CNS Drugs

, Volume 28, Issue 2, pp 95–106

Potential Role of N-Acetylcysteine in the Management of Substance Use Disorders

  • Erin A. McClure
  • Cassandra D. Gipson
  • Robert J. Malcolm
  • Peter W. Kalivas
  • Kevin M. Gray
Leading Article

Abstract

There is a clear and pressing need to expand pharmacotherapy options for substance use disorders (SUDs) in order to improve sustained abstinence outcomes. Preclinical literature has demonstrated the role of glutamate in addiction, suggesting that new targets for pharmacotherapy should focus on the restoration of glutamatergic function. Glutamatergic agents for SUDs may span multiple addictive behaviors and help demonstrate potentially overlapping mechanisms in addiction. The current review will focus specifically on N-acetylcysteine (NAC), a safe and well-tolerated glutamatergic agent, as a promising potential pharmacotherapy for the treatment of SUDs across several substances of abuse. Building on recently published reviews of the clinical efficacy of NAC across a broad range of conditions, this review will more specifically discuss NAC as a pharmacotherapy for SUDs, devoting particular attention to the safety and tolerability profile of NAC, the wealth of preclinical evidence that has demonstrated the role of glutamate dysregulation in addiction, and the limited but growing clinical literature that has assessed the efficacy of NAC across multiple substances of abuse. Preliminary clinical studies show the promise of NAC in terms of safety, tolerability, and potential efficacy for promoting abstinence from cocaine, nicotine, and cannabis. Results from randomized clinical trials have been mixed, but several mechanistic and methodological factors are discussed to refine the use of NAC in promoting abstinence and relapse prevention across several substances of abuse. Further preclinical and clinical investigation into the use of NAC for SUDs will be vital in addressing current deficits in the treatment of SUDs.

References

  1. 1.
    Centers for Disease Prevention and Control. Smoking-attributable mortality, years of potential life lost, and productivity losses: United States, 2000–2004. MMWR. 2008;57(45):1226–8.Google Scholar
  2. 2.
    National Drug Intelligence Center. The economic impact of illicit drug use on American society. Washington, D.C.: United States Department of Justice; 2011.Google Scholar
  3. 3.
    Rehm J, Mathers C, Popova S, Thavorncharoensap M, Teerawattananon Y, Patra J. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet. 2009;373(9682):2223–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Substance Abuse and Mental Health Services Administration. Results from the 2011 National Survey on Drug Use and Health: summary of national findings. Rockville: US Department of Health and Human Services, Substance Abuse and Mental Health Services Administration; 2012.Google Scholar
  5. 5.
    Centers for Disease Prevention and Control. Vital signs: current cigarette smoking among adults aged ≥18 years: United States, 2005–2010. MMWR. 2011;60(35):1207–12.Google Scholar
  6. 6.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Publishing; 2013.Google Scholar
  7. 7.
    Dole VP, Nyswander M. A medical treatment for diacetylmorphine (Heroin) addiction: a clinical trial with methadone hydrochloride. JAMA. 1965;193(Journal Article):646–50.PubMedCrossRefGoogle Scholar
  8. 8.
    van den Brink W, Haasen C. Evidenced-based treatment of opioid-dependent patients. Can J Psychiatry. 2006;51(10):635–46.PubMedGoogle Scholar
  9. 9.
    Fiore MC, Jaén CR, Baker TB, et al. Treating tobacco use and dependence: 2008 update. Clinical Practice Guideline. Rockville, MD: U.S. Department of Health and Human Services. Public Health Service. May 2008.Google Scholar
  10. 10.
    van den Brink W. Evidence-based pharmacological treatment of substance use disorders and pathological gambling. Curr Drug Abuse Rev. 2012;5(1):3–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Cahill K, Stevens S, Perera R, Lancaster T. Pharmacological interventions for smoking cessation: an overview and network meta-analysis. Cochrane Database Syst Rev. 2013;5:CD009329.PubMedGoogle Scholar
  12. 12.
