CNS Drugs

, Volume 31, Issue 8, pp 639–652 | Cite as

Therapeutic Potential of Baicalein in Alzheimer’s Disease and Parkinson’s Disease

  • Yanwei LiEmail author
  • Jinying Zhao
  • Christian Hölscher
Leading Article


Alzheimer’s disease and Parkinson’s disease are the two most common, progressive central neurodegenerative diseases affecting the population over the age of 60 years. Apart from treatments that temporarily improve symptoms, there is no medicine currently available to inhibit or reverse the progression of Alzheimer’s disease and Parkinson’s disease. In traditional Chinese medicine, the root of Scutellaria baicalensis Georgi is a classic compatible component in the decoction of herbal medicine used for treating central nervous system diseases. Modern pharmacokinetic studies have confirmed that baicalein (5,6,7-trihydroxyflavone) is a major bioactive flavone constituent root of S. baicalensis Georgi. Studies showed that baicalein possesses a range of key pharmacological properties, such as reducing oxidative stress, anti-inflammatory properties, inhibiting aggregation of disease-specific amyloid proteins, inhibiting excitotoxicity, stimulating neurogenesis and differentiation action, and anti-apoptosis effects. Based on these properties, baicalein shows therapeutic potential for Alzheimer’s disease and Parkinson’s disease. In this review, we summarize the pharmacological protective actions of baicalein that make it suitable for the treatment of Alzheimer’s disease and Parkinson’s disease, and discuss the potential mechanisms underlying the effects.


Compliance with Ethical Standards


This work was supported by research project funding of the Education Department of Hunan Province in China (No. 14C1039).

Conflict of interest

Yanwei Li, Jinying Zhao, and Christian Hölscher have no conflicts of interest directly relevant to the contents of this article.


  1. 1.
    Cavallucci V, D’Amelio M, Cecconi F. Abeta toxicity in Alzheimer’s disease. Mol Neurobiol. 2012;45(2):366–78.PubMedCrossRefGoogle Scholar
  2. 2.
    Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A. The current and projected economic burden of Parkinson’s disease in the United States. Move Disord. 2013;28(3):311–8.CrossRefGoogle Scholar
  3. 3.
    Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev. 2011;7(3):137–52.Google Scholar
  4. 4.
    Kulshreshtha A, Piplani P. Current pharmacotherapy and putative disease-modifying therapy for Alzheimer’s disease. Neurol Sci. 2016;37(9):1403–35.PubMedCrossRefGoogle Scholar
  5. 5.
    Olanow CW, Schapira AH. Therapeutic prospects for Parkinson disease. Ann Neurol. 2013;74(3):337–47.PubMedCrossRefGoogle Scholar
  6. 6.
    Sharma S, Singh S, Sharma V, Singh VP, Deshmukh R. Neurobiology of l-DOPA induced dyskinesia and the novel therapeutic strategies. Biomed Pharmacother. 2015;70:283–93.PubMedCrossRefGoogle Scholar
  7. 7.
    Kumar A, Singh A, Ekavali. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67(2):195–203.PubMedCrossRefGoogle Scholar
  8. 8.
    Li XZ, Zhang SN, Liu SM, Lu F. Recent advances in herbal medicines treating Parkinson’s disease. Fitoterapia. 2013;84:273–85.PubMedCrossRefGoogle Scholar
  9. 9.
    More SV, Kumar H, Kang SM, Song SY, Lee K, Choi DK. Advances in neuroprotective ingredients of medicinal herbs by using cellular and animal models of Parkinson’s disease. Evid Based Complement Alternat Med. 2013;2013:957875.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Wang ZY, Liu JG, Li H, Yang HM. Pharmacological effects of active components of Chinese herbal medicine in the treatment of Alzheimer’s disease: a review. Am J Chin Med. 2016;44(8):1525–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Gasiorowski K, Lamer-Zarawska E, Leszek J, Parvathaneni K, Yendluri BB, Blach-Olszewska Z, et al. Flavones from root of Scutellaria baicalensis Georgi: drugs of the future in neurodegeneration? CNS Neurol Disord Drug Targets. 2011;10(2):184–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Liu RX, Song GH, Wu PG, Zhang XW, Hu HJ, Liu J, et al. Distribution patterns of the contents of five biologically activate ingredients in the root of Scutellaria baicalensis. Chin J Nat Med. 2017;15(2):152–60.PubMedGoogle Scholar
  13. 13.
