Advertisement

CNS Drugs

, Volume 30, Issue 5, pp 419–442 | Cite as

The Role of Psychotropic Medications in the Management of Anorexia Nervosa: Rationale, Evidence and Future Prospects

  • Guido K. W. FrankEmail author
  • Megan E. Shott
Review Article

Abstract

Anorexia nervosa (AN) is a severe psychiatric disorder without approved medication intervention. Every class of psychoactive medication has been tried to improve treatment outcome; however, randomized controlled trials have been ambiguous at best and across studies have not shown robust improvements in weight gain and recovery. Here we review the available literature on pharmacological interventions since AN came to greater public recognition in the 1960s, including a critical review of why those trials may not have been successful. We further provide a neurobiological background for the disorder and discuss how cognition, learning, and emotion-regulating circuits could become treatment targets in the future. Making every effort to develop effective pharmacological treatment options for AN is imperative as it continues to be a complex psychiatric disorder with high disease burden and mortality.

Keywords

Dopamine Fluoxetine Olanzapine Anorexia Nervosa Paroxetine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Compliance with Ethical Standards

Conflict of interest

Dr. Frank and Ms. Shott report no competing interests.

Funding

None.

References

  1. 1.
    Kaye WH, Wierenga CE, Bailer UF, Simmons AN, Bischoff-Grethe A. Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa. Trends Neurosci. 2013;36(2):110–20.PubMedCrossRefGoogle Scholar
  2. 2.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders, fifth edition (DSM-5™). Arlington: American Psychiatric Publishing; 2013.Google Scholar
  3. 3.
    Golden NH, Katzman DK, Kreipe RE, Stevens SL, Sawyer SM, Rees J, et al. Eating disorders in adolescents: position paper of the Society for Adolescent Medicine. J Adolesc Health. 2003;33(6):496–503.PubMedGoogle Scholar
  4. 4.
    Sullivan PF. Mortality in anorexia nervosa. Am J Psychiatry. 1995;152(7):1073–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Fitzpatrick KK, Lock J. Anorexia nervosa. BMJ Clin Evid. 2011;2011:1011.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Hudson JI, Hiripi E, Pope HG Jr, Kessler RC. The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol Psychiatry. 2007;61(3):348–58.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Brand-Gothelf A, Leor S, Apter A, Fennig S. The impact of comorbid depressive and anxiety disorders on severity of anorexia nervosa in adolescent girls. J Nerv Ment Dis. 2014;202(10):759–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Hughes EK, Goldschmidt AB, Labuschagne Z, Loeb KL, Sawyer SM, Le Grange D. Eating disorders with and without comorbid depression and anxiety: similarities and differences in a clinical sample of children and adolescents. Eur Eat Disord Rev. 2013;21(5):386–94.PubMedCrossRefGoogle Scholar
  9. 9.
    Attia E. Anorexia nervosa: current status and future directions. Annu Rev Med. 2010;61:425–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Powers PS, Bruty H. Pharmacotherapy for eating disorders and obesity. Child Adolesc Psychiatr Clin N Am. 2009;18(1):175–87.PubMedCrossRefGoogle Scholar
  11. 11.
    Monge MC, Forman SF, McKenzie NM, Rosen DS, Mammel KA, Callahan ST, et al. Use of psychopharmacologic medications in adolescents with restrictive eating disorders: analysis of data from the National Eating Disorder Quality Improvement Collaborative. J Adolesc Health. 2015;57(1):66–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–41.PubMedCrossRefGoogle Scholar
  13. 13.
    Lavenstein AF, Dacaney EP, Lasagna L, Vanmetre TE. Effect of cyproheptadine on asthmatic children. Study of appetite, weight gain, and linear growth. JAMA. 1962;180:912–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Zubiate TN. Tratamiento de la anorexia nervosa con una associacian cyproheptadine-vitaminas. Revista Medica de la Caja Nacional de Segura Social. 1970;19:147–53.Google Scholar
  15. 15.
    Goldberg SC, Halmi KA, Eckert ED, Casper RC, Davis JM. Cyproheptadine in anorexia nervosa. Br J Psychiatry. 1979;134:67–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Goldberg SC, Eckert ED, Halmi KA, Casper RC, Davis JM, Roper M. Effects of cyproheptadine on symptoms and attitudes in anorexia nervosa. Arch Gen Psychiatry. 1980;37(9):1083.PubMedCrossRefGoogle Scholar
  17. 17.
    Halmi KA, Eckert E, LaDu TJ, Cohen J. Anorexia nervosa. Treatment efficacy of cyproheptadine and amitriptyline. Arch Gen Psychiatry. 1986;43(2):177–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Biederman J, Herzog DB, Rivinus TM, Harper GP, Ferber RA, Rosenbaum JF, et al. Amitriptyline in the treatment of anorexia nervosa: a double-blind, placebo-controlled study. J Clin Psychopharmacol. 1985;5(1):10–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Lacey JH, Crisp AH. Hunger, food intake and weight: the impact of clomipramine on a refeeding anorexia nervosa population. Postgrad Med J. 1980;56(Suppl 1):79–85.PubMedGoogle Scholar
  20. 20.
    Crisp AH, Lacey JH, Crutchfield M. Clomipramine and ‘drive’ in people with anorexia nervosa: an in-patient study. Br J Psychiatry. 1987;150:355–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Ruggiero G, Laini V, Mauri M, Ferrari V, Clemente A, Lugo F, et al. A single blind comparison of amisulpride, fluoxetine and clomipramine in the treatment of restricting anorectics. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25(5):1049–59.PubMedCrossRefGoogle Scholar