    Gonzales D, Rennard SI, Nides M, Oncken C, Azoulay S, Billing CB, et al. Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessation: a randomized controlled trial. JAMA. 2006;296(1):47–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Jorenby DE, Hays JT, Rigotti NA, Azoulay S, Watsky EJ, Williams KE, et al. Efficacy of varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs placebo or sustained-release bupropion for smoking cessation: a randomized controlled trial. JAMA. 2006;296(1):56–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Oncken C, Gonzales D, Nides M, Rennard S, Watsky E, Billing CB, et al. Efficacy and safety of the novel selective nicotinic acetylcholine receptor partial agonist, varenicline, for smoking cessation. Arch Int Med. 2006;166(15):1571–7.CrossRefGoogle Scholar
  15. 15.
    Rosner S, Hackl-Herrwerth A, Leucht S, Lehert P, Vecchi S, Soyka M. Acamprosate for alcohol dependence. Cochrane Database Syst Rev. 2010;(9):CD004332.Google Scholar
  16. 16.
    Rosner S, Hackl-Herrwerth A, Leucht S, Vecchi S, Srisurapanont M, Soyka M. Opioid antagonists for alcohol dependence. Cochrane Database Syst Rev. 2010;(12):CD001867.Google Scholar
  17. 17.
    Vandrey R, Haney M. Pharmacotherapy for cannabis dependence: how close are we? CNS Drugs. 2009;23(7):543–53.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Weinstein AM, Gorelick DA. Pharmacological treatment of cannabis dependence. Curr Pharm Design. 2011;17(14):1351–8.CrossRefGoogle Scholar
  19. 19.
    Stoops WW, Rush CR. Agonist replacement for stimulant dependence: a review of clinical research. Curr Pharm Design. 2013;19(40):7026–35.Google Scholar
  20. 20.
    Kalivas PW, Lalumiere RT, Knackstedt L, Shen H. Glutamate transmission in addiction. Neuropharmacology. 2009;56 Suppl 1:169–73.PubMedCrossRefGoogle Scholar
  21. 21.
    Kalivas PW, Volkow ND. New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol Psychiatry. 2011;16(10):974–86.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Berk M, Malhi GS, Gray LJ, Dean OM. The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol Sci. 2013;34(3):167–77.PubMedCrossRefGoogle Scholar
  23. 23.
    Brown RM, Kupchik YM, Kalivas PW. The story of glutamate in drug addiction and of N-acetylcysteine as a potential pharmacotherapy. JAMA Psychiatry. 2013;70:895–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Dodd S, Dean O, Copolov DL, Malhi GS, Berk M. N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin Biol Ther. 2008;8(12):1955–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Borgstrom L, Kagedal B, Paulsen O. Pharmacokinetics of N-acetylcysteine in man. Eur J Clin Pharmacol. 1986;31(2):217–22.PubMedCrossRefGoogle Scholar
  26. 26.
    Olsson B, Johansson M, Gabrielsson J, Bolme P. Pharmacokinetics and bioavailability of reduced and oxidized N-acetylcysteine. Eur J Clin Pharmacol. 1988;34(1):77–82.PubMedCrossRefGoogle Scholar
  27. 27.
    Grandjean EM, Berthet P, Ruffmann R, Leuenberger P. Efficacy of oral long-term N-acetylcysteine in chronic bronchopulmonary disease: a meta-analysis of published double-blind, placebo-controlled clinical trials. Clin Ther. 2000;22(2):209–21.PubMedCrossRefGoogle Scholar
  28. 28.
    Repine JE, Bast A, Lankhorst I. Oxidative stress in chronic obstructive pulmonary disease. Oxidative Stress Study Group. Am J Resp Crit Care Med. 1997;156(2 Pt 1):341–57.PubMedCrossRefGoogle Scholar
  29. 29.
    Smilkstein MJ, Knapp GL, Kulig KW, Rumack BH. Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose: analysis of the national multicenter study (1976 to 1985). N Engl J Med. 1988;319(24):1557–62.PubMedCrossRefGoogle Scholar
  30. 30.
    Dippy JE, Davis SS. Rheological assessment of mucolytic agents on sputum of chronic bronchitis. Thorax. 1969;24(6):707–13.PubMedCrossRefGoogle Scholar
  31. 31.
