CNS Drugs

, Volume 28, Issue 8, pp 731–742

Osteoporosis and Multiple Sclerosis: Risk Factors, Pathophysiology, and Therapeutic Interventions

  • Sahil Gupta
  • Irfan Ahsan
  • Naeem Mahfooz
  • Noureldin Abdelhamid
  • Murali Ramanathan
  • Bianca Weinstock-Guttman
Review Article

Abstract

Multiple sclerosis (MS) is a chronic inflammatory-demyelinating disease of the nervous system. There has been mounting evidence showing that MS is associated with increased risk of osteoporosis and fractures. The development of osteoporosis in MS patients can be related to the cumulative effects of various factors. This review summarizes the common risk factors and physiologic pathways that play a role in development of osteoporosis in MS patients. Physical inactivity and reduced mechanical load on the bones (offsetting gravity) is likely the major contributing factor for osteoporosis in MS. Additional possible factors leading to reduced bone mass are low vitamin D levels, and use of medications such as glucocorticoids and anticonvulsants. The role of the inflammatory processes related to the underlying disease is considered in the context of the complex bone metabolism. The known effect of different MS disease-modifying therapies on bone health is limited. An algorithm for diagnosis and management of osteoporosis in MS is proposed.

References

  1. 1.
    Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502–17.PubMedCrossRefGoogle Scholar
  2. 2.
    Sa MJ. Physiopathology of symptoms and signs in multiple sclerosis. Arq Neuropsiquiatr. 2012;70(9):733–40.PubMedCrossRefGoogle Scholar
  3. 3.
    Weinstock-Guttman B, et al. Risk of bone loss in men with multiple sclerosis. Mult Scler. 2004;10(2):170–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Hearn AP, Silber E. Osteoporosis in multiple sclerosis. Mult Scler. 2010;16(9):1031–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Zorzon M, et al. Long-term effects of intravenous high dose methylprednisolone pulses on bone mineral density in patients with multiple sclerosis. Eur J Neurol. 2005;12(7):550–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Marrie RA, et al. A cross-sectional study of bone health in multiple sclerosis. Neurology. 2009;73(17):1394–8.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Sioka C, Kyritsis AP, Fotopoulos A. Multiple sclerosis, osteoporosis, and vitamin D. J Neurol Sci. 2009;287(1–2):1–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Gibson JC, Summers GD. Bone health in multiple sclerosis. Osteoporos Int. 2011;22(12):2935–49.PubMedCrossRefGoogle Scholar
  9. 9.
    Josyula S, et al. The nervous system’s potential role in multiple sclerosis associated bone loss. J Neurol Sci. 2012;319(1–2):8–14.PubMedCrossRefGoogle Scholar
  10. 10.
    Ye S, Wu R, Wu J. Multiple sclerosis and fracture. Int J Neurosci. 2013;123(9):609–16.PubMedCrossRefGoogle Scholar
  11. 11.
    Levis S, Theodore G. Summary of AHRQ’s comparative effectiveness review of treatment to prevent fractures in men and women with low bone density or osteoporosis: update of the 2007 report. J Manag Care Pharm. 2012;18(4 Suppl B):S1–15 (discussion S13).PubMedGoogle Scholar
  12. 12.
    Cosman F, et al. Fracture history and bone loss in patients with MS. Neurology. 1998;51(4):1161–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Nieves J, et al. High prevalence of vitamin D deficiency and reduced bone mass in multiple sclerosis. Neurology. 1994;44(9):1687–92.PubMedCrossRefGoogle Scholar
  14. 14.
    Ozgocmen S, et al. Vitamin D deficiency and reduced bone mineral density in multiple sclerosis: effect of ambulatory status and functional capacity. J Bone Miner Metab. 2005;23(4):309–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Achiron A, et al. Bone strength in multiple sclerosis: cortical midtibial speed-of-sound assessment. Mult Scler. 2004;10(5):488–93.PubMedCrossRefGoogle Scholar
  16. 16.
    Moen SM, et al. Low bone mass in newly diagnosed multiple sclerosis and clinically isolated syndrome. Neurology. 2011;77(2):151–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Heaney RP. Pathophysiology of osteoporosis. Endocrinol Metab Clin North Am. 1998;27(2):255–65.PubMedCrossRefGoogle Scholar
  18. 18.
    Sipos W, et al. Pathophysiology of osteoporosis. Wien Med Wochenschr. 2009;159(9–10):230–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Luis Neyro J, Jesus Cancelo M, Palacios S. Inhibition of RANK-L in the pathophysiology of osteoporosis. Clinical evidences of its use. Ginecol Obstet Mex. 2013;81(3):146–57.PubMedGoogle Scholar
  20. 20.