    Li C, Lin G, Zuo Z. Pharmacological effects and pharmacokinetics properties of radix Scutellariae and its bioactive flavones. Biopharm Drug Dispos. 2011;32(8):427–45.PubMedCrossRefGoogle Scholar
  14. 14.
    Ji S, Li R, Wang Q, Miao WJ, Li ZW, Si LL, et al. Anti-H1N1 virus, cytotoxic and Nrf2 activation activities of chemical constituents from Scutellaria baicalensis. J Ethnopharmacol. 2015;24(176):475–84.CrossRefGoogle Scholar
  15. 15.
    Huang Y, Tsang SY, Yao X, Chen ZY. Biological properties of baicalein in cardiovascular system. Curr Drug Targets Cardiovasc Haematol Disord. 2005;5(2):177–84.PubMedCrossRefGoogle Scholar
  16. 16.
    Dinda B, Dinda S, DasSharma S, Banik R, Chakraborty A, Dinda M. Therapeutic potentials of baicalein and its aglycone, baicalein against inflammatory disorders. Eur J Med Chem. 2017;6(131):68–80.CrossRefGoogle Scholar
  17. 17.
    Liu C, Wu J, Xu K, Cai F, Gu J, Ma L, et al. Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway. J Neurochem. 2010;112(6):1500–12.PubMedCrossRefGoogle Scholar
  18. 18.
    Chen M, Lai L, Li X, Zhang X, He X, Liu W, et al. Baicalein attenuates neurological deficits and preserves blood-brain barrier integrity in a rat model of intracerebral hemorrhage. Neurochem Res. 2016;41(11):3095–102.PubMedCrossRefGoogle Scholar
  19. 19.
    Tsai TH, Liu SC, Tsai PL, Ho LK, Shum AY, Chen CF. The effects of the cyclosporin A, a P-glycoprotein inhibitor, on the pharmacokinetics of baicalein in the rat: a microdialysis study. Br J Pharmacol. 2002;137(8):1314–20.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wang SY, Wang HH, Chi CW, Chen CF, Liao JF. Effects of baicalein on beta-amyloid peptide-(25–35)-induced amnesia in mice. Eur J Pharmacol. 2004;506(1):55–61.PubMedCrossRefGoogle Scholar
  21. 21.
    Lin TS, Tsai HJ, Lee CH, Song YQ, Huang RS, Hsieh-Li HM, et al. An improved drugs screening system reveals that baicalein ameliorates the Abeta/AMPA/NMDA-induced depolarization of neurons. J Alzheimers Dis. 2017;56(3):959–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee HJ, Noh YH, Lee DY, Kim YS, Kim KY, Chung YH, et al. Baicalein attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Eur J Cell Biol. 2005;84(11):897–905.PubMedCrossRefGoogle Scholar
  23. 23.
    Li XX, He GR, Mu X, Xu B, Tian S, Yu X, et al. Protective effects of baicalein against rotenone-induced neurotoxicity in PC12 cells and isolated rat brain mitochondria. Eur J Pharmacol. 2012;674(2–3):227–33.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang S, Ye J, Dong G. Neuroprotective effect of baicalein on hydrogen peroxide-mediated oxidative stress and mitochondrial dysfunction in PC12 cells. J Mol Neurosci. 2010;40(3):311–20.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee HH, Yang LL, Wang CC, Hu SY, Chang SF, Lee YH. Differential effects of natural polyphenols on neuronal survival in primary cultured central neurons against glutamate- and glucose deprivation-induced neuronal death. Brain Res. 2003;986(1–2):103–13.PubMedCrossRefGoogle Scholar
  26. 26.
    Gao L, Li C, Yang RY, Lian WW, Fang JS, Pang XC, et al. Ameliorative effects of baicalein in MPTP-induced mouse model of Parkinson’s disease: a microarray study. Pharmacol Biochem Behav. 2015;133:155–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Cheng Y, He G, Mu X, Zhang T, Li X, Hu J, et al. Neuroprotective effect of baicalein against MPTP neurotoxicity: behavioral, biochemical and immunohistochemical profile. Neurosci Lett. 2008;441(1):16–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhou L, Tan S, Shan YL, Wang YG, Cai W, Huang XH, et al. Baicalein improves behavioral dysfunction induced by Alzheimer’s disease in rats. Neuropsychiatr Dis Treat. 2016;12:3145–52.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Gu XH, Xu LJ, Liu ZQ, Wei B, Yang YJ, Xu GG, et al. The flavonoid baicalein rescues synaptic plasticity and memory deficits in a mouse model of Alzheimer’s disease. Behav Brain Res. 2016;15(311):309–21.CrossRefGoogle Scholar
  30. 30.