    Bailey B, McGuigan MA. Management of anaphylactoid reactions to intravenous N-acetylcysteine. Ann Emerg Med. 1998;31(6):710–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Mant TG, Tempowski JH, Volans GN, Talbot JC. Adverse reactions to acetylcysteine and effects of overdose. Br Med J (Clinical Res Ed). 1984;289(6439):217–9.CrossRefGoogle Scholar
  33. 33.
    Bailey B, Blais R, Letarte A. Status epilepticus after a massive intravenous N-acetylcysteine overdose leading to intracranial hypertension and death. Ann Emerg Med. 2004;44(4):401–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Marzullo L. An update of N-acetylcysteine treatment for acute acetaminophen toxicity in children. Curr Opin Pediatr. 2005;17(2):239–45.PubMedCrossRefGoogle Scholar
  35. 35.
    Mucomyst [package insert]. New York City (NY): Bristol-Myers Squibb Company; 2007.Google Scholar
  36. 36.
    Ng F, Berk M, Dean O, Bush AI. Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol. 2008;11(6):851–76.PubMedCrossRefGoogle Scholar
  37. 37.
    Atkuri KR, Mantovani JJ, Herzenberg LA. N-Acetylcysteine: a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol. 2007;7(4):355–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Berk M, Ng F, Dean O, Dodd S, Bush AI. Glutathione: a novel treatment target in psychiatry. Trends Pharmacol Sci. 2008;29(7):346–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Seiva FR, Amauchi JF, Rocha KK, Ebaid GX, Souza G, Fernandes AA, et al. Alcoholism and alcohol abstinence: N-acetylcysteine to improve energy expenditure, myocardial oxidative stress, and energy metabolism in alcoholic heart disease. Alcohol. 2009;43(8):649–56.PubMedCrossRefGoogle Scholar
  40. 40.
    Ozaras R, Tahan V, Aydin S, Uzun H, Kaya S, Senturk H. N-acetylcysteine attenuates alcohol-induced oxidative stress in the rat. World J Gastroenterol. 2003;9(1):125–8.PubMedGoogle Scholar
  41. 41.
    Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci. 2009;10(8):561–72.PubMedCrossRefGoogle Scholar
  42. 42.
    Olive MF, Cleva RM, Kalivas PW, Malcolm RJ. Glutamatergic medications for the treatment of drug and behavioral addictions. Pharmacol Biochem Behav. 2012;100(4):801–10.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Palmatier MI, Liu X, Donny EC, Caggiula AR, Sved AF. Metabotropic glutamate 5 receptor (mGluR5) antagonists decrease nicotine seeking, but do not affect the reinforcement enhancing effects of nicotine. Neuropsychopharmacology. 2008;33(9):2139–47.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Gipson CD, Reissner KJ, Kupchik YM, Smith AC, Stankeviciute N, Hensley-Simon ME, et al. Reinstatement of nicotine seeking is mediated by glutamatergic plasticity. Proc Natl Acad Sci U S A. 2013;110(22):9124–9.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    LaLumiere RT, Kalivas PW. Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J Neurosci. 2008;28(12):3170–7.PubMedCrossRefGoogle Scholar
  46. 46.
    McFarland K, Lapish CC, Kalivas PW. Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci. 2003;23(8):3531–7.PubMedGoogle Scholar
  47. 47.
    Knackstedt LA, LaRowe S, Mardikian P, Malcolm R, Upadhyaya H, Hedden S, et al. The role of cystine-glutamate exchange in nicotine dependence in rats and humans. Biol Psychiatry. 2009;65(10):841–5.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Knackstedt LA, Melendez RI, Kalivas PW. Ceftriaxone restores glutamate homeostasis and prevents relapse to cocaine seeking. Biol Psychiatry. 2010;67(1):81–4.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Rao PS, Sari Y. Glutamate transporter 1: target for the treatment of alcohol dependence. Curr Med Chem. 2012;19(30):5148–56.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Baker DA, McFarland K, Lake RW, Shen H, Toda S, Kalivas PW. N-acetyl cysteine-induced blockade of cocaine-induced reinstatement. Ann N Y Acad Sci. 2003;1003:349–51.PubMedCrossRefGoogle Scholar
  51. 51.
    Pierce RC, Bell K, Duffy P, Kalivas PW. Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J Neurosci. 1996;16(4):1550–60.PubMedGoogle Scholar
  52. 52.