    Negishi-Koga T, et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med. 2011;17(11):1473–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Korn T. Pathophysiology of multiple sclerosis. J Neurol. 2008;255(Suppl 6):2–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. 1995;332(5):305–11.PubMedCrossRefGoogle Scholar
  23. 23.
    McLean RR. Proinflammatory cytokines and osteoporosis. Curr Osteoporos Rep. 2009;7(4):134–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Altintas A, et al. The role of osteopontin: a shared pathway in the pathogenesis of multiple sclerosis and osteoporosis? J Neurol Sci. 2009;276(1–2):41–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Vogt MH, et al. Increased osteopontin plasma levels in multiple sclerosis patients correlate with bone-specific markers. Mult Scler. 2010;16(4):443–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Slavov GS, et al. Vitamin D immunomodulatory potential in multiple sclerosis. Folia Med (Plovdiv). 2013;55(2):5–9.Google Scholar
  27. 27.
    Munger KL, et al. Vitamin D intake and incidence of multiple sclerosis. Neurology. 2004;62(1):60–5.PubMedCrossRefGoogle Scholar
  28. 28.
    George PM, et al. Pharmacology and therapeutic potential of interferons. Pharmacol Ther. 2012;135(1):44–53.PubMedCrossRefGoogle Scholar
  29. 29.
    Abraham AK, et al. Mechanisms of interferon-beta effects on bone homeostasis. Biochem Pharmacol. 2009;77(12):1757–62.PubMedCrossRefGoogle Scholar
  30. 30.
    Moen SM, et al. Bone turnover and metabolism in patients with early multiple sclerosis and prevalent bone mass deficit: a population-based case-control study. PLoS One. 2012;7(9):e45703.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Thomas T, et al. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology. 1999;140(4):1630–8.PubMedGoogle Scholar
  32. 32.
    Gordeladze JO, et al. Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem. 2002;85(4):825–36.PubMedCrossRefGoogle Scholar
  33. 33.
    Ducy P, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2):197–207.PubMedCrossRefGoogle Scholar
  34. 34.
    Elefteriou F, et al. Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci USA. 2004;101(9):3258–63.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Ruhl CE, et al. Body mass index and serum leptin concentration independently estimate percentage body fat in older adults. Am J Clin Nutr. 2007;85(4):1121–6.PubMedGoogle Scholar
  36. 36.
    Friedman JM. The function of leptin in nutrition, weight, and physiology. Nutr Rev. 2002;60(10 Pt 2):S1–14 (discussion S68–84, 85–7).PubMedCrossRefGoogle Scholar
  37. 37.
    Glauber HS, et al. Body weight versus body fat distribution, adiposity, and frame size as predictors of bone density. J Clin Endocrinol Metab. 1995;80(4):1118–23.PubMedGoogle Scholar
  38. 38.
    Wardlaw GM. Putting body weight and osteoporosis into perspective. Am J Clin Nutr. 1996;63(3 Suppl):433S–6S.PubMedGoogle Scholar
  39. 39.
    Carlton ED, Demas GE, French SS. Leptin, a neuroendocrine mediator of immune responses, inflammation, and sickness behaviors. Horm Behav. 2012;62(3):272–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Yadav VK, et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009;138(5):976–89.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Veniant MM, LeBel CP. Leptin: from animals to humans. Curr Pharm Des. 2003;9(10):811–8.PubMedCrossRefGoogle Scholar
  42. 42.
    De Rosa V, et al. Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. J Clin Invest. 2006;116(2):447–55.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Matarese G, et al. Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J Immunol. 2001;166(10):5909–16.PubMedCrossRefGoogle Scholar
  44. 44.
    Budhiraja S, Chugh A. Neuromedin U: physiology, pharmacology and therapeutic potential. Fund Clin Pharmacol. 2009;23(2):149–57.CrossRefGoogle Scholar
  45. 45.
    Sato S, et al. Central control of bone remodeling by neuromedin U. Nat Med. 2007;13(10):1234–40.PubMedCrossRefGoogle Scholar
  46. 46.
    Shi YC, Baldock PA. Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone. 2012;50(2):430–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Khor EC, Baldock P. The NPY system and its neural and neuroendocrine regulation of bone. Curr Osteoporos Rep. 2012;10(2):160–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Inose H, et al. Efficacy of serotonin inhibition in mouse models of bone loss. J Bone Miner Res. 2011;26(9):2002–11.PubMedCrossRefGoogle Scholar
  49. 49.
    Karsenty G, Yadav VK. Regulation of bone mass by serotonin: molecular biology and therapeutic implications. Annu Rev Med. 2011;62:323–31.PubMedCrossRefGoogle Scholar
  50. 50.