  22. 22.
    Strobel M, Warnke A, Roth M, Schulze U. Paroxetine versus clomipramine in female adolescents suffering from anorexia nervosa and depressive episode: a retrospective study on tolerability, reasons for discontinuing the antidepressive treatment and different outcome measurements. Z Kinder Jugendpsychiatr. 2004;32(4):279–89.CrossRefGoogle Scholar
  23. 23.
    Kennedy SH, Piran N, Garfinkel PE. Monoamine oxidase inhibitor therapy for anorexia nervosa and bulimia: a preliminary trial of isocarboxazid. J Clin Psychopharmacol. 1985;5(5):279–85.PubMedCrossRefGoogle Scholar
  24. 24.
    Barry VC, Klawans HL. On the role of dopamine in the pathophysiology of anorexia nervosa. J Neural Transm. 1976;38(2):107–22.PubMedCrossRefGoogle Scholar
  25. 25.
    Vandereycken W, Pierloot R. Pimozide combined with behavior therapy in the short-term treatment of anorexia nervosa. A double-blind placebo-controlled cross-over study. Acta Psychiatr Scand. 1982;66(6):445–50.PubMedCrossRefGoogle Scholar
  26. 26.
    Weizman A, Tyano S, Wijsenbeek H, Ben David M. Behavior therapy, pimozide treatment and prolactin secretion in anorexia nervosa. Psychother Psychosom. 1985;43(3):136–40.PubMedCrossRefGoogle Scholar
  27. 27.
    Cassano G, Miniati M, Pini S, Rotondo A, Banti S, Borri C, et al. Six-month open trial of haloperidol as an adjunctive treatment for anorexia nervosa: a preliminary report. Int J Eat Disord. 2003;33:172–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Mauri M, Miniati M, Mariani MG, Ciberti A, Dell’Osso L. Haloperidol for severe anorexia nervosa restricting type with delusional body image disturbance: a nine-case chart review. Eat Weight Disord. 2013;18(3):329–32.PubMedCrossRefGoogle Scholar
  29. 29.
    Gross HA, Ebert MH, Faden VB, Goldberg SC, Nee LE, Kaye WH. A double-blind controlled trial of lithium carbonate primary anorexia nervosa. J Clin Psychopharmacol. 1981;1(6):376–81.PubMedCrossRefGoogle Scholar
  30. 30.
    Bakan R. The role of zinc in anorexia nervosa: etiology and treatment. Med Hypotheses. 1979;5(7):731–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Bryce-Smith D, Simpson RI. Case of anorexia nervosa responding to zinc sulphate. Lancet. 1984;2(8398):350.PubMedCrossRefGoogle Scholar
  32. 32.
    Katz RL, Keen CL, Litt IF, Hurley LS, Kellams-Harrison KM, Glader LJ. Zinc deficiency in anorexia nervosa. J Adolesc Health Care. 1987;8(5):400–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Safai-Kutti S. Oral zinc supplementation in anorexia nervosa. Acta Psychiatr Scand Suppl. 1990;361:14–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Birmingham CL, Goldner EM, Bakan R. Controlled trial of zinc supplementation in anorexia nervosa. Int J Eat Disord. 1994;15(3):251–5.PubMedGoogle Scholar
  35. 35.
    Lask B, Fosson A, Rolfe U, Thomas S. Zinc deficiency and childhood-onset anorexia nervosa. J Clin Psychiatry. 1993;54(2):63–6.PubMedGoogle Scholar
  36. 36.
    Suzuki H, Asakawa A, Li JB, Tsai M, Amitani H, Ohinata K, et al. Zinc as an appetite stimulator: the possible role of zinc in the progression of diseases such as cachexia and sarcopenia. Recent Pat Food Nutr Agric. 2011;3(3):226–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Levenson CW. Zinc regulation of food intake: new insights on the role of neuropeptide Y. Nutr Rev. 2003;61(7):247–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Moore R, Mills IH, Forster A. Naloxone in the treatment of anorexia nervosa: effect on weight gain and lipolysis. J R Soc Med. 1981;74(2):129–31.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Marrazzi MA, Bacon JP, Kinzie J, Luby ED. Naltrexone use in the treatment of anorexia nervosa and bulimia nervosa. Int Clin Psychopharmacol. 1995;10(3):163–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Gross H, Ebert MH, Faden VB, Goldberg SC, Kaye WH, Caine ED, et al. A double-blind trial of delta 9-tetrahydrocannabinol in primary anorexia nervosa. J Clin Psychopharmacol. 1983;3(3):165–71.PubMedCrossRefGoogle Scholar
  41. 41.
    Andries A, Frystyk J, Flyvbjerg A, Stoving RK. Dronabinol in severe, enduring anorexia nervosa: a randomized controlled trial. Int J Eat Disord. 2014;47(1):18–23.PubMedCrossRefGoogle Scholar
  42. 42.
    Steinglass JE, Kaplan SC, Liu Y, Wang Y, Walsh BT. The (lack of) effect of alprazolam on eating behavior in anorexia nervosa: a preliminary report. Int J Eat Disord. 2014;47(8):901–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Rieg TS, Aravich PF. Systemic clonidine increases feeding and wheel running but does not affect rate of weight loss in rats subjected to activity-based anorexia. Pharmacol Biochem Behav. 1994;47(2):215–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Casper RC, Schlemmer RFJ, Javaid JI. A placebo-controlled crossover study of oral clonidine in acute anorexia nervosa. Psychiatry Res. 1987;20(3):249–60.PubMedCrossRefGoogle Scholar
  45. 45.
    Gwirtsman HE, Guze BH, Yager J, Gainsley B. Fluoxetine treatment of anorexia nervosa: an open clinical trial. J Clin Psychiatry. 1990;51(9):378–82.PubMedGoogle Scholar
  46. 46.
    Kaye WH, Weltzin TE, Hsu LK, Bulik CM. An open trial of fluoxetine in patients with anorexia nervosa. J Clin Psychiatry. 1991;52(11):464–71.PubMedGoogle Scholar
  47. 47.
    Oliveros SC, Iruela LM, Caballero L, Baca E. Fluoxetine-induced anorexia in a bulimic patient. Am J Psychiatry. 1992;149(8):1113–4.PubMedGoogle Scholar