    Miyazaki I, Asanuma M. Approaches to prevent dopamine quinone-induced neurotoxicity. Neurochem Res. 2009;34(4):698–706.PubMedCrossRefGoogle Scholar
  31. 31.
    Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7(1):65–74.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Korolainen MA, Goldsteins G, Nyman TA, Alafuzoff I, Koistinaho J, Pirttila T. Oxidative modification of proteins in the frontal cortex of Alzheimer’s disease brain. Neurobiol Aging. 2006;27(1):42–53.PubMedCrossRefGoogle Scholar
  33. 33.
    Aslan M, Ozben T. Reactive oxygen and nitrogen species in Alzheimer’s disease. Curr Alzheimer Res. 2004;1(2):111–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Sanders LH, Greenamyre JT. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic Biol Med. 2013;62:111–20.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Khan TA, Hassan I, Ahmad A, Perveen A, Aman S, Quddusi S, et al. Recent updates on the dynamic association between oxidative stress and neurodegenerative disorders. CNS Neurol Disord Drug Targets. 2016;15(3):310–20.PubMedCrossRefGoogle Scholar
  36. 36.
    Li JO, Li W, Jiang ZG, Ghanbari HA. Oxidative stress and neurodegenerative disorders. Int J Mol Sci. 2013;14(12):24438–75.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Heo HJ, Kim DO, Choi SJ, Shin DH, Lee CY. Potent inhibitory effect of flavonoids in Scutellaria baicalensis on amyloid beta protein-induced neurotoxicity. J Agric Food Chem. 2004;52(13):4128–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Adhikari S, Tilak JC, Devasagayam TP. Free radical reactions of a naturally occurring flavone baicalein and possible mechanisms towards its membrane protective properties. Indian J Biochem Biophys. 2011;48(4):275–82.PubMedGoogle Scholar
  39. 39.
    Hamada H, Hiramatsu M, Edamatsu R, Mori A. Free radical scavenging action of baicalein. Arch Biochem Biophys. 1993;306(1):261–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Wozniak D, Drys A, Matkowski A. Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix. Nat Prod Res. 2015;29(16):1567–70.PubMedCrossRefGoogle Scholar
  41. 41.
    Gao Z, Huang K, Yang X, Xu H. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta. 1999;1472(3):643–50.PubMedCrossRefGoogle Scholar
  42. 42.
    Gao Z, Huang K, Xu H. Protective effects of flavonoids in the roots of Scutellaria baicalensis Georgi against hydrogen peroxide-induced oxidative stress in HS-SY5Y cells. Pharmacol Res. 2001;43(2):173–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Mazzetti AP, Fiorile MC, Primavera A, Lo Bello M. Glutathione transferases and neurodegenerative diseases. Neurochem Int. 2015;82:10–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Chan JY, Chan SH. Activation of endogenous antioxidants as a common therapeutic strategy against cancer, neurodegeneration and cardiovascular diseases: a lesson learnt from DJ-1. Pharmacol Ther. 2015;156:69–74.PubMedCrossRefGoogle Scholar
  45. 45.
    Asanuma M, Miyazaki I, Ogawa N. Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox Res. 2003;5(3):165–76.PubMedCrossRefGoogle Scholar
  46. 46.
    Asanuma M, Miyazaki I, Diaz-Corrales FJ, Ogawa N. Quinone formation as dopaminergic neuron-specific oxidative stress in the pathogenesis of sporadic Parkinson’s disease and neurotoxin-induced parkinsonism. Acta Med Okayama. 2004;58(5):221–33.PubMedGoogle Scholar
  47. 47.
    Takeshima M, Murata M, Urasoe N, Murakami S, Miyazaki I, Asanuma M, et al. Protective effects of baicalein against excess L-DOPA-induced dopamine quinone neurotoxicity. Neurol Res. 2011;33(10):1050–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee IK, Kang KA, Zhang R, Kim BJ, Kang SS, Hyun JW. Mitochondria protection of baicalein against oxidative damage via induction of manganese superoxide dismutase. Environ Toxicol Pharmacol. 2011;31(1):233–41.PubMedCrossRefGoogle Scholar
  49. 49.
    Choi EO, Jeong JW, Park C, Hong SH, Kim GY, Hwang HJ, et al. Baicalein protects C6 glial cells against hydrogen peroxide-induced oxidative stress and apoptosis through regulation of the Nrf2 signaling pathway. Int J Mol Med. 2016;37(3):798–806.PubMedGoogle Scholar
  50. 50.
