CNS Drugs

, Volume 28, Issue 5, pp 389–399 | Cite as

Monoclonal Antibodies for Migraine: Preventing Calcitonin Gene-Related Peptide Activity

Leading Article

Abstract

Calcitonin gene-related peptide (CGRP) is a well-studied neuropeptide of relevance for migraine pathophysiology. Jugular levels of CGRP are increased during migraine attacks, and intravenous CGRP administration induces migraine-like headache in most individuals with migraine. Several CGRP receptor antagonists (CGRP-RAs) were shown to be effective for the acute treatment of migraine, validating the target for the treatment of migraine. However, for a number of reasons, including issues of liver toxicity with chronic use, the development of CGRP-RAs has yet to produce a viable clinical therapeutic. Development of monoclonal antibodies (mAbs) targeting the CGRP pathway is an alternative approach that should avoid many of the issues seen with CGRP-RAs. The exquisite target specificity, prolonged half-lives, and reduced potential for hepatotoxicity and drug–drug interactions make mAbs suitable for the preventive treatment of migraine headaches. This manuscript provides an overview of the role of CGRP in the pathophysiology of migraine, followed by a review of the clinical development of CGRP-RAs. Some basic concepts on antibodies are then discussed along with the publicly disclosed information on the development of mAbs targeting the CGRP pathway.

Notes

Disclosure

The authors are full time employees of Labrys Biologics, a company developing an mAb against CGRP (LBR-101).

No funding was received for writing this article. The review represents the authors’ own work and no medical writers were involved in its planning or execution.