    Berglind WJ, Whitfield TW Jr, LaLumiere RT, Kalivas PW, McGinty JF. A single intra-PFC infusion of BDNF prevents cocaine-induced alterations in extracellular glutamate within the nucleus accumbens. J Neurosci. 2009;29(12):3715–9.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Knackstedt LA, Moussawi K, Lalumiere R, Schwendt M, Klugmann M, Kalivas PW. Extinction training after cocaine self-administration induces glutamatergic plasticity to inhibit cocaine seeking. J Neurosci. 2010;30(23):7984–92.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Wang X, Moussawi K, Knackstedt L, Shen H, Kalivas PW. Role of mGluR5 neurotransmission in reinstated cocaine-seeking. Addict Biol. 2013;18(1):40–9.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Gipson CD, Kupchik YM, Kalivas PW. Rapid, transient synaptic plasticity in addiction. Neuropharmacology. 2014;76 Pt B:276–86.PubMedCrossRefGoogle Scholar
  56. 56.
    Gipson CD, Kupchik YM, Shen H, Reissner KJ, Thomas CA, Kalivas PW. Relapse induced by cues predicting cocaine depends on rapid, transient synaptic potentiation. Neuron. 2013;77(5):867–72.PubMedCrossRefGoogle Scholar
  57. 57.
    Shen HW, Gipson CD, Huits M, Kalivas PW. Prelimbic cortex and ventral tegmental area modulate synaptic plasticity differentially in nucleus accumbens during cocaine-reinstated drug seeking. Neuropsychopharmacology. Epub 15 Nov 2013. Doi: 10.1038/npp.2013.318.Google Scholar
  58. 58.
    Williams SM, Sullivan RK, Scott HL, Finkelstein DI, Colditz PB, Lingwood BE, et al. Glial glutamate transporter expression patterns in brains from multiple mammalian species. Glia. 2005;49(4):520–41.PubMedCrossRefGoogle Scholar
  59. 59.
    Baker DA, McFarland K, Lake RW, Shen H, Tang XC, Toda S, et al. Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci. 2003;6(7):743–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Carlisle HJ, Kennedy MB. Spine architecture and synaptic plasticity. Trends Neurosci. 2005;28(4):182–7.PubMedCrossRefGoogle Scholar
  61. 61.
    De Roo M, Klauser P, Muller D. LTP promotes a selective long-term stabilization and clustering of dendritic spines. PLoS Biol. 2008;6(9):e219.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Yang Y, Zhou Q. Spine modifications associated with long-term potentiation. Neuroscientist. 2009;15(5):464–76.PubMedCrossRefGoogle Scholar
  63. 63.
    Moussawi K, Zhou W, Shen H, Reichel CM, See RE, Carr DB, et al. Reversing cocaine-induced synaptic potentiation provides enduring protection from relapse. Proc Natl Acad Sci U S A. 2011;108(1):385–90.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H. Structural basis of long-term potentiation in single dendritic spines. Nature. 2004;429(6993):761–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Kalivas PW, McFarland K, Bowers S, Szumlinski K, Xi ZX, Baker D. Glutamate transmission and addiction to cocaine. Ann N Y Acad Sci. 2003;1003:169–75.PubMedCrossRefGoogle Scholar
  66. 66.
    Gipson CD, Kupchik YM, Shen H, Reissner KJ, Thomas CA, Kalivas PW. Relapse induced by cues predicting cocaine depends on rapid, transient synaptic potentiation. Neuron. 2013;77:867–72.PubMedCrossRefGoogle Scholar
  67. 67.
    Yin HH, Knowlton BJ. The role of the basal ganglia in habit formation. Nat Rev Neurosci. 2006;7(6):464–76.PubMedCrossRefGoogle Scholar
  68. 68.
    Groenewegen HJ, Wright CI, Beijer AV. The nucleus accumbens: gateway for limbic structures to reach the motor system? Prog Brain Res. 1996;107:485–511.PubMedCrossRefGoogle Scholar
  69. 69.
    Koob GF. The neurobiology of addiction: a neuroadaptational view relevant for diagnosis. Addiction. 2006;101(Suppl 1):23–30.PubMedCrossRefGoogle Scholar
  70. 70.