    Joshi YB, Giannopoulos PF, Pratico D. The 12/15-lipoxygenase as an emerging therapeutic target for Alzheimer’s disease. Trends Pharmacol Sci. 2015;36(3):181–6.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    van Leyen K, Kim HY, Lee SR, Jin G, Arai K, Lo EH. Baicalein and 12/15-lipoxygenase in the ischemic brain. Stroke. 2006;37(12):3014–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Pratico D, Zhukareva V, Yao Y, Uryu K, Funk CD, Lawson JA, et al. 12/15-lipoxygenase is increased in Alzheimer’s disease: possible involvement in brain oxidative stress. Am J Pathol. 2004;164(5):1655–62.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yao Y, Clark CM, Trojanowski JQ, Lee VM, Pratico D. Elevation of 12/15 lipoxygenase products in AD and mild cognitive impairment. Ann Neurol. 2005;58(4):623–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Chu J, Zhuo JM, Pratico D. Transcriptional regulation of beta-secretase-1 by 12/15-lipoxygenase results in enhanced amyloidogenesis and cognitive impairments. Ann Neurol. 2012;71(1):57–67.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Giannopoulos PF, Joshi YB, Chu J, Pratico D. The 12-15-lipoxygenase is a modulator of Alzheimer’s-related tau pathology in vivo. Aging Cell. 2013;12(6):1082–90.PubMedCrossRefGoogle Scholar
  56. 56.
    Yang H, Zhuo JM, Chu J, Chinnici C, Pratico D. Amelioration of the Alzheimer’s disease phenotype by absence of 12/15-lipoxygenase. Biol Psychiatry. 2010;68(10):922–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Chu J, Li JG, Giannopoulos PF, Blass BE, Childers W, Abou-Gharbia M, et al. Pharmacologic blockade of 12/15-lipoxygenase ameliorates memory deficits, αβ and tau neuropathology in the triple-transgenic mice. Mol Psychiatry. 2015;20(11):1329–38.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang XY, Zhang LH, Li CT, Chen WJ, Zhao JB, Wei EQ. 5-lipoxygenase is involved in rotenone-induced injury in PC12 cells. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2011;40(2):150–5.PubMedGoogle Scholar
  59. 59.
    Kang KH, Liou HH, Hour MJ, Liou HC, Fu WM. Protection of dopaminergic neurons by 5-lipoxygenase inhibitor. Neuropharmacology. 2013;73:380–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Li Z, Choi DY, Shin EJ, Hunter RL, Jin CH, Wie MB, et al. Phenidone protects the nigral dopaminergic neurons from LPS-induced neurotoxicity. Neurosci Lett. 2008;445(1):1–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Sekiya K, Okuda H. Selective inhibition of platelet lipoxygenase by baicalein. Biochem Biophys Res Commun. 1982;105(3):1090–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Sadik CD, Sies H, Schewe T. Inhibition of 15-lipoxygenases by flavonoids: structure-activity relations and mode of action. Biochem Pharmacol. 2003;65(5):773–81.PubMedCrossRefGoogle Scholar
  63. 63.
    Deschamps JD, Kenyon VA, Holman TR. Baicalein is a potent in vitro inhibitor against both reticulocyte 15-human and platelet 12-human lipoxygenases. Bioorg Med Chem. 2006;14(12):4295–301.PubMedCrossRefGoogle Scholar
  64. 64.
    Raven EP, Lu PH, Tishler TA, Heydari P, Bartzokis G. Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer’s disease detected in vivo with magnetic resonance imaging. J Alzheimers Dis. 2013;37(1):127–36.PubMedGoogle Scholar
  65. 65.
    Schneider SA. Neurodegeneration with brain iron accumulation. Curr Neurol Neurosci Rep. 2016;16(1):9.PubMedCrossRefGoogle Scholar
  66. 66.
    Song N, Jiang H, Wang J, Xie JX. Divalent metal transporter 1 up-regulation is involved in the 6-hydroxydopamine-induced ferrous iron influx. J Neurosci Res. 2007;85(14):3118–26.PubMedCrossRefGoogle Scholar
  67. 67.
    Weinreb O, Mandel S, Youdim MB, Amit T. Targeting dysregulation of brain iron homeostasis in Parkinson’s disease by iron chelators. Free Radic Biol Med. 2013;62:52–64.PubMedCrossRefGoogle Scholar
  68. 68.
    Kruer MC. The neuropathology of neurodegeneration with brain iron accumulation. Int Rev Neurobiol. 2013;110:165–94.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Hambright WS, Fonseca RS, Chen L, Na R, Ran Q. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol. 2017;1(12):8–17.CrossRefGoogle Scholar
  70. 70.
