Rieckmann P, et al. Safety and tolerability of cladribine tablets in multiple sclerosis: the CLARITY (CLAdRIbine Tablets treating multiple sclerosis orallY) study. Mult Scler. 2011;17(5):578–93.PubMedCrossRefGoogle Scholar
  60. 60.
    De Stefano N, Giorgio A, Battaglini M, De Leucio A, Hicking C, Dangond F, et al. Reduced brain atrophy rates are associated with lower risk of disability progression in patients with relapsing multiple sclerosis treated with cladribine tablets. Mult Scler. 2017;1:1352458517690269. Scholar
  61. 61.
    Leist TP, Comi G, Cree BA, Coyle PK, Freedman MS, Hartung HP, et al. Effect of oral cladribine on time to conversion to clinically definite multiple sclerosis in patients with a first demyelinating event (ORACLE MS): a phase 3 randomised trial. Lancet Neurol. 2014;13(3):257–67.PubMedCrossRefGoogle Scholar
  62. 62.
    Aletti M, Faivre A, Wybrecht D, Couturier C, Bounolleau P, Alla P. Progressive multifocal leukoencephalopathy after cladribine treatment for hairy cell leukemia. Neurology. 2011;76:A28.Google Scholar
  63. 63.
    Berghoff M, Schanzer A, Hildebrandt GC, Dassinger B, Klappstein G, Kaps M, et al. Development of progressive multifocal leukoencephalopathy in a patient with non-Hodgkin lymphoma 13 years after treatment with cladribine. Leuk Lymphoma. 2013;54(6):1340–2.PubMedCrossRefGoogle Scholar
  64. 64.
    Alstadhaug KB, Fykse Halstensen R, Odeh F. Progressive multifocal leukoencephalopathy in a patient with systemic mastocytosis treated with cladribine. J Clin Virol. 2016;88:17–20.PubMedCrossRefGoogle Scholar
  65. 65.
    Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Soelberg-Sorensen P, et al. Durable efficacy of cladribine tablets in patients with multiple sclerosis: analysis of relapse rates and relapse-free patients in the CLARITY and CLARITY Extension studies. ECTRIMS Online Library. 2016;16:147011.Google Scholar
  66. 66.
    Giovannoni G, Montalban X, Hicking C, Dangond F. Benefits of cladribine tablets on the achievement of no evidence of disease activity (NEDA) status in patients with multiple sclerosis: analysis of pooled double-blind data from the CLARITY and ONWARD studies. ECTRIMS Online Library. 2016;15:146481.Google Scholar
  67. 67.
    Kramann N, Menken L, Hayardeny L, Hanisch UK, Bruck W. Laquinimod prevents cuprizone-induced demyelination independent of Toll-like receptor signaling. Neurol Neuroimmunol Neuroinflamm. 2016;3(3):e233.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Jolivel V, Luessi F, Masri J, Kraus SH, Hubo M, Poisa-Beiro L, et al. Modulation of dendritic cell properties by laquinimod as a mechanism for modulating multiple sclerosis. Brain. 2013;136(Pt 4):1048–66.PubMedCrossRefGoogle Scholar
  69. 69.
    Runstrom A, Leanderson T, Ohlsson L, Axelsson B. Inhibition of the development of chronic experimental autoimmune encephalomyelitis by laquinimod (ABR-215062) in IFN-beta k.o. and wild type mice. J Neuroimmunol. 2006;173(1–2):69–78.PubMedCrossRefGoogle Scholar
  70. 70.