    Yuan XQ, et al. Fluoxetine promotes remission in acute experimental autoimmune encephalomyelitis in rats. Neuroimmunomodulation. 2012;19(4):201–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Elefteriou F, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–20.PubMedCrossRefGoogle Scholar
  52. 52.
    Shi Y, et al. Signaling through the M(3) muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab. 2010;11(3):231–8.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Smith CJ, Fischer TH. Particulate and vapor phase constituents of cigarette mainstream smoke and risk of myocardial infarction. Atherosclerosis. 2001;158(2):257–67.PubMedCrossRefGoogle Scholar
  54. 54.
    Didilescu AC, et al. The role of smoking in changing essential parameters in body homeostasis. Pneumologia. 2009;58(2):89–94.PubMedGoogle Scholar
  55. 55.
    Emre M, de Decker C. Effects of cigarette smoking on motor functions in patients with multiple sclerosis. Arch Neurol. 1992;49(12):1243–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Zivadinov R, et al. Smoking is associated with increased lesion volumes and brain atrophy in multiple sclerosis. Neurology. 2009;73(7):504–10.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Manouchehrinia A, et al. Tobacco smoking and disability progression in multiple sclerosis: United Kingdom cohort study. Brain. 2013;136(Pt 7):2298–304.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Hernan MA, Olek MJ, Ascherio A. Cigarette smoking and incidence of multiple sclerosis. Am J Epidemiol. 2001;154(1):69–74.PubMedCrossRefGoogle Scholar
  59. 59.
    Brot C, Jorgensen NR, Sorensen OH. The influence of smoking on vitamin D status and calcium metabolism. Eur J Clin Nutr. 1999;53(12):920–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Fini M, et al. Role of obesity, alcohol and smoking on bone health. Front Biosci (Elite Ed). 2012;4:2686–706.CrossRefGoogle Scholar
  61. 61.
    Borer KT. Physical activity in the prevention and amelioration of osteoporosis in women: interaction of mechanical, hormonal and dietary factors. Sports Med. 2005;35(9):779–830.PubMedCrossRefGoogle Scholar
  62. 62.
    Mojtahedi MC, et al. Bone health in ambulatory individuals with multiple sclerosis: impact of physical activity, glucocorticoid use, and body composition. J Rehabil Res Dev. 2008;45(6):851–61.PubMedCrossRefGoogle Scholar
  63. 63.
    Steffensen LH, Mellgren SI, Kampman MT. Predictors and prevalence of low bone mineral density in fully ambulatory persons with multiple sclerosis. J Neurol. 2010;257(3):410–8.PubMedCrossRefGoogle Scholar
  64. 64.
    De Nijs RN. Glucocorticoid-induced osteoporosis: a review on pathophysiology and treatment options. Minerva Med. 2008;99(1):23–43.PubMedGoogle Scholar
  65. 65.
    Dovio A, et al. Immediate fall of bone formation and transient increase of bone resorption in the course of high-dose, short-term glucocorticoid therapy in young patients with multiple sclerosis. J Clin Endocrinol Metab. 2004;89(10):4923–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Tuzun S, et al. Bone status in multiple sclerosis: beyond corticosteroids. Mult Scler. 2003;9(6):600–4.PubMedCrossRefGoogle Scholar
  67. 67.
    Schwid SR, et al. Sporadic corticosteroid pulses and osteoporosis in multiple sclerosis. Arch Neurol. 1996;53(8):753–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Olafsson E, Benedikz J, Hauser WA. Risk of epilepsy in patients with multiple sclerosis: a population-based study in Iceland. Epilepsia. 1999;40(6):745–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Ghezzi A, et al. Epilepsy in multiple sclerosis. Eur Neurol. 1990;30(4):218–23.PubMedCrossRefGoogle Scholar
  70. 70.
    Petty SJ, et al. Effect of antiepileptic medication on bone mineral measures. Neurology. 2005;65(9):1358–65.PubMedCrossRefGoogle Scholar
  71. 71.
    Lee RH, Lyles KW, Colon-Emeric C. A review of the effect of anticonvulsant medications on bone mineral density and fracture risk. Am J Geriatr Pharmacother. 2010;8(1):34–46.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Truini A, et al. A mechanism-based classification of pain in multiple sclerosis. J Neurol. 2013;260(2):351–67.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Solaro C, Trabucco E, Messmer Uccelli M. Pain and multiple sclerosis: pathophysiology and treatment. Curr Neurol Neurosci Rep. 2013;13(1):320.PubMedCrossRefGoogle Scholar
  74. 74.
    Daniell HW. OPioid osteoporosis. Arch Internal Med. 2004;164(3):338.CrossRefGoogle Scholar
  75. 75.
    Elhassan AM, et al. Methionine-enkephalin in bone and joint tissues. J Bone Miner Res. 1998;13(1):88–95.PubMedCrossRefGoogle Scholar
  76. 76.