    Guiney SJ, Adlard PA, Bush AI, Finkelstein DI, Ayton S. Ferroptosis and cell death mechanisms in Parkinson’s disease. Neurochem Int. 2017;104:34–48.PubMedCrossRefGoogle Scholar
  71. 71.
    Dusek P, Schneider SA, Aaseth J. Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol. 2016;38:81–92.PubMedCrossRefGoogle Scholar
  72. 72.
    Van Do B, Gouel F, Jonneaux A, Timmerman K, Gele P, Petrault M, et al. Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol Dis. 2016;94:169–78.CrossRefGoogle Scholar
  73. 73.
    Kimuya Y, Kubo M, Tani T, Arichi S, Okuda H. Studies on Scutellariae radix. IV. Effects on lipid peroxidation in rat liver. Chem Pharm Bull. 1981;29(9):2610–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Gao D, Sakurai K, Chen J, Ogiso T. Protection by baicalein against ascorbic acid-induced lipid peroxidation of rat liver microsomes. Res Commun Mol Pathol Pharmacol. 1995;90(1):103–14.PubMedGoogle Scholar
  75. 75.
    Gao D, Tawa R, Masaki H, Okano Y, Sakurai H. Protective effects of baicalein against cell damage by reactive oxygen species. Chem Pharm Bull. 1998;46(9):1383–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Zhao Y, Li H, Gao Z, Xu H. Effects of dietary baicalein supplementation on iron overload-induced mouse liver oxidative injury. Eur J Pharmacol. 2005;509(2–3):195–200.PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang Y, Li H, Zhao Y, Gao Z. Dietary supplementation of baicalein and quercetin attenuates iron overload induced mouse liver injury. Eur J Pharmacol. 2006;535(1–3):263–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Mladenka P, Macakova K, Filipsky T, Zatloukalova L, Jahodar L, Bovicelli P, et al. In vitro analysis of iron chelating activity of flavonoids. J Inorg Biochem. 2011;105(5):693–701.PubMedCrossRefGoogle Scholar
  79. 79.
    Perez CA, Wei Y, Guo M. Iron-binding and anti-Fenton properties of baicalein and baicalein. J Inorg Biochem. 2009;103(3):326–32.PubMedCrossRefGoogle Scholar
  80. 80.
    Xie Y, Song X, Sun X, Huang J, Zhong M, Lotze MT, et al. Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochem Biophys Res Commun. 2016;473(4):775–80.PubMedCrossRefGoogle Scholar
  81. 81.
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies [letter]. Nature. 1997;388(6645):839–40.PubMedCrossRefGoogle Scholar
  82. 82.
    Goedert M. NEURODEGENERATION. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled αβ, τ, and alpha-synuclein. Science. 2015;349(6248):1255555.PubMedCrossRefGoogle Scholar
  83. 83.
    Glabe CG, Kayed R. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology. 2006;66(2 Suppl. 1):S74–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003;300(5618):486–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Volles MJ, Lansbury PT Jr. Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry. 2003;42(26):7871–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Zhu M, Rajamani S, Kaylor J, Han S, Zhou F, Fink AL. The flavonoid baicalein inhibits fibrillation of alpha-synuclein and disaggregates existing fibrils. J Biol Chem. 2004;279(26):26846–57.PubMedCrossRefGoogle Scholar
  87. 87.
    Lu JH, Ardah MT, Durairajan SS, Liu LF, Xie LX, Fong WF, et al. Baicalein inhibits formation of alpha-synuclein oligomers within living cells and prevents αβ peptide fibrillation and oligomerisation. Chembiochem. 2011;12(4):615–24.PubMedCrossRefGoogle Scholar
  88. 88.
    Jiang M, Porat-Shliom Y, Pei Z, Cheng Y, Xiang L, Sommers K, et al. Baicalein reduces E46K alpha-synuclein aggregation in vitro and protects cells against E46K alpha-synuclein toxicity in cell models of familiar parkinsonism. J Neurochem. 2010;114(2):419–29.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Caruana M, Neuner J, Hogen T, Schmidt F, Kamp F, Scerri C, et al. Polyphenolic compounds are novel protective agents against lipid membrane damage by alpha-synuclein aggregates in vitro. Biochim Biophys Acta. 2012;1818(11):2502–10.PubMedCrossRefGoogle Scholar
  90. 90.
    Hu Q, Uversky VN, Huang M, Kang H, Xu F, Liu X, et al. Baicalein inhibits alpha-synuclein oligomer formation and prevents progression of alpha-synuclein accumulation in a rotenone mouse model of Parkinson’s disease. Biochim Biophys Acta. 2016;1862(10):1883–90.PubMedCrossRefGoogle Scholar
  91. 91.