  48. 48.
    Yu J, Stewart Agras W, Halmi KA, Crow S, Mitchell J, Bryson SW. A 1-year follow-up of a multi-center treatment trial of adults with anorexia nervosa. Eat Weight Disord. 2011;16(3):e177–81.PubMedCrossRefGoogle Scholar
  49. 49.
    Attia E, Haiman C, Walsh BT, Flater SR. Does fluoxetine augment the inpatient treatment of anorexia nervosa? Am J Psychiatry. 1998;155(4):548–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Strober M, Pataki C, Freeman R, DeAntonio M. No effect of adjunctive fluoxetine on eating behavior or weight phobia during the inpatient treatment of anorexia nervosa: an historical case-control study. J Child Adolesc Psychopharmacol. 1999;9(3):195–201.PubMedCrossRefGoogle Scholar
  51. 51.
    Kaye WH, Nagata T, Weltzin TE, Hsu LK, Sokol MS, McConaha C, et al. Double-blind placebo-controlled administration of fluoxetine in restricting- and restricting-purging-type anorexia nervosa. Biol Psychiatry. 2001;49(7):644–52.PubMedCrossRefGoogle Scholar
  52. 52.
    Ruggiero GM, Mauri MC, Omboni AC, Volonteri LS, Dipasquale S, Malvini L, et al. Nutritional management of anorexic patients with and without fluoxetine: 1-year follow-up. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(3):425–30.PubMedCrossRefGoogle Scholar
  53. 53.
    Strober M, Freeman R, DeAntonio M, Lampert C, Diamond J. Does adjunctive fluoxetine influence the post-hospital course of restrictor-type anorexia nervosa? A 24-month prospective, longitudinal followup and comparison with historical controls. Psychopharmacol Bull. 1997;33(3):425–31.PubMedGoogle Scholar
  54. 54.
    Walsh BT, Kaplan AS, Attia E, Olmsted M, Parides M, Carter JC, et al. Fluoxetine after weight restoration in anorexia nervosa: a randomized controlled trial. JAMA. 2006;295(22):2605–12.PubMedCrossRefGoogle Scholar
  55. 55.
    Ricca V, Mannucci E, Paionni A, Di Bernardo M, Cellini M, Cabras PL, et al. Venlafaxine versus fluoxetine in the treatment of atypical anorectic outpatients: a preliminary study. Eat Weight Disord. 1999;4(1):10–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Barbarich NC, McConaha CW, Halmi KA, Gendall K, Sunday SR, Gaskill J, et al. Use of nutritional supplements to increase the efficacy of fluoxetine in the treatment of anorexia nervosa. Int J Eat Disord. 2004;35(1):10–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Calandra C, Gulino V, Inserra L, Giuffrida A. The use of citalopram in an integrated approach to the treatment of eating disorders: an open study. Eat Weight Disord. 1999;4(4):207–10.PubMedCrossRefGoogle Scholar
  58. 58.
    Fassino S, Leombruni P, Abbate Daga G, Brustolin A, Migliaretti G, Cavallo F, et al. Efficacy of citalopram in anorexia nervosa: a pilot study. Euro Neuropsychopharm. 2002;12:453–9.CrossRefGoogle Scholar
  59. 59.
    Pallanti S, Quercioli L, Ramacciotti A. Citalopram in anorexia nervosa. Eat Weight Disord. 1997;2(4):216–21.PubMedCrossRefGoogle Scholar
  60. 60.
    Santonastaso P, Friederici S, Favaro A. Sertraline in the treatment of restricting anorexia nervosa: an open controlled trial. J Child Adolesc Psychopharmacol. 2001;11(2):143–50.PubMedCrossRefGoogle Scholar
  61. 61.
    Holtkamp K, Konrad K, Kaiser N, Ploenes Y, Heussen N, Grzella I, et al. A retrospective study of SSRI treatment in adolescent anorexia nervosa: insufficient evidence for efficacy. J Psychiatr Res. 2004;39:303–10.CrossRefGoogle Scholar
  62. 62.
    Ferguson CP, La Via MC, Crossan PJ, Kaye WH. Are serotonin selective reuptake inhibitors effective in underweight anorexia nervosa? Int J Eat Disord. 1999;25(1):11–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Hrdlicka M, Beranova I, Zamecnikova R, Urbanek T. Mirtazapine in the treatment of adolescent anorexia nervosa. Case-control study. Eur Child Adolesc Psychiatry. 2008;17(3):187–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Vandereycken W. Neuroleptics in the short-term treatment of anorexia nervosa. A double- blind placebo-controlled study with sulpiride. Br J Psychiatry. 1984;144:288–92.PubMedCrossRefGoogle Scholar
  65. 65.
    Powers PS, Santana CA, Bannon YS. Olanzapine in the treatment of anorexia nervosa: an open label trial. Int J Eat Disord. 2002;32:146–54.PubMedCrossRefGoogle Scholar
  66. 66.
    Barbarich N, McConaha C, Gaskill J, LaVia M, Frank GK, Brooks S, et al. An open trial of olanzapine in anorexia nervosa. J Clin Psychiatry. 2004;65:1480–2.PubMedCrossRefGoogle Scholar
  67. 67.
    Malina A, Gaskill J, McConaha C, Frank GK, LaVia M, Scholar L, et al. Olanzapine treatment of anorexia nervosa: a restrospective study. Int J Eat Disord. 2003;33(2):234–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Mondraty N, Birmingham CL, Touyz S, Sundakov V, Chapman L, Beumont P. Randomized controlled trial of olanzapine in the treatment of cognitions in anorexia nervosa. Australas Psychiatry. 2005;13(1):72–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Brambilla F, Garcia CS, Fassino S, Daga GA, Favaro A, Santonastaso P, et al. Olanzapine therapy in anorexia nervosa: psychobiological effects. Int Clin Psychopharmacol. 2007;22(4):197–204.PubMedCrossRefGoogle Scholar
  70. 70.
    Bissada H, Tasca GA, Barber AM, Bradwejn J. Olanzapine in the treatment of low body weight and obsessive thinking in women with anorexia nervosa: a randomized, double-blind, placebo-controlled trial. Am J Psychiatry. 2008;165(10):1281–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Leggero C, Masi G, Brunori E, Calderoni S, Carissimo R, Maestro S, et al. Low-dose olanzapine monotherapy in girls with anorexia nervosa, restricting subtype: focus on hyperactivity. J Child Adolesc Psychopharmacol. 2010;20(2):127–33.PubMedCrossRefGoogle Scholar