    Loskutova N, et al. Bone density and brain atrophy in early Alzheimer’s disease. J Alzheimers Dis. 2009;18(4):777–85.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Batista S, et al. Cognitive impairment is associated with reduced bone mass in multiple sclerosis. Mult Scler. 2012;18(10):1459–65.PubMedCrossRefGoogle Scholar
  78. 78.
    Shuhaibar M, et al. Favorable effect of immunomodulator therapy on bone mineral density in multiple sclerosis. Ir J Med Sci. 2009;178(1):43–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Weinstock-Guttman B, et al. Interferon-beta modulates bone-associated cytokines and osteoclast precursor activity in multiple sclerosis patients. Mult Scler. 2006;12(5):541–50.PubMedCrossRefGoogle Scholar
  80. 80.
    National Osteoporosis Foundation. NOF’s clinicians’ guide to the prevention and treatment of osteoporosis (http://nof.org/hcp/resources/913.
  81. 81.
    Ishii M, et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature. 2009;458(7237):524–8.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Sato C, et al. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation. Biochem Biophys Res Commun. 2012;423(1):200–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Huang C, et al. Local delivery of FTY720 accelerates cranial allograft incorporation and bone formation. Cell Tissue Res. 2012;347(3):553–66.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Kanis JA, et al. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385–97.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Melton LJ 3rd, et al. Potential extensions of the US FRAX algorithm. J Osteoporos. 2012;2012:528790.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Dennison EM, et al. Effect of co-morbidities on fracture risk: findings from the global longitudinal study of osteoporosis in women (GLOW). Bone. 2012;50(6):1288–93.PubMedCrossRefGoogle Scholar
  87. 87.
    Bazelier MT, et al. A simple score for estimating the long-term risk of fracture in patients with multiple sclerosis. Neurology. 2012;79(9):922–8.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Sundstrom P, Salzer J. Vitamin D and multiple sclerosis: timing of sampling, treatment and prevention. Biomark Med. 2013;7(2):193–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Myhr KM. Vitamin D treatment in multiple sclerosis. J Neurol Sci. 2009;286(1–2):104–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Weinstock-Guttman B, et al. Vitamin D and multiple sclerosis. Neurologist. 2012;18(4):179–83.PubMedCrossRefGoogle Scholar
  91. 91.
    Ascherio A, et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol. 2014;71(3):306–14.PubMedCrossRefGoogle Scholar
  92. 92.
    Kmietowicz Z. NICE publishes osteoporosis guidance after more than six years of consultation. BMJ. 2008;337:a2397.PubMedCrossRefGoogle Scholar
  93. 93.
    Compston J. NICE: its influence in treating osteoporosis in the UK and beyond. Ther Adv Musculoskelet Dis. 2009;1(2):63–6.PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014; 370(5):412-20Google Scholar
  95. 95.
    Cummings SR, et al. Lasofoxifene in postmenopausal women with osteoporosis. N Engl J Med. 2010;362(8):686–96.PubMedCrossRefGoogle Scholar
  96. 96.
    Trojano M, et al. The transition from relapsing-remitting MS to irreversible disability: clinical evaluation. Neurol Sci. 2003;24(Suppl 5):S268–70.PubMedCrossRefGoogle Scholar
  97. 97.
    Lenart BA, Lorich DG, Lane JM. Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. N Engl J Med. 2008;358(12):1304–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Black DM, et al. Bisphosphonates and fractures of the subtrochanteric or diaphyseal femur. N Engl J Med. 2010;362(19):1761–71.PubMedCrossRefGoogle Scholar
  99. 99.
    Odvina CV, et al. Unusual mid-shaft fractures during long-term bisphosphonate therapy. Clin Endocrinol. 2010;72(2):161–8.CrossRefGoogle Scholar
  100. 100.
    Shane E, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American society for bone and mineral research. J Bone Miner Res. 2014;29(1):1–23.PubMedCrossRefGoogle Scholar
  101. 101.
    Formica CA, et al. Reduced bone mass and fat-free mass in women with multiple sclerosis: effects of ambulatory status and glucocorticoid use. Calcif Tissue Int. 1997;61(2):129–33.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sahil Gupta
    • 1
  • Irfan Ahsan
    • 1
  • Naeem Mahfooz
    • 1
  • Noureldin Abdelhamid
    • 1
  • Murali Ramanathan
    • 1
    • 2
  • Bianca Weinstock-Guttman
    • 1
    • 3
  1. 1.Department of NeurologyState University of New YorkBuffaloUSA
  2. 2.Pharmaceutical SciencesState University of New YorkBuffaloUSA
  3. 3.UBMD NeurologyJacobs MS CenterBuffaloUSA

Personalised recommendations