References

  1. 1.
    Noguchi K, Senba E, Morita Y, et al. Alpha-CGRP and beta-CGRP mRNAs are differentially regulated in the rat spinal cord and dorsal root ganglion. Brain Res Mol Brain Res. 1990;7(4):299–304.PubMedCrossRefGoogle Scholar
  2. 2.
    Tippins JR, Di Marzo V, Panico M, et al. Investigation of the structure/activity relationship of human calcitonin gene-related peptide (CGRP). Biochem Biophys Res Commun. 1986;134(3):1306–11.PubMedCrossRefGoogle Scholar
  3. 3.
    Poyner DR. Molecular pharmacology of receptors for calcitonin-gene-related peptide, amylin and adrenomedullin. Biochem Soc Trans. 1997;25(3):1032–6.PubMedGoogle Scholar
  4. 4.
    Uddman R, Edvinsson L, Ekman R, et al. Innervation of the feline cerebral vasculature by nerve fibers containing calcitonin gene-related peptide: trigeminal origin and co-existence with substance P. Neurosci Lett. 1985;62(1):131–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Lundberg JM, Franco-Cereceda A, Hua X, et al. Co-existence of substance P and calcitonin gene-related peptide-like immunoreactivities in sensory nerves in relation to cardiovascular and bronchoconstrictor effects of capsaicin. Eur J Pharmacol. 1985;108(3):315–9.PubMedCrossRefGoogle Scholar
  6. 6.
    McCulloch J, Uddman R, Kingman TA, et al. Calcitonin gene-related peptide: functional role in cerebrovascular regulation. Proc Natl Acad Sci USA. 1986;83(15):5731–5.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Lundberg JM, Franco-Cereceda A, Alving K, et al. Release of calcitonin gene-related peptide from sensory neurons. Ann N Y Acad Sci. 1992;657:187–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Edvinsson L, Eftekhari S, Salvatore CA, et al. Cerebellar distribution of calcitonin gene-related peptide (CGRP) and its receptor components calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) in rat. Mol Cell Neurosci. 2011;46(1):333–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Eftekhari S, Edvinsson L. Calcitonin gene-related peptide (CGRP) and its receptor components in human and rat spinal trigeminal nucleus and spinal cord at C1-level. BMC Neurosci. 2011;12:112.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Uddman R, Edvinsson L, Ekblad E, et al. Calcitonin gene-related peptide (CGRP): perivascular distribution and vasodilatory effects. Regul Pept. 1986;15(1):1–23.PubMedCrossRefGoogle Scholar
  11. 11.
    Mulderry PK, Ghatei MA, Spokes RA, et al. Differential expression of alpha-CGRP and beta-CGRP by primary sensory neurons and enteric autonomic neurons of the rat. Neuroscience. 1988;25(1):195–205.PubMedCrossRefGoogle Scholar
  12. 12.
    Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol. 1988;23(2):193–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Silberstein SD, Edvinsson L. Is CGRP a marker for chronic migraine? Neurology. 2013;81(14):1184–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Emeson RB, Hedjran F, Yeakley JM, et al. Alternative production of calcitonin and CGRP mRNA is regulated at the calcitonin-specific splice acceptor. Nature. 1989;341(6237):76–80.PubMedCrossRefGoogle Scholar
  15. 15.
    van Rossum D, Hanisch UK, Quirion R. Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev. 1997;21(5):649–78.PubMedCrossRefGoogle Scholar
  16. 16.
    Yamamoto M, Kondo H. Calcitonin gene-related peptide (CGRP)-immunoreactive nerve varicosities in synaptic contact with sensory neurons in the trigeminal ganglion of rats. Neurosci Lett. 1989;104(3):253–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Messlinger K, Lennerz JK, Eberhardt M, et al. CGRP and NO in the trigeminal system: mechanisms and role in headache generation. Headache. 2012;52(9):1411–27.PubMedCrossRefGoogle Scholar
  18. 18.
    Eftekhari S, Edvinsson L. Possible sites of action of the new calcitonin gene-related peptide receptor antagonists. Ther Adv Neurol Disord. 2010;3(6):369–78.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ho TW, Edvinsson L, Goadsby PJ. CGRP and its receptors provide new insights into migraine pathophysiology. Nat Rev Neurol. 2010;6(10):573–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Raddant AC, Russo AF. Calcitonin gene-related peptide in migraine: intersection of peripheral inflammation and central modulation. Expert Rev Mol Med. 2011;13:e36.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Peroutka SJ. Clinical trials update—2012: year in review. Headache. 2013;53:177–80.CrossRefGoogle Scholar