  72. 72.
    Attia E, Kaplan AS, Walsh BT, Gershkovich M, Yilmaz Z, Musante D, et al. Olanzapine versus placebo for out-patients with anorexia nervosa. Psychol Med. 2011;41(10):2177–82.PubMedCrossRefGoogle Scholar
  73. 73.
    Kafantaris V, Leigh E, Hertz S, Berest A, Schebendach J, Sterling WM, et al. A placebo-controlled pilot study of adjunctive olanzapine for adolescents with anorexia nervosa. J Child Adolesc Psychopharmacol. 2011;21(3):207–12.PubMedCrossRefGoogle Scholar
  74. 74.
    Norris ML, Spettigue W, Buchholz A, Henderson KA, Gomez R, Maras D, et al. Olanzapine use for the adjunctive treatment of adolescents with anorexia nervosa. J Child Adolesc Psychopharmacol. 2011;21(3):213–20.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Brambilla F, Monteleone P, Maj M. Olanzapine-induced weight gain in anorexia nervosa: involvement of leptin and ghrelin secretion? Psychoneuroendocrinology. 2007;32(4):402–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Yasuhara D, Nakahara T, Harada T, Inui A. Olanzapine-induced hyperglycemia in anorexia nervosa. Am J Psychiatry. 2007;164(3):528–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Bosanac P, Kurlender S, Norman T, Hallam K, Wesnes K, Manktelow T, et al. An open-label study of quetiapine in anorexia nervosa. Hum Psychopharmacol. 2007;22(4):223–30.PubMedCrossRefGoogle Scholar
  78. 78.
    Powers PS, Bannon Y, Eubanks R, McCormick T. Quetiapine in anorexia nervosa patients: an open label outpatient pilot study. Int J Eat Disord. 2007;40(1):21–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Powers PS, Klabunde M, Kaye W. Double-blind placebo-controlled trial of quetiapine in anorexia nervosa. Eur Eat Disord Rev. 2012;20(4):331–4.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Court A, Mulder C, Kerr M, Yuen HP, Boasman M, Goldstone S, et al. Investigating the effectiveness, safety and tolerability of quetiapine in the treatment of anorexia nervosa in young people: a pilot study. J Psychiatr Res. 2010;44(15):1027–34.PubMedCrossRefGoogle Scholar
  81. 81.
    Kracke EJ, Tosh AK. Treatment of anorexia nervosa with long-term risperidone in an outpatient setting: case study. Springerplus. 2014;3:706.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Newman-Toker J. Risperidone in anorexia nervosa. J Am Acad Child Adolesc Psychiatry. 2000;39(8):941–2.PubMedCrossRefGoogle Scholar
  83. 83.
    Hagman J, Gralla J, Sigel E, Ellert S, Dodge M, Gardner R, et al. A double-blind, placebo-controlled study of risperidone for the treatment of adolescents and young adults with anorexia nervosa: a pilot study. J Am Acad Child Adolesc Psychiatry. 2011;50(9):915–24.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Trunko ME, Schwartz TA, Duvvuri V, Kaye WH. Aripiprazole in anorexia nervosa and low-weight bulimia nervosa: case reports. Int J Eat Disord. 2011;44(3):269–75.PubMedCrossRefGoogle Scholar
  85. 85.
    Frank GK. Aripiprazole, a partial dopamine agonist to improve adolescent anorexia nervosa: a case series. Int J Eat Disord. 2015;. doi: 10.1002/eat.22485 (Epub 23 Nov 2015).PubMedGoogle Scholar
  86. 86.
    Frank GK. Could dopamine agonists aid in drug development for anorexia nervosa? Front Nutr. 2014;1:19.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Otto MW, Kredlow MA, Smits JA, Hofmann SG, Tolin DF, de Kleine RA, van Minnen A, Evins AE, Pollack MH. Enhancement of Psychosocial Treatment With d-Cycloserine: Models, Moderators, and Future Directions. Biol Psychiatry. 2015. doi: 10.1016/j.biopsych.2015.09.007.PubMedGoogle Scholar
  88. 88.
    Steinglass J, Sysko R, Schebendach J, Broft A, Strober M, Walsh BT. The application of exposure therapy and d-cycloserine to the treatment of anorexia nervosa: a preliminary trial. J Psychiatr Pract. 2007;13(4):238–45.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Levinson CA, Rodebaugh TL, Fewell L, Kass AE, Riley EN, Stark L, et al. d-Cycloserine facilitation of exposure therapy improves weight regain in patients with anorexia nervosa: a pilot randomized controlled trial. J Clin Psychiatry. 2015;76(6):e787–93.PubMedCrossRefGoogle Scholar
  90. 90.
    Lechin F, van der Dijs B, Pardey-Maldonado B, Baez S, Lechin ME. Anorexia nervosa versus hyperinsulinism: therapeutic effects of neuropharmacological manipulation. Ther Clin Risk Manag. 2011;7:53–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Bloch M, Ish-Shalom S, Greenman Y, Klein E, Latzer Y. Dehydroepiandrosterone treatment effects on weight, bone density, bone metabolism and mood in women suffering from anorexia nervosa-a pilot study. Psychiatry Res. 2012;200(2–3):544–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Hotta M, Ohwada R, Akamizu T, Shibasaki T, Takano K, Kangawa K. Ghrelin increases hunger and food intake in patients with restricting-type anorexia nervosa: a pilot study. Endocr J. 2009;56(9):1119–28.PubMedCrossRefGoogle Scholar
  93. 93.