    Peters J, LaLumiere RT, Kalivas PW. Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci. 2008;28(23):6046–53.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Anderson SM, Famous KR, Sadri-Vakili G, Kumaresan V, Schmidt HD, Bass CE, et al. CaMKII: a biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking. Nat Neurosci. 2008;11(3):344–53.PubMedCrossRefGoogle Scholar
  72. 72.
    Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, et al. The cystine/glutamate antiporter system x(c)(−) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 2013;18(5):522–55.PubMedCrossRefGoogle Scholar
  73. 73.
    Dringen R, Gutterer JM, Gros C, Hirrlinger J. Aminopeptidase N mediates the utilization of the GSH precursor CysGly by cultured neurons. J Neurosci Res. 2001;66(5):1003–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Kupchik YM, Moussawi K, Tang XC, Wang X, Kalivas BC, Kolokithas R, et al. The effect of N-acetylcysteine in the nucleus accumbens on neurotransmission and relapse to cocaine. Biol Psychiatry. 2012;71(11):978–86.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Schmaal L, Veltman DJ, Nederveen A, van den Brink W, Goudriaan AE. N-acetylcysteine normalizes glutamate levels in cocaine-dependent patients: a randomized crossover magnetic resonance spectroscopy study. Neuropsychopharmacology. 2012;37(9):2143–52.PubMedCrossRefGoogle Scholar
  76. 76.
    Kalivas PW, Volkow N, Seamans J. Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron. 2005;45(5):647–50.PubMedCrossRefGoogle Scholar
  77. 77.
    Trantham-Davidson H, Lalumiere RT, Reissner KJ, Kalivas PW, Knackstedt LA. Ceftriaxone normalizes nucleus accumbens synaptic transmission, glutamate transport, and export following cocaine self-administration and extinction training. J Neurosci. 2012;32(36):12406–10.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Papouin T, Ladepeche L, Ruel J, Sacchi S, Labasque M, Hanini M, et al. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell. 2012;150(3):633–46.PubMedCrossRefGoogle Scholar
  79. 79.
    Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng LJ, Shaham Y, et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature. 2008;454(7200):118–21.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Reichel CM, Moussawi K, Do PH, Kalivas PW, See RE. Chronic N-acetylcysteine during abstinence or extinction after cocaine self-administration produces enduring reductions in drug seeking. J Pharmacol Exp Ther. 2011;337(2):487–93.PubMedCrossRefGoogle Scholar
  81. 81.
    Murray JE, Everitt BJ, Belin D. N-Acetylcysteine reduces early- and late-stage cocaine seeking without affecting cocaine taking in rats. Addict Biol. 2012;17(2):437–40.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhou W, Kalivas PW. N-acetylcysteine reduces extinction responding and induces enduring reductions in cue- and heroin-induced drug-seeking. Biol Psychiatry. 2008;63(3):338–40.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Ramirez-Nino AM, D’Souza MS, Markou A. N-acetylcysteine decreased nicotine self-administration and cue-induced reinstatement of nicotine seeking in rats: comparison with the effects of N-acetylcysteine on food responding and food seeking. Psychopharmacology. 2013;225:473–82.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Moussawi K, Pacchioni A, Moran M, Olive MF, Gass JT, Lavin A, et al. N-Acetylcysteine reverses cocaine-induced metaplasticity. Nat Neurosci. 2009;12(2):182–9.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Madayag A, Lobner D, Kau KS, Mantsch JR, Abdulhameed O, Hearing M, et al. Repeated N-acetylcysteine administration alters plasticity-dependent effects of cocaine. J Neurosci. 2007;27(51):13968–76.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Amen SL, Piacentine LB, Ahmad ME, Li SJ, Mantsch JR, Risinger RC, et al. Repeated N-acetyl cysteine reduces cocaine seeking in rodents and craving in cocaine-dependent humans. Neuropsychopharmacology. 2011;36(4):871–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Gass JT, Sinclair CM, Cleva RM, Widholm JJ, Olive MF. Alcohol-seeking behavior is associated with increased glutamate transmission in basolateral amygdala and nucleus accumbens as measured by glutamate-oxidase-coated biosensors. Addict Biol. 2011;16(2):215–28.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    LaRowe SD, Mardikian P, Malcolm R, Myrick H, Kalivas P, McFarland K, et al. Safety and tolerability of N-acetylcysteine in cocaine-dependent individuals. Am J Addict. 2006;15(1):105–10.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Mardikian PN, LaRowe SD, Hedden S, Kalivas PW, Malcolm RJ. An open-label trial of N-acetylcysteine for the treatment of cocaine dependence: a pilot study. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(2):389–94.PubMedCrossRefGoogle Scholar
  90. 90.