  22. 22.
    Ho TW, Ferrari MD, Dodick DW, et al. Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet. 2008;372(9656):2115–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Hewitt DJ, Aurora SK, Dodick DW, et al. Randomized controlled trial of the CGRP receptor antagonist MK-3207 in the acute treatment of migraine. Cephalalgia. 2011;31(6):712–22.PubMedCrossRefGoogle Scholar
  24. 24.
    Olesen J, Diener HC, Husstedt IW, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med. 2004;350(11):1104–10.PubMedCrossRefGoogle Scholar
  25. 25.
    Silberstein SD. Emerging target-based paradigms to prevent and treat migraine. Clin Pharmacol Ther. 2013;93(1):78–85.PubMedCrossRefGoogle Scholar
  26. 26.
    Hoffmann J, Goadsby PJ. New agents for acute treatment of migraine: CGRP receptor antagonists, iNOS inhibitors. Curr Treat Options Neurol. 2012;14(1):50–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Goadsby PJ, Lipton RB, Ferrari MD. Migraine—current understanding and treatment. N Engl J Med. 2002;346(4):257–70.PubMedCrossRefGoogle Scholar
  28. 28.
    Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci. 2011;12(10):570–84.PubMedCrossRefGoogle Scholar
  29. 29.
    Afridi SK, Matharu MS, Lee L, et al. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain. 2005;128(Pt 4):932–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Moskowitz MA. Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology. 1993;43(6 Suppl 3):S16–20.PubMedGoogle Scholar
  31. 31.
    Moskowitz MA, Cutrer FM. CGRP: blood flow and more? Cephalalgia. 1996;16(5):287.PubMedCrossRefGoogle Scholar
  32. 32.
    Bigal ME, Ferrari M, Silberstein SD, et al. Migraine in the triptan era: lessons from epidemiology, pathophysiology, and clinical science. Headache. 2009;49(Suppl 1):S21–33.PubMedCrossRefGoogle Scholar
  33. 33.
    Edmeads J. What is migraine? Controversy and stalemate in migraine pathophysiology. J Neurol. 1991;238(Suppl 1):S2–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Lauritzen M. Pathophysiology of the migraine aura. The spreading depression theory. Brain. 1994;117:199–210.PubMedCrossRefGoogle Scholar
  35. 35.
    Leao AA. The slow voltage variation of cortical spreading depression of activity. Electroencephalogr Clin Neurophysiol. 1951;3(3):315–21.PubMedCrossRefGoogle Scholar
  36. 36.
    Leao AA. Further observations on the spreading depression of activity in the cerebral cortex. J Neurophysiol. 1947;10(6):409–14.PubMedGoogle Scholar
  37. 37.
    Haerter K, Ayata C, Moskowitz MA. Cortical spreading depression: a model for understanding migraine biology and future drug targets. Headache Curr. 2005;2:97–103.CrossRefGoogle Scholar
  38. 38.
    Di Clemente L, Coppola G, Magis D, et al. Nitroglycerin sensitises in healthy subjects CNS structures involved in migraine pathophysiology: evidence from a study of nociceptive blink reflexes and visual evoked potentials. Pain. 2009;144(1–2):156–61.PubMedCrossRefGoogle Scholar
  39. 39.
    Bahra A, Matharu MS, Buchel C, et al. Brainstem activation specific to migraine headache. Lancet. 2001;357(9261):1016–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Weiller C, May A, Limmroth V, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med. 1995;1:658–60.PubMedCrossRefGoogle Scholar
  41. 41.
    Afridi S, Giffin NJ, Kaube H, et al. A PET study in spontaneous migraine. Arch Neurol. 2005;62:1270–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Matharu MS, Bartsch T, Ward N, et al. Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study. Brain. 2004;127:220–30.PubMedCrossRefGoogle Scholar
  43. 43.
    Afridi S, Matharu MS, Lee L, et al. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain. 2005;128:932–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Bahra A, Matharu MS, Buchel C, et al. Brainstem activation specific to migraine headache. Lancet. 2001;357:1016–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Raskin NH, Hosobuchi Y, Lamb S. Headache may arise from perturbation of brain. Headache. 1987;27:416–20.PubMedCrossRefGoogle Scholar
  46. 46.
    Veloso F, Kumar K, Toth C. Headache secondary to deep brain implantation. Headache. 1998;38:507–15.PubMedCrossRefGoogle Scholar