    Okita K, Shiina A, Nakazato M, Iyo M. Tandospirone, a 5-HT1A partial agonist is effective in treating anorexia nervosa: a case series. Ann Gen Psychiatry. 2013;12(1):7.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Misra M, Katzman DK, Estella NM, Eddy KT, Weigel T, Goldstein MA, et al. Impact of physiologic estrogen replacement on anxiety symptoms, body shape perception, and eating attitudes in adolescent girls with anorexia nervosa: data from a randomized controlled trial. J Clin Psychiatry. 2013;74(8):e765–71.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Klibanski A, Biller BM, Schoenfeld DA, Herzog DB, Saxe VC. The effects of estrogen administration on trabecular bone loss in young women with anorexia nervosa. J Clin Endocrinol Metab. 1995;80(3):898–904.PubMedGoogle Scholar
  96. 96.
    Miller KK, Grieco KA, Klibanski A. Testosterone administration in women with anorexia nervosa. J Clin Endocrinol Metab. 2005;90(3):1428–33.PubMedCrossRefGoogle Scholar
  97. 97.
    Hill K, Bucuvalas J, McClain C, Kryscio R, Martini RT, Alfaro MP, et al. Pilot study of growth hormone administration during the refeeding of malnourished anorexia nervosa patients. J Child Adolesc Psychopharmacol. 2000;10(1):3–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Smitka K, Papezova H, Vondra K, Hill M, Hainer V, Nedvidkova J. The role of “mixed” orexigenic and anorexigenic signals and autoantibodies reacting with appetite-regulating neuropeptides and peptides of the adipose tissue-gut-brain axis: relevance to food intake and nutritional status in patients with anorexia nervosa and bulimia nervosa. Int J Endocrinol. 2013;2013:483145.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Van den Eynde F, Suda M, Broadbent H, Guillaume S, Van den Eynde M, Steiger H, et al. Structural magnetic resonance imaging in eating disorders: a systematic review of voxel-based morphometry studies. Eur Eat Disord Rev. 2012;20(2):94–105.PubMedCrossRefGoogle Scholar
  100. 100.
    King JA, Geisler D, Ritschel F, Boehm I, Seidel M, Roschinski B, et al. Global cortical thinning in acute anorexia nervosa normalizes following long-term weight restoration. Biol Psychiatry. 2015;77(7):624–32.PubMedCrossRefGoogle Scholar
  101. 101.
    Frank GK, Shott ME, Hagman JO, Mittal VA. Alterations in brain structures related to taste reward circuitry in ill and recovered anorexia nervosa and in bulimia nervosa. Am J Psychiatry. 2013;170(10):1152–60.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Frank GK, Shott ME, Hagman JO, Yang TT. Localized brain volume and white matter integrity alterations in adolescent anorexia nervosa. J Am Acad Child Adolesc Psychiatry. 2013;52(10):1066–1075 e5.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Rolls ET. Information processing in the taste system of primates. J Exp Biol. 1989;146:141–64.PubMedGoogle Scholar
  104. 104.
    Frank GK, Bailer UF, Henry SE, Drevets W, Meltzer CC, Price JC, et al. Increased dopamine D2/D3 receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [11c]raclopride. Biol Psychiatry. 2005;58(11):908–12.PubMedCrossRefGoogle Scholar
  105. 105.
    Gerard N, Pieters G, Goffin K, Bormans G, Van Laere K. Brain type 1 cannabinoid receptor availability in patients with anorexia and bulimia nervosa. Biol Psychiatry. 2011;70(8):777–84.PubMedCrossRefGoogle Scholar
  106. 106.
    Berridge KC. ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav. 2009;97(5):537–50.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci. 2002;22(9):3306–11.PubMedGoogle Scholar
  108. 108.
    Frank GK. Reward and neurocomputational processes. Curr Top Behav Neurosci. 2011;6:95–110.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Frank GK. Advances from neuroimaging studies in eating disorders. CNS Spectr. 2015;20(4):391–400. doi: 10.1017/S1092852915000012.PubMedCrossRefGoogle Scholar
  110. 110.
    Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80(1):1–27.PubMedGoogle Scholar
  111. 111.
    Yilmaz Z, Kaplan AS, Tiwari AK, Levitan RD, Piran S, Bergen AW, et al. The role of leptin, melanocortin, and neurotrophin system genes on body weight in anorexia nervosa and bulimia nervosa. J Psychiatr Res. 2014;55:77–86.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Boraska V, Franklin CS, Floyd JA, Thornton LM, Huckins LM, Southam L, et al. A genome-wide association study of anorexia nervosa. Mol Psychiatry. 2014;19(10):1085–94.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Wang K, Zhang H, Bloss CS, Duvvuri V, Kaye W, Schork NJ, et al. A genome-wide association study on common SNPs and rare CNVs in anorexia nervosa. Mol Psychiatry. 2011;16(9):949–59.PubMedCrossRefGoogle Scholar
  114. 114.
    Brandys MK, de Kovel CG, Kas MJ, van Elburg AA, Adan RA. Overview of genetic research in anorexia nervosa: the past, the present and the future. Int J Eat Disord. 2015;48(7):814–25.PubMedCrossRefGoogle Scholar
  115. 115.
    Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics Consortium, et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47(3):291–5.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Gutierrez E. A rat in the labyrinth of anorexia nervosa: contributions of the activity-based anorexia rodent model to the understanding of anorexia nervosa. Int J Eat Disord. 2013;46(4):289–301.PubMedCrossRefGoogle Scholar
  117. 117.
    Hillebrand JJ, van Elburg AA, Kas MJ, van Engeland H, Adan RA. Olanzapine reduces physical activity in rats exposed to activity-based anorexia: possible implications for treatment of anorexia nervosa? Biol Psychiatry. 2005;58(8):651–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Klenotich SJ, Seiglie MP, McMurray MS, Roitman JD, Le Grange D, Dugad P, et al. Olanzapine, but not fluoxetine, treatment increases survival in activity-based anorexia in mice. Neuropsychopharmacology. 2012;37(7):1620–31.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Verhagen LA, Luijendijk MC, Hillebrand JJ, Adan RA. Dopamine antagonism inhibits anorectic behavior in an animal model for anorexia nervosa. Eur Neuropsychopharmacol. 2009;19(3):153–60.PubMedCrossRefGoogle Scholar