    Kaye J, Piryatinsky V, Birnberg T, Hingaly T, Raymond E, Kashi R, et al. Laquinimod arrests experimental autoimmune encephalomyelitis by activating the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2016;113(41):E6145–52.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Mishra MK, Wang J, Keough MB, Fan Y, Silva C, Sloka S, et al. Laquinimod reduces neuroaxonal injury through inhibiting microglial activation. Ann Clin Transl Neurol. 2014;1(6):409–22.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Ehrnhoefer DE, Caron NS, Deng Y, Qiu X, Tsang M, Hayden MR. Laquinimod decreases Bax expression and reduces caspase-6 activation in neurons. Exp Neurol. 2016;283(Pt A):121–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Garcia-Miralles M, Hong X, Tan LJ, Caron NS, Huang Y, To XV, et al. Laquinimod rescues striatal, cortical and white matter pathology and results in modest behavioural improvements in the YAC128 model of Huntington disease. Sci Rep. 2016;6:31652.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Comi G, Jeffery D, Kappos L, Montalban X, Boyko A, Rocca MA, et al. Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J Med. 2012;366(11):1000–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Vollmer TL, Sorensen PS, Selmaj K, Zipp F, Havrdova E, Cohen JA, et al. A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J Neurol. 2014;261(4):773–83.PubMedCrossRefGoogle Scholar
  76. 76.
    Sorensen PS, Comi G, Vollmer TL, Montalban X, Kappos L, Dadon Y, et al. Laquinimod safety profile: pooled analyses from the ALLEGRO and BRAVO trials. Int J MS Care. 2017;19(1):16–24.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Hu X, Miller L, Richman S, Hitchman S, Glick G, Liu S, et al. A novel PEGylated interferon beta-1a for multiple sclerosis: safety, pharmacology, and biology. J Clin Pharmacol. 2012;52(6):798–808.PubMedCrossRefGoogle Scholar
  78. 78.
    Calabresi PA, Kieseier BC, Arnold DL, Balcer LJ, Boyko A, Pelletier J, et al. Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol. 2014;13(7):657–65.PubMedCrossRefGoogle Scholar
  79. 79.
    Arnold DL, Calabresi PA, Kieseier BC, Liu S, You X, Fiore D, et al. Peginterferon beta-1a improves MRI measures and increases the proportion of patients with no evidence of disease activity in relapsing-remitting multiple sclerosis: 2-year results from the ADVANCE randomized controlled trial. BMC Neurol. 2017;17(1):29.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Arnold DL, You X, Castrillo-Viguera C. Peginterferon beta-1a reduces the evolution of MRI lesions to black holes in patients with RRMS: a post hoc analysis from the ADVANCE study. J Neurol. 2017;264(8):1728–34.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Malek TR. The biology of interleukin-2. Annu Rev Immunol. 2008;26:453–79.PubMedCrossRefGoogle Scholar
  82. 82.
    Bielekova B. Daclizumab therapy for multiple sclerosis. Neurotherapeutics. 2013;10(1):55–67.PubMedCrossRefGoogle Scholar
  83. 83.
    Bielekova B, Catalfamo M, Reichert-Scrivner S, Packer A, Cerna M, Waldmann TA, et al. Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci USA. 2006;103(15):5941–6.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Martin JF, Perry JS, Jakhete NR, Wang X, Bielekova B. An IL-2 paradox: blocking CD25 on T cells induces IL-2-driven activation of CD56(bright) NK cells. J Immunol. 2010;185(2):1311–20.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Gold R, Giovannoni G, Selmaj K, Havrdova E, Montalban X, Radue EW, et al. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial. Lancet. 2013;381(9884):2167–75.PubMedCrossRefGoogle Scholar
  86. 86.
    Kappos L, Wiendl H, Selmaj K, Arnold DL, Havrdova E, Boyko A, et al. Daclizumab HYP versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2015;373(15):1418–28.PubMedCrossRefGoogle Scholar
  87. 87.
    Liu Y, Vollmer T, Havrdova E, Riester K, Lee A, Phillips G, et al. Impact of daclizumab versus interferon beta-1a on patient-reported outcomes in relapsing-remitting multiple sclerosis. Mult Scler Relat Disord. 2017;11:18–24.PubMedCrossRefGoogle Scholar
  88. 88.
    Benedict RH, Cohan S, Lynch SG, Riester K, Wang P, Castro-Borrero W, et al. Improved cognitive outcomes in patients with relapsing-remitting multiple sclerosis treated with daclizumab beta: results from the DECIDE study. 2017. Scholar
  89. 89.