  47. 47.
    Haas DC, Kent PF, Friedman DI. Headache caused by a single lesion of multiple sclerosis in the periaqueductal gray area. Headache. 1993;33:452–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Goadsby PJ. Neurovascular headache and a midbrain vascular malformation—evidence for a role of the brainstem in chronic migraine. Cephalalgia. 2002;22:107–11.PubMedCrossRefGoogle Scholar
  49. 49.
    Afridi S, Goadsby PJ. New onset migraine with a brainstem cavernous angioma. J Neurol Neurosurg Psychiatry. 2003;74:680–2.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Obermann M, Gizewski ER, Limmroth V, et al. Symptomatic migraine and pontine vascular malformation: evidence for a key role of the brainstem in the pathophysiology of chronic migraine. Cephalalgia. 2006;26:763–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Moskowitz MA, Nozaki K, Kraig RP. Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci. 1993;13(3):1167–77.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Goadsby PJ. Calcitonin gene-related peptide antagonists as treatments of migraine and other primary headaches. Drugs. 2005;65:2557–67.PubMedCrossRefGoogle Scholar
  53. 53.
    Moskowitz MA. Pathophysiology of headache—past and present. Headache. 2007;47(Suppl 1):S58–63.PubMedCrossRefGoogle Scholar
  54. 54.
    Noseda R, Burstein R. Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, CSD, sensitization and modulation of pain. Pain. 2013;154(Suppl):1.Google Scholar
  55. 55.
    Lafont AG, Dufour S, Fouchereau-Peron M. Evolution of the CT/CGRP family: comparative study with new data from models of teleosts, the eel, and cephalopod molluscs, the cuttlefish and the nautilus. Gen Comp Endocrinol. 2007;153(1–3):155–69.PubMedCrossRefGoogle Scholar
  56. 56.
    Edvinsson L. Correlation between CGRP and migraine attacks. Cephalalgia. 2005;25(3):163–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Benarroch EE. CGRP: sensory neuropeptide with multiple neurologic implications. Neurology. 2011;77(3):281–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Lennerz JK, Ruhle V, Ceppa EP, et al. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution. J Comp Neurol. 2008;507(3):1277–99.PubMedCrossRefGoogle Scholar
  59. 59.
    Sugimoto T, Fujiyoshi Y, Xiao C, et al. Central projection of calcitonin gene-related peptide (CGRP)- and substance P (SP)-immunoreactive trigeminal primary neurons in the rat. J Comp Neurol. 1997;378(3):425–42.PubMedCrossRefGoogle Scholar
  60. 60.
    Goadsby PJ, Hargreaves RJ. Mechanisms of action of serotonin 5-HT1B/D agonists: insights into migraine pathophysiology using rizatriptan. Neurology. 2000;55(9 Suppl 2):S8–14.PubMedGoogle Scholar
  61. 61.
    Vause CV, Durham PL. Calcitonin gene-related peptide differentially regulates gene and protein expression in trigeminal glia cells: findings from array analysis. Neurosci Lett. 2010;473(3):163–7.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Edvinsson L, JansenOlesen I, Kingman TA, et al. Modification of vasoconstrictor responses in cerebral blood vessels by lesioning of the trigeminal nerve: possible involvement of CGRP. Cephalalgia. 1995;15(5):373–83.PubMedCrossRefGoogle Scholar
  63. 63.
    Troltzsch M, Denekas T, Messlinger K. The calcitonin gene-related peptide (CGRP) receptor antagonist BIBN4096BS reduces neurogenic increases in dural blood flow. Eur J Pharmacol. 2007;562(1–2):103–10.PubMedCrossRefGoogle Scholar
  64. 64.
    Eftekhari S, Warfvinge K, Blixt FW, et al. Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J Pain. 2013;14(11):1289–303.PubMedCrossRefGoogle Scholar
  65. 65.
    Markowitz S, Saito K, Buzzi MG, et al. The development of neurogenic plasma extravasation in the rat dura mater does not depend upon the degranulation of mast cells. Brain Res. 1989;477(1–2):157–65.PubMedCrossRefGoogle Scholar
  66. 66.
    Mathew R, Andreou AP, Chami L, et al. Immunohistochemical characterization of calcitonin gene-related peptide in the trigeminal system of the familial hemiplegic migraine 1 knock-in mouse. Cephalalgia. 2011;31(13):1368–80.PubMedCrossRefGoogle Scholar
  67. 67.
    Morara S, Rosina A, Provini L, et al. Calcitonin gene-related peptide receptor expression in the neurons and glia of developing rat cerebellum: an autoradiographic and immunohistochemical analysis. Neuroscience. 2000;100(2):381–91.PubMedCrossRefGoogle Scholar