    Hung KC, Huang HJ, Wang YT, Lin AM. Baicalein attenuates alpha-synuclein aggregation, inflammasome activation and autophagy in the MPP+-treated nigrostriatal dopaminergic system in vivo. J Ethnopharmacol. 2016;24(194):522–9.CrossRefGoogle Scholar
  92. 92.
    Zhang SQ, Obregon D, Ehrhart J, Deng J, Tian J, Hou H, et al. Baicalein reduces beta-amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model. J Neurosci Res. 2013;91(9):1239–46.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Meng X, Munishkina LA, Fink AL, Uversky VN. Molecular mechanisms underlying the flavonoid-induced inhibition of alpha-synuclein fibrillation. Biochemistry. 2009;48(34):8206–24.PubMedCrossRefGoogle Scholar
  94. 94.
    Hong DP, Fink AL, Uversky VN. Structural characteristics of alpha-synuclein oligomers stabilized by the flavonoid baicalein. J Mol Biol. 2008;383(1):214–23.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Ferrari CC, Tarelli R. Parkinson’s disease and systemic inflammation. Parkinsons Dis. 2011;2011:436813.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405.PubMedCrossRefGoogle Scholar
  97. 97.
    Chen H, O’Reilly EJ, Schwarzschild MA, Ascherio A. Peripheral inflammatory biomarkers and risk of Parkinson’s disease. Am J Epidemiol. 2008;167(1):90–5.PubMedCrossRefGoogle Scholar
  98. 98.
    Herrero MT, Estrada C, Maatouk L, Vyas S. Inflammation in Parkinson’s disease: role of glucocorticoids. Front Neuroanat. 2015;9:32.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer’s disease. Nat Immunol. 2015;16(3):229–36.PubMedCrossRefGoogle Scholar
  100. 100.
    Garcia-Esparcia P, Llorens F, Carmona M, Ferrer I. Complex deregulation and expression of cytokines and mediators of the immune response in Parkinson’s disease brain is region dependent. Brain Pathol. 2014;24(6):584–98.PubMedCrossRefGoogle Scholar
  101. 101.
    Hirohata M, Ono K, Morinaga A, Yamada M. Non-steroidal anti-inflammatory drugs have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro. Neuropharmacology. 2008;54(3):620–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Kubo M, Matsuda H, Tanaka M, Kimura Y, Okuda H, Higashino M, et al. Studies on Scutellariae radix. VII. Anti-arthritic and anti-inflammatory actions of methanolic extract and flavonoid components from Scutellariae radix. Chem Pharm Bull. 1984;32(7):2724–9.PubMedCrossRefGoogle Scholar
  103. 103.
    He X, Wei Z, Zhou E, Chen L, Kou J, Wang J, et al. Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-kappaB and MAPK signaling pathways in LPS-induced mastitis in mice. Int Immunopharmacol. 2015;28(1):470–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Wang J, Wang Q, Wu D, Yan J, Wu Y, Li H. Comparative studies on the interactions of baicalein and Al(III)-baicalein complex with human serum albumin. Luminescence. 2016;31(1):54–62.PubMedCrossRefGoogle Scholar
  105. 105.
    Li FQ, Wang T, Pei Z, Liu B, Hong JS. Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons. J Neural Transm (Vienna). 2005;112(3):331–47.PubMedCrossRefGoogle Scholar
  106. 106.
    Hwang YS, Shin CY, Huh Y, Ryu JH. Hwangryun-Hae-Dok-tang (Huanglian-Jie-Du-Tang) extract and its constituents reduce ischemia: reperfusion brain injury and neutrophil infiltration in rats. Life Sci. 2002;71(18):2105–17.PubMedCrossRefGoogle Scholar
  107. 107.
    Lee E, Park HR, Ji ST, Lee Y, Lee J. Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson’s disease model by downregulating the activations of nuclear factor-kappaB, ERK, and JNK. J Neurosci Res. 2014;92(1):130–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Wang CX, Xie GB, Zhou CH, Zhang XS, Li T, Xu JG, et al. Baincalein alleviates early brain injury after experimental subarachnoid hemorrhage in rats: possible involvement of TLR4/NF-kappaB-mediated inflammatory pathway. Brain Res. 2015;12(1594):245–55.CrossRefGoogle Scholar
  109. 109.