  120. 120.
    Atchley DP, Eckel LA. Fenfluramine treatment in female rats accelerates the weight loss associated with activity-based anorexia. Pharmacol Biochem Behav. 2005;80(2):273–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Hillebrand JJ, Heinsbroek AC, Kas MJ, Adan RA. The appetite suppressant d-fenfluramine reduces water intake, but not food intake, in activity-based anorexia. J Mol Endocrinol. 2006;36(1):153–62.PubMedCrossRefGoogle Scholar
  122. 122.
    Atchley DP, Eckel LA. Treatment with 8-OH-DPAT attenuates the weight loss associated with activity-based anorexia in female rats. Pharmacol Biochem Behav. 2006;83(4):547–53.PubMedCrossRefGoogle Scholar
  123. 123.
    Verty AN, Evetts MJ, Crouch GJ, McGregor IS, Stefanidis A, Oldfield BJ. The cannabinoid receptor agonist THC attenuates weight loss in a rodent model of activity-based anorexia. Neuropsychopharmacology. 2011;36(7):1349–58.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Lewis DY, Brett RR. Activity-based anorexia in C57/BL6 mice: effects of the phytocannabinoid, Delta9-tetrahydrocannabinol (THC) and the anandamide analogue, OMDM-2. Eur Neuropsychopharmacol. 2010;20(9):622–31.PubMedCrossRefGoogle Scholar
  125. 125.
    Verhagen LA, Luijendijk MC, Adan RA. Leptin reduces hyperactivity in an animal model for anorexia nervosa via the ventral tegmental area. Eur Neuropsychopharmacol. 2011;21(3):274–81.PubMedCrossRefGoogle Scholar
  126. 126.
    Exner C, Hebebrand J, Remschmidt H, Wewetzer C, Ziegler A, Herpertz S, et al. Leptin suppresses semi-starvation induced hyperactivity in rats: implications for anorexia nervosa. Mol Psychiatry. 2000;5(5):476–81.PubMedCrossRefGoogle Scholar
  127. 127.
    Brown AJ, Avena NM, Hoebel BG. A high-fat diet prevents and reverses the development of activity-based anorexia in rats. Int J Eat Disord. 2008;41(5):383–9.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Gile E, Hagman J, Pan Z, MacLean P, Higgins J. Weight restoration on a high carbohydrate refeeding diet promotes rapid weight regain and hepatic lipid accumulation in female anorexic rats. Nutr Metab. 2016;13(18):11.Google Scholar
  129. 129.
    Taksande BG, Chopde CT, Umekar MJ, Kotagale NR. Agmatine attenuates hyperactivity and weight loss associated with activity-based anorexia in female rats. Pharmacol Biochem Behav. 2015;132:136–41.PubMedCrossRefGoogle Scholar
  130. 130.
    Wable GS, Chen YW, Rashid S, Aoki C. Exogenous progesterone exacerbates running response of adolescent female mice to repeated food restriction stress by changing alpha4-GABAA receptor activity of hippocampal pyramidal cells. Neuroscience. 2015;310:322–41.PubMedCrossRefGoogle Scholar
  131. 131.
    Baker JH, Girdler SS, Bulik CM. The role of reproductive hormones in the development and maintenance of eating disorders. Expert Rev Obstet Gynecol. 2012;7(6):573–83.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Frank GK, Reynolds JR, Shott ME, Jappe L, Yang TT, Tregellas JR, et al. Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology. 2012;37(9):2031–46.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Klenotich SJ, Ho EV, McMurray MS, Server CH, Dulawa SC. Dopamine D2/3 receptor antagonism reduces activity-based anorexia. Transl Psychiatry. 2015;5:e613.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Mequinion M, Chauveau C, Viltart O. The use of animal models to decipher physiological and neurobiological alterations of anorexia nervosa patients. Front Endocrinol (Lausanne). 2015;6:68.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Diane A, Vine DF, Russell JC, Heth CD, Pierce WD, Proctor SD. Interrelationship of CB1R and OBR pathways in regulation of metabolic, neuroendocrine, and behavioral responses to food restriction and voluntary wheel running. J Appl Physiol (1985). 2014;117(2):97–104.PubMedCentralCrossRefGoogle Scholar
  136. 136.
    McOmish CE, Burrows EL, Hannan AJ. Identifying novel interventional strategies for psychiatric disorders: integrating genomics, ‘enviromics’ and gene-environment interactions in valid preclinical models. Br J Pharmacol. 2014;171(20):4719–28.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Guarda AS, Schreyer CC, Boersma GJ, Tamashiro KL, Moran TH. Anorexia nervosa as a motivated behavior: Relevance of anxiety, stress, fear and learning. Physiol Behav. 2015;152(Pt B):466–72.PubMedCrossRefGoogle Scholar
  138. 138.
    Yardley MM, Ray LA. Medications development for the treatment of alcohol use disorder: insights into the predictive value of animal and human laboratory models. Addict Biol. 2016. doi: 10.1111/adb.12349.PubMedGoogle Scholar
  139. 139.
    Poldrack RA, Farah MJ. Progress and challenges in probing the human brain. Nature. 2015;526(7573):371–9.PubMedCrossRefGoogle Scholar
  140. 140.
    Avena NM, Rada P, Hoebel BG. Underweight rats have enhanced dopamine release and blunted acetylcholine response in the nucleus accumbens while bingeing on sucrose. Neuroscience. 2008;156(4):865–71.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Carr KD. Chronic food restriction: enhancing effects on drug reward and striatal cell signaling. Physiol Behav. 2007;91(5):459–72.PubMedCrossRefGoogle Scholar
  142. 142.
    Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13(5):635–41.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Ban TA. The role of serendipity in drug discovery. Dialogues Clin Neurosci. 2006;8(3):335–44.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Stahl SM. Finding what you are not looking for: strategies for developing novel treatments in psychiatry. NeuroRx. 2006;3(1):3–9.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Rey CD, Lipps J, Shansky RM. Dopamine D1 receptor activation rescues extinction impairments in low-estrogen female rats and induces cortical layer-specific activation changes in prefrontal-amygdala circuits. Neuropsychopharmacology. 2014;39(5):1282–9.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    de Souza Caetano KA, de Oliveira AR, Brandao ML. Dopamine D2 receptors modulate the expression of contextual conditioned fear: role of the ventral tegmental area and the basolateral amygdala. Behav Pharmacol. 2013;24(4):264–74.Google Scholar
  147. 147.
    de Oliveira AR, Reimer AE, Brandao ML. Dopamine D2 receptor mechanisms in the expression of conditioned fear. Pharmacol Biochem Behav. 2006;84(1):102–11.PubMedCrossRefGoogle Scholar
  148. 148.
    Nader K, LeDoux J. The dopaminergic modulation of fear: quinpirole impairs the recall of emotional memories in rats. Behav Neurosci. 1999;113(1):152–65.PubMedCrossRefGoogle Scholar
  149. 149.
    Ponnusamy R, Nissim HA, Barad M. Systemic blockade of D2-like dopamine receptors facilitates extinction of conditioned fear in mice. Learn Mem. 2005;12(4):399–406.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Cooper JR, Bloom FE, Roth RH. The biochemical basis of neuropharmacology. 8th ed. Oxford: Oxford University Press; 2003.Google Scholar
  151. 151.
    Braun AR, Laruelle M, Mouradian MM. Interactions between D1 and D2 dopamine receptor family agonists and antagonists: the effects of chronic exposure on behavior and receptor binding in rats and their clinical implications. J Neural Transm. 1997;104(4–5):341–62.PubMedCrossRefGoogle Scholar
  152. 152.
    Biojone C, Casarotto PC, Resstel LB, Zangrossi H Jr, Guimaraes FS, Moreira FA. Anti-aversive effects of the atypical antipsychotic, aripiprazole, in animal models of anxiety. J Psychopharmacol. 2011;25(6):801–7.PubMedCrossRefGoogle Scholar
  153. 153.
    Kelley AE, Schiltz CA, Landry CF. Neural systems recruited by drug- and food-related cues: studies of gene activation in corticolimbic regions. Physiol Behav. 2005;86(1–2):11–4.PubMedCrossRefGoogle Scholar
  154. 154.
    Dignon A, Beardsmore A, Spain S, Kuan A. ‘Why I won’t eat’: patient testimony from 15 anorexics concerning the causes of their disorder. J Health Psychol. 2006;11(6):942–56.PubMedCrossRefGoogle Scholar
  155. 155.
    Thaler L, Israel M, Antunes JM, Sarin S, Zuroff DC, Steiger H. An examination of the role of autonomous versus controlled motivation in predicting inpatient treatment outcome for anorexia nervosa. Int J Eat Disord. 2016. doi: 10.1002/eat.22510.PubMedGoogle Scholar
  156. 156.
    Schultz W. Getting formal with dopamine and reward. Neuron. 2002;36(2):241–63.PubMedCrossRefGoogle Scholar
  157. 157.
    Callier S, Snapyan M, Le Crom S, Prou D, Vincent JD, Vernier P. Evolution and cell biology of dopamine receptors in vertebrates. Biol Cell. 2003;95(7):489–502.PubMedCrossRefGoogle Scholar
  158. 158.
    Barton AC, Black LE, Sibley DR. Agonist-induced desensitization of D2 dopamine receptors in human Y-79 retinoblastoma cells. Mol Pharmacol. 1991;39(5):650–8.PubMedGoogle Scholar
  159. 159.
    Jiang D, Sibley DR. Regulation of D(1) dopamine receptors with mutations of protein kinase phosphorylation sites: attenuation of the rate of agonist-induced desensitization. Mol Pharmacol. 1999;56(4):675–83.PubMedGoogle Scholar
  160. 160.
    Kim KM, Valenzano KJ, Robinson SR, Yao WD, Barak LS, Caron MG. Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J Biol Chem. 2001;276(40):37409–14.PubMedCrossRefGoogle Scholar
  161. 161.
    Lamey M, Thompson M, Varghese G, Chi H, Sawzdargo M, George SR, et al. Distinct residues in the carboxyl tail mediate agonist-induced desensitization and internalization of the human dopamine D1 receptor. J Biol Chem. 2002;277(11):9415–21.PubMedCrossRefGoogle Scholar
  162. 162.
    Johanson AJ, Knorr NJ. Letter: Treatment of anorexia nervosa by levodopa. Lancet. 1974;2(7880):591.PubMedCrossRefGoogle Scholar
  163. 163.
    Zucker NL, Losh M, Bulik CM, LaBar KS, Piven J, Pelphrey KA. Anorexia nervosa and autism spectrum disorders: guided investigation of social cognitive endophenotypes. Psychol Bull. 2007;133(6):976–1006.PubMedCrossRefGoogle Scholar
  164. 164.
    Treasure J, Corfield F, Cardi V. A three-phase model of the social emotional functioning in eating disorders. Eur Eat Disord Rev. 2012;20(6):431–8.PubMedCrossRefGoogle Scholar
  165. 165.
    Monteleone AM, Scognamiglio P, Volpe U, Di Maso V, Monteleone P. Investigation of oxytocin secretion in anorexia nervosa and bulimia nervosa: relationships to temperament personality dimensions. Eur Eat Disord Rev. 2016;24(1):52–6.PubMedCrossRefGoogle Scholar
  166. 166.