    Gray KM, Watson NL, Carpenter MJ, Larowe SD. N-acetylcysteine (NAC) in young marijuana users: an open-label pilot study. Am J Addict. 2010;19(2):187–9.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    LaRowe SD, Myrick H, Hedden S, Mardikian P, Saladin M, McRae A, et al. Is cocaine desire reduced by N-acetylcysteine? Am J Psychiatry. 2007;164(7):1115–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Schmaal L, Berk L, Hulstijn KP, Cousijn J, Wiers RW, van den Brink W. Efficacy of N-acetylcysteine in the treatment of nicotine dependence: a double-blind placebo-controlled pilot study. Eur Addict Res. 2011;17(4):211–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Van Schooten FJ, Besaratinia A, De Flora S, D’Agostini F, Izzotti A, Camoirano A, et al. Effects of oral administration of N-acetyl-l-cysteine: a multi-biomarker study in smokers. Cancer Epidemiol Biomarkers Prev. 2002;11(2):167–75.PubMedGoogle Scholar
  94. 94.
    Grant JE, Odlaug BL, Kim SW. A double-blind, placebo-controlled study of N-acetyl cysteine plus naltrexone for methamphetamine dependence. Eur Neuropsychopharmacol. 2010;20(11):823–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Gray KM, Carpenter MJ, Baker NL, DeSantis SM, Kryway E, Hartwell KJ, et al. A double-blind randomized controlled trial of N-acetylcysteine in cannabis-dependent adolescents. Am J Psychiatry. 2012;169(8):805–12.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Roten AT, Baker NL, Gray KM. Marijuana craving trajectories in an adolescent marijuana cessation pharmacotherapy trial. Addict Behav. 2013;38(3):1788–91.PubMedCrossRefGoogle Scholar
  97. 97.
    LaRowe SD, Kalivas PW, Nicholas JS, Randall PK, Mardikian PN, Malcolm RJ. A double-blind placebo-controlled trial of N-acetylcysteine in the treatment of cocaine dependence. Am J Addict. 2013;22(5):443–52.PubMedCrossRefGoogle Scholar
  98. 98.
    Gass JT, Olive MF. Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol. 2008;75(1):218–65.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Sunitha K, Hemshekhar M, Thushara RM, Santhosh MS, Yariswamy M, Kemparaju K, et al. N-Acetylcysteine amide: a derivative to fulfill the promises of N-acetylcysteine. Free Radic Res. 2013;47(5):357–67.PubMedCrossRefGoogle Scholar
  100. 100.
    Ferreira Seiva FR, Amauchi JF, Ribeiro Rocha KK, Souza GA, Ebaid GX, Burneiko RM, et al. Effects of N-acetylcysteine on alcohol abstinence and alcohol-induced adverse effects in rats. Alcohol. 2009;43(2):127–35.PubMedCrossRefGoogle Scholar
  101. 101.
    Holmes A, Spanagel R, Krystal JH. Glutamatergic targets for new alcohol medications. Psychopharmacology. 2013;229(3):539–54.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Erin A. McClure
    • 1
    • 3
  • Cassandra D. Gipson
    • 2
  • Robert J. Malcolm
    • 3
  • Peter W. Kalivas
    • 2
  • Kevin M. Gray
    • 3
  1. 1.Clinical Neuroscience Division, Department of Psychiatry and Behavioral SciencesMedical University of South CarolinaCharlestonUSA
  2. 2.Department of NeurosciencesMedical University of South CarolinaCharlestonUSA
  3. 3.Department of Psychiatry and Behavioral SciencesMedical University of South CarolinaCharlestonUSA

Personalised recommendations