    Jeong K, Shin YC, Park S, Park JS, Kim N, Um JY, et al. Ethanol extract of Scutellaria baicalensis Georgi prevents oxidative damage and neuroinflammation and memorial impairments in artificial senescense mice. J Biomed Sci. 2011;08(18):14.CrossRefGoogle Scholar
  110. 110.
    Spencer JP, Vafeiadou K, Williams RJ, Vauzour D. Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol Asp Med. 2012;33(1):83–97.CrossRefGoogle Scholar
  111. 111.
    Park MH, Hong JT. Roles of NF-kappaB in cancer and inflammatory diseases and their therapeutic approaches. Cells. 2016;5(2):15.PubMedCentralCrossRefGoogle Scholar
  112. 112.
    Chen YC, Shen SC, Chen LG, Lee TJ, Yang LL. Wogonin, baicalein, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochem Pharmacol. 2001;61(11):1417–27.PubMedCrossRefGoogle Scholar
  113. 113.
    Iravani MM, Kashefi K, Mander P, Rose S, Jenner P. Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience. 2002;110(1):49–58.PubMedCrossRefGoogle Scholar
  114. 114.
    Steinert JR, Chernova T, Forsythe ID. Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist. 2010;16(4):435–52.PubMedCrossRefGoogle Scholar
  115. 115.
    Radi R. Peroxynitrite, a stealthy biological oxidant. J Biol Chem. 2013;288(37):26464–72.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Lewerenz J, Maher P. Chronic glutamate toxicity in neurodegenerative diseases: what is the evidence? Front Neurosci. 2015;9:469.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Esposito Z, Belli L, Toniolo S, Sancesario G, Bianconi C, Martorana A. Amyloid beta, glutamate, excitotoxicity in Alzheimer’s disease: are we on the right track? CNS Neurosci Ther. 2013;19(8):549–55.PubMedCrossRefGoogle Scholar
  118. 118.
    Tannenberg RK, Scott HL, Westphalen RI, Dodd PR. The identification and characterization of excitotoxic nerve-endings in Alzheimer disease. Curr Alzheimer Res. 2004;1(1):11–25.PubMedCrossRefGoogle Scholar
  119. 119.
    Blandini F, Greenamyre JT, Fancellu R, Nappi G. Blockade of subthalamic glutamatergic activity corrects changes in neuronal metabolism and motor behavior in rats with nigrostriatal lesions. Neurol Sci. 2001;22(1):49–50.PubMedCrossRefGoogle Scholar
  120. 120.
    Matsunaga S, Kishi T, Iwata N. Memantine monotherapy for Alzheimer’s disease: a systematic review and meta-analysis. PLoS One. 2015;10(4):e0123289.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Owen RT. Memantine and donepezil: a fixed drug combination for the treatment of moderate to severe Alzheimer’s dementia. Drugs Today (Barc). 2016;52(4):239–48.PubMedGoogle Scholar
  122. 122.
    Olivares D, Deshpande VK, Shi Y, Lahiri DK, Greig NH, Rogers JT, et al. N-methyl-d-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease. Curr Alzheimer Res. 2012;9(6):746–58.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Wang HF, Yu JT, Tang SW, Jiang T, Tan CC, Meng XF, et al. Efficacy and safety of cholinesterase inhibitors and memantine in cognitive impairment in Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies: systematic review with meta-analysis and trial sequential analysis. J Neurol Neurosurg Psychiatry. 2015;86(2):135–43.PubMedCrossRefGoogle Scholar
  124. 124.
    Wu PH, Shen YC, Wang YH, Chi CW, Yen JC. Baicalein attenuates methamphetamine-induced loss of dopamine transporter in mouse striatum. Toxicology. 2006;226(2–3):238–45.PubMedCrossRefGoogle Scholar
  125. 125.
    Yu X, He GR, Sun L, Lan X, Shi LL, Xuan ZH, et al. Assessment of the treatment effect of baicalein on a model of Parkinsonian tremor and elucidation of the mechanism. Life Sci. 2012;91(1–2):5–13.PubMedCrossRefGoogle Scholar
  126. 126.
    Yang J, Wu X, Yu H, Liao X, Teng L. NMDA receptor-mediated neuroprotective effect of the Scutellaria baicalensis Georgi extract on the excitotoxic neuronal cell death in primary rat cortical cell cultures. Sci World J. 2014;2014:459549.Google Scholar
  127. 127.