    Lawson EA, Holsen LM, Santin M, Meenaghan E, Eddy KT, Becker AE, et al. Oxytocin secretion is associated with severity of disordered eating psychopathology and insular cortex hypoactivation in anorexia nervosa. J Clin Endocrinol Metab. 2012;97(10):E1898–908.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Lawson EA, Holsen LM, Santin M, DeSanti R, Meenaghan E, Eddy KT, et al. Postprandial oxytocin secretion is associated with severity of anxiety and depressive symptoms in anorexia nervosa. J Clin Psychiatry. 2013;74(5):e451–7.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Kim YR, Eom JS, Yang JW, Kang J, Treasure J. The impact of oxytocin on food intake and emotion recognition in patients with eating disorders: a double blind single dose within-subject cross-over design. PLoS One. 2015;10(9):e0137514.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Kim YR, Oh SM, Corfield F, Jeong DW, Jang EY, Treasure J. Intranasal oxytocin lessens the attentional bias to adult negative faces: a double blind within-subject experiment. Psychiatry Investig. 2014;11(2):160–6.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Kim YR, Kim CH, Cardi V, Eom JS, Seong Y, Treasure J. Intranasal oxytocin attenuates attentional bias for eating and fat shape stimuli in patients with anorexia nervosa. Psychoneuroendocrinology. 2014;44:133–42.PubMedCrossRefGoogle Scholar
  171. 171.
    Hyman SE. Psychiatric drug development: diagnosing a crisis. Cerebrum. 2013;2013:5.PubMedPubMedCentralGoogle Scholar
  172. 172.
    Weinberger DR. New directions in psychiatric therapeutics. NeuroRx. 2006;3(1):1–2.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Papakostas GI, Ionescu DF. Towards new mechanisms: an update on therapeutics for treatment-resistant major depressive disorder. Mol Psychiatry. 2015;20(10):1142–50.PubMedCrossRefGoogle Scholar
  174. 174.
    Reinhold JA, Rickels K. Pharmacological treatment for generalized anxiety disorder in adults: an update. Expert Opin Pharmacother. 2015;16(11):1669–81.PubMedCrossRefGoogle Scholar
  175. 175.
    Perna G, Schruers K, Alciati A, Caldirola D. Novel investigational therapeutics for panic disorder. Expert Opin Investig Drugs. 2015;24(4):491–505.PubMedCrossRefGoogle Scholar
  176. 176.
    Vadnie CA, Park JH, Abdel Gawad N, Ho AM, Hinton DJ, Choi DS. Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders. Front Neurosci. 2014;8:288.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Bailer UF, Kaye WH. A review of neuropeptide and neuroendocrine dysregulation in anorexia and bulimia nervosa. Curr Drug Targets CNS Neurol Disord. 2003;2(1):53–9.PubMedCrossRefGoogle Scholar
  178. 178.
    Kleiman SC, Watson HJ, Bulik-Sullivan EC, Huh EY, Tarantino LM, Bulik CM, et al. The intestinal microbiota in acute anorexia nervosa and during renourishment: relationship to depression, anxiety, and eating disorder psychopathology. Psychosom Med. 2015;77(9):969–81.PubMedCrossRefGoogle Scholar
  179. 179.
    Jarvis S, Schultz SR. Prospects for optogenetic augmentation of brain function. Front Syst Neurosci. 2015;9:157.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Aleman A. Use of repetitive transcranial magnetic stimulation for treatment in psychiatry. Clin Psychopharmacol Neurosci. 2013;11(2):53–9.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Kuo MF, Paulus W, Nitsche MA. Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. Neuroimage. 2014;85(Pt 3):948–60.PubMedCrossRefGoogle Scholar
  182. 182.
    Fitzgerald PB, Segrave RA. Deep brain stimulation in mental health: review of evidence for clinical efficacy. Aust N Z J Psychiatry. 2015;49(11):979–93.PubMedCrossRefGoogle Scholar
  183. 183.
    Post A, Keck ME. Transcranial magnetic stimulation as a therapeutic tool in psychiatry: what do we know about the neurobiological mechanisms? J Psychiatr Res. 2001;35(4):193–215.PubMedCrossRefGoogle Scholar
  184. 184.
    Nitsche MA, Kuo MF, Karrasch R, Wachter B, Liebetanz D, Paulus W. Serotonin affects transcranial direct current-induced neuroplasticity in humans. Biol Psychiatry. 2009;66(5):503–8.PubMedCrossRefGoogle Scholar
  185. 185.
    Appleton KM, Sallis HM, Perry R, Ness AR, Churchill R. Omega-3 fatty acids for depression in adults. Cochrane Database Syst Rev. 2015;11:CD004692.PubMedGoogle Scholar
  186. 186.
    Avraham Y, Saidian M, Burston JJ, Mevorach R, Vorobiev L, Magen I, et al. Fish oil promotes survival and protects against cognitive decline in severely undernourished mice by normalizing satiety signals. J Nutr Biochem. 2011;22(8):766–76.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Ayton AK, Azaz A, Horrobin DF. Rapid improvement of severe anorexia nervosa during treatment with ethyl-eicosapentaenoate and micronutrients. Eur Psychiatry. 2004;19(5):317–9.PubMedCrossRefGoogle Scholar
  188. 188.
    Ayton AK, Azaz A, Horrobin DF. A pilot open case series of ethyl-EPA supplementation in the treatment of anorexia nervosa. Prostaglandins Leukot Essent Fatty Acids. 2004;71(4):205–9.PubMedCrossRefGoogle Scholar
  189. 189.
    Yehuda S, Rabinovitz S. The Role of Essential Fatty Acids in Anorexia Nervosa and in Obesity. Crit Rev Food Sci Nutr. 2015. doi: 10.1080/10408398.2013.809690.
  190. 190.
    Vall E, Wade TD. Predictors of treatment outcome in individuals with eating disorders: a systematic review and meta-analysis. Int J Eat Disord. 2015;48(7):946–71.PubMedCrossRefGoogle Scholar
  191. 191.
    Le Noury J, Nardo JM, Healy D, Jureidini J, Raven M, Tufanaru C, et al. Restoring Study 329: efficacy and harms of paroxetine and imipramine in treatment of major depression in adolescence. BMJ. 2015;351:h4320.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Departments of Psychiatry and Neuroscience, and Developmental Brain Research ProgramUniversity of Colorado Anschutz Medical Campus, Children’s Hospital ColoradoAuroraUSA
  2. 2.School of MedicineUniversity of Colorado Denver, Anschutz Medical CampusAuroraUSA

Personalised recommendations