    Radue EW, Sprenger T, Vollmer T, Giovannoni G, Gold R, Havrdova E, et al. Daclizumab high-yield process reduced the evolution of new gadolinium-enhancing lesions to T1 black holes in patients with relapsing-remitting multiple sclerosis. Eur J Neurol. 2016;23(2):412–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Gold R, Radue EW, Giovannoni G, Selmaj K, Havrdova E, Stefoski D, et al. Safety and efficacy of daclizumab in relapsing-remitting multiple sclerosis: 3-year results from the SELECTED open-label extension study. BMC Neurol. 2016;16:117.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Gold R, Stefoski D, Selmaj K, Havrdova E, Hurst C, Holman J, et al. Pregnancy experience: nonclinical studies and pregnancy outcomes in the Daclizumab Clinical Study Program. Neurol Ther. 2016;5(2):169–82.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Mehta L, Umans K, Ozen G, Robinson RR, Elkins J. Immune response to seasonal influenza vaccine in patients with relapsing-remitting multiple sclerosis receiving long-term daclizumab beta: a prospective, open-label, single-arm study. Int J MS Care. 2017;19(3):141–7.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Cortese I, Ohayon J, Fenton K, Lee CC, Raffeld M, Cowen EW, et al. Cutaneous adverse events in multiple sclerosis patients treated with daclizumab. Neurology. 2016;86(9):847–55.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Giovannoni G, Kappos L, Gold R, Khatri BO, Selmaj K, Umans K, et al. Safety and tolerability profile of daclizumab in patients with relapsing-remitting multiple sclerosis: an integrated analysis of clinical studies. Mult Scler Relat Disord. 2016;9:36–46.PubMedCrossRefGoogle Scholar
  95. 95.
    Ruck T, Bittner S, Wiendl H, Meuth SG. Alemtuzumab in multiple sclerosis: mechanism of action and beyond. Int J Mol Sci. 2015;16(7):16414–39.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Coles AJ, Compston DA, Selmaj KW, Lake SL, Moran S, Margolin DH, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359(17):1786–801.PubMedCrossRefGoogle Scholar
  97. 97.
    Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1829–39.PubMedCrossRefGoogle Scholar
  98. 98.
    Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1819–28.PubMedCrossRefGoogle Scholar
  99. 99.
    Coles AJ, Fox E, Vladic A, Gazda SK, Brinar V, Selmaj KW, et al. Alemtuzumab more effective than interferon beta-1a at 5-year follow-up of CAMMS223 clinical trial. Neurology. 2012;78(14):1069–78.PubMedCrossRefGoogle Scholar
  100. 100.
    Ranganathan U, Kaunzner U, Foster S, Vartanian T, Perumal JS. Immediate transient thrombocytopenia at the time of alemtuzumab infusion in multiple sclerosis. Mult Scler. 2017. Scholar
  101. 101.
    Haghikia A, Dendrou CA, Schneider R, Gruter T, Postert T, Matzke M, et al. Severe B-cell-mediated CNS disease secondary to alemtuzumab therapy. Lancet Neurol. 2017;16(2):104–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Barton J, Hardy TA, Riminton S, Reddel SW, Barnett Y, Coles A, et al. Tumefactive demyelination following treatment for relapsing multiple sclerosis with alemtuzumab. Neurology. 2017;88(10):1004–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Thompson SA, Jones JL, Cox AL, Compston DA, Coles AJ. B-cell reconstitution and BAFF after alemtuzumab (Campath-1H) treatment of multiple sclerosis. J Clin Immunol. 2010;30(1):99–105.PubMedCrossRefGoogle Scholar
  104. 104.
    von Kutzleben S, Pryce G, Giovannoni G, Baker D. Depletion of CD52-positive cells inhibits the development of central nervous system autoimmune disease, but deletes an immune-tolerance promoting CD8 T-cell population: implications for secondary autoimmunity of alemtuzumab in multiple sclerosis. Immunology. 2017;150(4):444–55.CrossRefGoogle Scholar
  105. 105.
    Baker D, Herrod SS, Alvarez-Gonzalez C, Giovannoni G, Schmierer K. Interpreting lymphocyte reconstitution data from the pivotal phase 3 trials of alemtuzumab. JAMA Neurol. 2017;74(8):961–9.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Willis M, Pearson O, Illes Z, Sejbaek T, Nielsen C, Duddy M, et al. An observational study of alemtuzumab following fingolimod for multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2017;4(2):e320.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Yann K, Jackson F, Sharaf N, Mihalova T, Talbot P, Rog D, et al. Acute respiratory distress syndrome following alemtuzumab therapy for relapsing multiple sclerosis. Mult Scler Relat Disord. 2017;14:1–3.PubMedCrossRefGoogle Scholar
  108. 108.