  68. 68.
    Pagani F, Guidobono F, Netti C, et al. Age-related increase in CGRP binding site densities in rat cerebellum. Pharmacol Res. 1989;21(Suppl 1):105–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Noseda R, Burstein R. Advances in understanding the mechanisms of migraine-type photophobia. Curr Opin Neurol. 2011;24(3):197–202.PubMedCrossRefGoogle Scholar
  70. 70.
    Recober A, Kuburas A, Zhang Z, et al. Role of calcitonin gene-related peptide in light-aversive behavior: implications for migraine. J Neurosci. 2009;29(27):8798–804.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Lassen LH, Haderslev PA, Jacobsen VB, et al. CGRP may play a causative role in migraine. Cephalalgia. 2002;22(1):54–61.PubMedCrossRefGoogle Scholar
  72. 72.
    Petersen KA, Birk S, Lassen LH, et al. The CGRP-antagonist, BIBN4096BS does not affect cerebral or systemic haemodynamics in healthy volunteers. Cephalalgia. 2005;25(2):139–47.PubMedCrossRefGoogle Scholar
  73. 73.
    Eftekhari S, Salvatore CA, Chen TB, Zeng Z, Edvinsson L. Trigeminal ganglium—a site of action for CGRP receptor antagonists. Cephalalgia. 2013; Program Late Abstracts (Supplement): 1.Google Scholar
  74. 74.
    Hostetler ED, Joshi AD, Sanabria-Bohorquez S, et al. In vivo quantification of calcitonin gene-related peptide receptor occupancy by telcagepant in rhesus monkey and human brain using the positron emission tomography tracer [11C]MK-4232. J Pharmacol Exp Ther. 2013;347(2):478–86.PubMedCrossRefGoogle Scholar
  75. 75.
    Bigal ME, Walter S, Rapoport AM. Calcitonin gene-related peptide (CGRP) and migraine current understanding and state of development. Headache. 2013;53(8):1230–44.PubMedCrossRefGoogle Scholar
  76. 76.
    Salvatore CA, Moore EL, Calamari A, et al. Pharmacological properties of MK-3207, a potent and orally active calcitonin gene-related peptide receptor antagonist. J Pharmacol Exp Ther. 2010;333(1):152–60.PubMedCrossRefGoogle Scholar
  77. 77.
    Pettypiece S. Merck halts testing of migraine drug on liver safety (update 2). http://www.bloomberg.com/apps/news?pid=newsarchive&sid=aKxzpNBZ2cbA. Accessed 10 Jan 2014.
  78. 78.
    Diener HC, Barbanti P, Dahlof C, et al. BI 44370 TA, an oral CGRP antagonist for the treatment of acute migraine attacks: results from a phase II study. Cephalalgia. 2011;31(5):573–84.PubMedCrossRefGoogle Scholar
  79. 79.
    Marcus R, Goadsby PJ, Dodick D, et al., BMS-927711 for the acute treatment of migraine: a double-blind, randomized, placebo controlled, dose-ranging trial. Cephalalgia. 2013.Google Scholar
  80. 80.
    Bigal ME. BMS-927711 for the acute treatment of migraine. Cephalalgia. 2013.Google Scholar
  81. 81.
    A dose-finding study of MK-1602 in the treatment of acute migraine (MK-1602-006 AM1); 2013. http://clinicaltrial.gov/ct2/show/NCT01613248?term=MK1602&rank=2. Accessed 10 Jan 2014.
  82. 82.
    Wu H, Dall’Acqua WF. Humanized antibodies and their applications. Methods. 2005;36(1):1–2.PubMedGoogle Scholar
  83. 83.
    Baumann A. Early development of therapeutic biologics—pharmacokinetics. Curr Drug Metab. 2006;7(1):15–21.PubMedCrossRefGoogle Scholar
  84. 84.
    Tfelt-Hansen PC. Evidence-based guideline update: pharmacologic treatment for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology. 2013;80(9):869–70.PubMedCrossRefGoogle Scholar
  85. 85.
    Services, U.D.o.H.a.H., F.a.D. Administration, C.f.D.E.a.R. (CDER), et al. Guidance for industry, S6 preclinical safety evaluation of biotechnology-derived pharmaceuticals; 1997. http://www.fda.gov/downloads/regulatoryinformation/guidances/ucm129171.pdf. Accessed 10 Jan 2014.
  86. 86.
    Berton E. Safety pharmacology: similarities and differences between small molecules and novel biotherapeutics. In: Cavagnaro J, editor. Preclinical safety evaluation of biopharmaceuticals. New York: Wiley; 2008.Google Scholar
  87. 87.
    Vargas HM, Bass AS, Breidenbach A, et al. Scientific review and recommendations on preclinical cardiovascular safety evaluation of biologics. J Pharmacol Toxicol Methods. 2008;58(2):72–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Conolan S, Taylor DA. Antagonism by some ergot derivatives of 5-HT-induced vasoconstriction. Eur J Pharmacol. 1986;123(2):299–302.PubMedCrossRefGoogle Scholar