    Mohd Sairazi NS, Sirajudeen KN, Asari MA, Muzaimi M, Mummedy S, Sulaiman SA. Kainic acid-induced excitotoxicity experimental model: protective merits of natural products and plant extracts. Evid Based Complement Alternat Med. 2015;2015:972623.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Chang Y, Lu CW, Lin TY, Huang SK, Wang SJ. Baicalein, a constituent of Scutellaria baicalensis, reduces glutamate release and protects neuronal cell against kainic acid-induced excitotoxicity in rats. Am J Chin Med. 2016;44(5):943–62.PubMedCrossRefGoogle Scholar
  129. 129.
    Lombardo S, Maskos U. Role of the nicotinic acetylcholine receptor in Alzheimer’s disease pathology and treatment. Neuropharmacology. 2015;96(Pt B):255–62.PubMedCrossRefGoogle Scholar
  130. 130.
    Gaig C, Tolosa E. When does Parkinson’s disease begin? Move Disord. 2009;24(Suppl. 2):S656–64.CrossRefGoogle Scholar
  131. 131.
    Lee E, Son H. Adult hippocampal neurogenesis and related neurotrophic factors. BMB Rep. 2009;42(5):239–44.PubMedCrossRefGoogle Scholar
  132. 132.
    Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther. 2013;138(2):155–75.PubMedCrossRefGoogle Scholar
  133. 133.
    Holscher C. Insulin, incretins and other growth factors as potential novel treatments for Alzheimer’s and Parkinson’s diseases. Biochem Soc Transact. 2014;42(2):593–9.CrossRefGoogle Scholar
  134. 134.
    Oh SB, Park HR, Jang YJ, Choi SY, Son TG, Lee J. Baicalein attenuates impaired hippocampal neurogenesis and the neurocognitive deficits induced by gamma-ray radiation. Br J Pharmacol. 2013;168(2):421–31.PubMedCrossRefGoogle Scholar
  135. 135.
    Heo H, Shin Y, Cho W, Choi Y, Kim H, Kwon YK. Memory improvement in ibotenic acid induced model rats by extracts of Scutellaria baicalensis. J Ethnopharmacol. 2009;122(1):20–7.PubMedCrossRefGoogle Scholar
  136. 136.
    Zou H, Long J, Zhang Q, Zhao H, Bian B, Wang Y, et al. Induced cortical neurogenesis after focal cerebral ischemia: three active components from Huang-Lian-Jie-Du decoction. J Ethnopharmacol. 2016;3(178):115–24.CrossRefGoogle Scholar
  137. 137.
    Okouchi M, Ekshyyan O, Maracine M, Aw TY. Neuronal apoptosis in neurodegeneration. Antioxid Redox Signal. 2007;9(8):1059–96.PubMedCrossRefGoogle Scholar
  138. 138.
    Schulz JB. Anti-apoptotic gene therapy in Parkinson’s disease. J Neural Transm Suppl. 2006;70:467–76.CrossRefGoogle Scholar
  139. 139.
    Rohn TT, Head E. Caspases as therapeutic targets in Alzheimer’s disease: is it time to “cut” to the chase? Int J Clin Exp Pathol. 2009;2(2):108–18.PubMedGoogle Scholar
  140. 140.
    Bove J, Perier C. Neurotoxin-based models of Parkinson’s disease. Neuroscience. 2012;1(211):51–76.CrossRefGoogle Scholar
  141. 141.
    Cotman CW, Su JH. Mechanisms of neuronal death in Alzheimer’s disease. Brain Pathol. 1996;6(4):493–506.PubMedCrossRefGoogle Scholar
  142. 142.
    Mu X, He G, Cheng Y, Li X, Xu B, Du G. Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacol Biochem Behav. 2009;92(4):642–8.PubMedCrossRefGoogle Scholar
  143. 143.
    Choi JH, Choi AY, Yoon H, Choe W, Yoon KS, Ha J, et al. Baicalein protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis through inhibition of reactive oxygen species production and CHOP induction. Exp Mol Med. 2010;42(12):811–22.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Li M, Shi A, Pang H, Xue W, Li Y, Cao G, et al. Safety, tolerability, and pharmacokinetics of a single ascending dose of baicalein chewable tablets in healthy subjects. J Ethnopharmacol. 2014;156:210–5.PubMedCrossRefGoogle Scholar
  145. 145.
    Pang H, Xue W, Shi A, Li M, Li Y, Cao G, et al. Multiple-ascending-dose pharmacokinetics and safety evaluation of baicalein chewable tablets in healthy Chinese volunteers. Clin Drug Invest. 2016;36(9):713–24.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Human Anatomy, Medical CollegeShaoyang UniversityShaoyangPeople’s Republic of China
  2. 2.Biomedical and Life Science, Faculty of Health and MedicineLancaster UniversityLancasterUK

Personalised recommendations