    Sheikh-Taha M, Corman LC. Pulmonary Nocardia beijingensis infection associated with the use of alemtuzumab in a patient with multiple sclerosis. Mult Scler. 2017;23(6):872–4.PubMedCrossRefGoogle Scholar
  109. 109.
    Holmoy T, von der Lippe H, Leegaard TM. Listeria monocytogenes infection associated with alemtuzumab: a case for better preventive strategies. BMC Neurol. 2017;17(1):65.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–88.PubMedCrossRefGoogle Scholar
  111. 111.
    Salzer J, Svenningsson R, Alping P, Novakova L, Bjorck A, Fink K, et al. Rituximab in multiple sclerosis: a retrospective observational study on safety and efficacy. Neurology. 2016;87(20):2074–81.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Naismith RT, Piccio L, Lyons JA, Lauber J, Tutlam NT, Parks BJ, et al. Rituximab add-on therapy for breakthrough relapsing multiple sclerosis: a 52-week phase II trial. Neurology. 2010;74(23):1860–7.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Hawker K, O’Connor P, Freedman MS, Calabresi PA, Antel J, Simon J, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol. 2009;66(4):460–71.PubMedCrossRefGoogle Scholar
  114. 114.
    Topping J, Dobson R, Lapin S, Maslyanskiy A, Kropshofer H, Leppert D, et al. The effects of intrathecal rituximab on biomarkers in multiple sclerosis. Mult Scler Relat Disord. 2016;6:49–53.PubMedCrossRefGoogle Scholar
  115. 115.
    Dunn N, Juto A, Ryner M, Manouchehrinia A, Piccoli L, Fink K, et al. Rituximab in multiple sclerosis: frequency and clinical relevance of anti-drug antibodies. Mult Scler. 2017. Scholar
  116. 116.
    DiLillo DJ, Hamaguchi Y, Ueda Y, Yang K, Uchida J, Haas KM, et al. Maintenance of long-lived plasma cells and serological memory despite mature and memory B cell depletion during CD20 immunotherapy in mice. J Immunol. 2008;180(1):361–71.PubMedCrossRefGoogle Scholar
  117. 117.
    Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–34.PubMedCrossRefGoogle Scholar
  118. 118.
    Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209–20.PubMedCrossRefGoogle Scholar
  119. 119.
    Sormani MP, Bruzzi P. Can we measure long-term treatment effects in multiple sclerosis? Nat Rev Neurol. 2015;11(3):176–82.PubMedCrossRefGoogle Scholar
  120. 120.
    Munsell M, Frean M, Menzin J, Phillips AL. An evaluation of adherence in patients with multiple sclerosis newly initiating treatment with a self-injectable or an oral disease-modifying drug. Patient Prefer Adher. 2017;11:55–62.CrossRefGoogle Scholar
  121. 121.
    Calabresi PA, Radue EW, Goodin D, Jeffery D, Rammohan KW, Reder AT, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(6):545–56.PubMedCrossRefGoogle Scholar
  122. 122.
    Confavreux C, O’Connor P, Comi G, Freedman MS, Miller AE, Olsson TP, et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(3):247–56.PubMedCrossRefGoogle Scholar
  123. 123.
    Berg J, Mahmoudjanlou Y, Duscha A, Massa MG, Thone J, Esser C, et al. The immunomodulatory effect of laquinimod in CNS autoimmunity is mediated by the aryl hydrocarbon receptor. J Neuroimmunol. 2016;298:9–15.PubMedCrossRefGoogle Scholar
  124. 124.
    Filippi M, Rocca MA, Pagani E, De Stefano N, Jeffery D, Kappos L, et al. Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J Neurol Neurosurg Psychiatry. 2014;85(8):851–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurology, St. Josef-HospitalRuhr-University BochumBochumGermany

Personalised recommendations