  89. 89.
    Maassen VanDenBrink A, Bax WA, Ferrari MD, et al. Augmented contraction of the human isolated coronary artery by sumatriptan: a possible role for endogenous thromboxane. Br J Pharmacol. 1996;119(5):855–62.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Longmore J, Hargreaves RJ, Boulanger CM, et al. Comparison of the vasoconstrictor properties of the 5-HT1D-receptor agonists rizatriptan (MK-462) and sumatriptan in human isolated coronary artery: outcome of two independent studies using different experimental protocols. Funct Neurol. 1997;12(1):3–9.PubMedGoogle Scholar
  91. 91.
    Feuerstein G, Willette R, Aiyar N. Clinical perspectives of calcitonin gene related peptide pharmacology. Can J Physiol Pharmacol. 1995;73(7):1070–4.PubMedCrossRefGoogle Scholar
  92. 92.
    Poyner D. Pharmacology of receptors for calcitonin gene-related peptide and amylin. Trends Pharmacol Sci. 1995;16(12):424–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Zhang M, Fukuyama H. CGRP immunohistochemistry in wound healing and dentin bridge formation following rat molar pulpotomy. Histochem Cell Biol. 1999;112(5):325–33.PubMedCrossRefGoogle Scholar
  94. 94.
    Young S. Preventing migraines with a new kind of antibody; 2013. http://medcitynews.com/2013/05/preventing-migraines-with-a-new-kind-of-antibody/. Accessed 10 Jan 2014.
  95. 95.
    Alder Biopharmaceuticals, I. Safety tolerability and pharmacokinetics of ALD403. http://clinicaltrial.gov/ct2/show/NCT01579383?term=ALD403&rank=1. Accessed 10 Jan 2014.
  96. 96.
    Stone I, Schull D. First patients dosed in proof-of-concept clinical study of Alder Biopharmaceuticals’ lead therapeutic candidate for treatment of migraine, ALD403; 2013. http://www.prnewswire.com/news-releases/first-patients-dosed-in-proof-of-concept-clinical-study-of-alder-biopharmaceuticals-lead-therapeutic-candidate-for-treatment-of-migraine-ald403-199135511.html. Accessed 10 Jan 2014.
  97. 97.
    Safety, efficacy and pharmacokinetics of ALD403; 2013. http://clinicaltrials.gov/ct2/show/NCT01772524?term=ald403&rank=2. Accessed 10 Jan 2014.
  98. 98.
    de Hoon J, Montieth D, Vermeersch S, et al. Safety, pharmacokinetics, and pharmacodynamics of LY2951742: a monoclonal antibody targeting CGRP; 2013. http://cep.sagepub.com/content/33/8_suppl/1.full.pdf+html. Accessed 10 Jan 2014.
  99. 99.
  100. 100.
    Amgen-Science-Pipeline; 2013. http://www.amgen.com/science/pipe.html. Accessed 10 Jan 2014.
  101. 101.
    Ascending single doses of AMG 334 in healthy subjects and migraine patients; 2013. http://clinicaltrial.gov/ct2/show/NCT01688739?term=AMG334&rank=1. Cited 4 Oct 2013.
  102. 102.
    Ascending multiple-doses of AMG 334 in healthy subjects and in migraine patients; 2013. http://clinicaltrial.gov/ct2/show/NCT01723514?term=AMG334&rank=2. Accessed 10 Jan 2014.
  103. 103.
    Amgen. A phase 2 study to evaluate the efficacy and safety of AMG 334 in migraine prevention; 2013. http://clinicaltrial.gov/ct2/show/NCT01952574?term=AMG+334&rank=4. Accessed 10 Jan 2014.
  104. 104.
    Bigal ME, Walter S, Bronson M, et al. Cardiovascular and hemodynamic parameters in women following prolonged CGRP inhibition using LBR-101, a monoclonal antibody against CGRP. Cephalalgia (submitted).Google Scholar
  105. 105.
    Bigal ME, Escandon R, Bronson M, et al. Safety and tolerability of LBR-101, a humanized monoclonal antibody that blocks the binding of CGRP to its receptor: results of the phase 1 program. Cephalalgia. 2013.Google Scholar
  106. 106.
    Bigal ME, Escandon R, Bronson M, Walter S, Sudworth M, Huggins JP, Garzone P. Safety and tolerability of LBR-101, a humanized monoclonal antibody that blocks the binding of CGRP to its receptor—results of the phase 1 program. Cephalalgia (in press).Google Scholar
  107. 107.
    Ho TW, Mannix LK, Fan X, et al. Randomized controlled trial of an oral CGRP receptor antagonist, MK-0974, in acute treatment of migraine. Neurology. 2008;70(16):1304–12.PubMedCrossRefGoogle Scholar
  108. 108.
    Connor KM, Shapiro RE, Diener HC, et al. Randomized, controlled trial of telcagepant for the acute treatment of migraine. Neurology. 2009;73(12):970–7.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Labrys Biologics IncSan MateoUSA

Personalised recommendations