CNS Drugs

, Volume 27, Issue 7, pp 545–572 | Cite as

Withdrawal Symptoms and Rebound Syndromes Associated with Switching and Discontinuing Atypical Antipsychotics: Theoretical Background and Practical Recommendations

  • Anja Cerovecki
  • Richard Musil
  • Ansgar Klimke
  • Florian Seemüller
  • Ekkehard Haen
  • Rebecca Schennach
  • Kai-Uwe Kühn
  • Hans-Peter Volz
  • Michael Riedel
Review Article


With the widespread use of atypical or second-generation antipsychotics, switching treatment has become current practice and more complicated, as the pharmacological profiles of these agents differ substantially despite their similarity in being ‘atypical’. All share the ability to block dopamine D2 receptors, and most of them also block serotonin 5-HT2A receptors. Apart from these common features, some atypical antipsychotics are also able to block or stimulate other dopamine or serotonin receptors, as well as histaminergic, muscarinergic or adrenergic receptors. As a result of the varying receptor affinities, in switching or discontinuing compounds several possible pitfalls have to be considered, including the occurrence of withdrawal and rebound syndromes. This article reviews the pharmacological background of functional blockade or stimulation of receptors of interest in regard to atypical antipsychotics and the implicated potential withdrawal and rebound phenomena. A MEDLINE search was carried out to identify information on withdrawal or rebound syndromes occurring after discontinuation of atypical antipsychotics. Using the resulting literature, we first discuss the theoretical background to the functional consequences of atypical antipsychotic-induced blockade or stimulation of neurotransmitter receptors and, secondly, we highlight the clinical consequences of this. We then review the available clinical literature on switching between atypical antipsychotics, with respect to the occurrence of withdrawal or rebound symptoms. Finally, we offer practical recommendations based on the reviewed findings. The systematic evaluation of withdrawal or rebound phenomena using randomized controlled trials is still understudied. Knowledge of pharmacological receptor-binding profiles may help clinicians in choosing adequate switching or discontinuation strategies for each agent. Results from large switching trials indicate that switching atypical antipsychotics can be performed in a safe manner. Treatment-emergent adverse events during or after switching are not always considered to be, at least in part, associated with the pre-switch antipsychotic. Further studies are needed to substantiate the evidence gained so far on different switching strategies. The use of concomitant medication, e.g., benzodiazepines or anticholinergic drugs, may help to minimize symptoms arising from the discontinuation or switching of antipsychotic treatment.


Clozapine Risperidone Olanzapine Aripiprazole Atypical Antipsychotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Thelma Coutts for assistance with language. There were no sources of funding for preparation of the manuscript. The authors declare that over the past 3 years Dr. R. Musil has received research support from AstraZeneca and Janssen-Cilag, Dr. M. Riedel and Dr. K.-U. Kühn have received grants/research support from AstraZeneca and Pfizer and are speakers or on the advisory board of AstraZeneca, Pfizer, Bristol-Meyers-Squibb, Otsuka and Servier. All other authors state that they have no conflicts of interest to declare. All authors critically reviewed the final version. All authors contributed to and have approved the final manuscript; Anja Cerovecki and Richard Musil contributed equally.

Supplementary material

40263_2013_79_MOESM1_ESM.doc (425 kb)
Supplementary material 1 (DOC 425 kb)


  1. 1.
    Chouinard G, Chouinard VA. Atypical antipsychotics: CATIE study, drug-induced movement disorder and resulting iatrogenic psychiatric-like symptoms, supersensitivity rebound psychosis and withdrawal discontinuation syndromes. Psychother Psychosom. 2008;77(2):69–77.PubMedCrossRefGoogle Scholar
  2. 2.
    Chouinard G, Bradwejn J, Annable L, et al. Withdrawal symptoms after long-term treatment with low-potency neuroleptics. J Clin Psychiatry. 1984;45(12):500–2.PubMedGoogle Scholar
  3. 3.
    Chouinard G, Jones BD, Annable L. Neuroleptic-induced supersensitivity psychosis. Am J Psychiatry. 1978;135(11):1409–10.PubMedGoogle Scholar
  4. 4.
    Chouinard G, Jones BD. Neuroleptic-induced supersensitivity psychosis: clinical and pharmacologic characteristics. Am J Psychiatry. 1980;137(1):16–21.PubMedGoogle Scholar
  5. 5.
    Chouinard G. Severe cases of neuroleptic-induced supersensitivity psychosis: diagnostic criteria for the disorder and its treatment. Schizophr Res. 1991;5(1):21–33.PubMedCrossRefGoogle Scholar
  6. 6.
    Goudie AJ, Smith JA, Robertson A, et al. Clozapine as a drug of dependence. Psychopharmacology (Berl). 1999;142(4):369–74.CrossRefGoogle Scholar
  7. 7.
    Borison RL. Changing antipsychotic medication: guidelines on the transition to treatment with risperidone: the Consensus Study Group on Risperidone Dosing. Clin Ther. 1996;18(4):592–607.PubMedCrossRefGoogle Scholar
  8. 8.
    Buckley PF. Receptor-binding profiles of antipsychotics: clinical strategies when switching between agents. J Clin Psychiatry. 2007;68(Suppl. 6):5–9.PubMedGoogle Scholar
  9. 9.
    Correll CU. From receptor pharmacology to improved outcomes: individualising the selection, dosing, and switching of antipsychotics. Eur Psychiatry. 2010;25(Suppl. 2):S12–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Lambert TJ. Switching antipsychotic therapy: what to expect and clinical strategies for improving therapeutic outcomes. J Clin Psychiatry. 2007;68(Suppl. 6):10–3.PubMedGoogle Scholar
  11. 11.
    Luchins DJ, Freed WJ, Wyatt RJ. The role of cholinergic supersensitivity in the medical symptoms associated with withdrawal of antipsychotic drugs. Am J Psychiatry. 1980;137(11):1395–8.PubMedGoogle Scholar
  12. 12.
    Moncrieff J. Does antipsychotic withdrawal provoke psychosis? Review of the literature on rapid onset psychosis (supersensitivity psychosis) and withdrawal-related relapse. Acta Psychiatr Scand. 2006;114(1):3–13.PubMedCrossRefGoogle Scholar
  13. 13.
    Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182–217.PubMedCrossRefGoogle Scholar
  14. 14.
    Vallone D, Picetti R, Borrelli E. Structure and function of dopamine receptors. Neurosci Biobehav Rev. 2000;24(1):125–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Andersen PH, Gingrich JA, Bates MD, et al. Dopamine receptor subtypes: beyond the D1/D2 classification. Trends Pharmacol Sci. 1990;11(6):231–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Anden NE, Carlsson A, Dahlstroem A, et al. Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci. 1964;3:523–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Dahlstroem A, Fuxe K. Evidence for the existence of monoamine neurons in the central nervous system: II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol Scand Suppl. 1965;Suppl. 247:1–36.Google Scholar
  18. 18.
    Glazer WM. Extrapyramidal side effects, tardive dyskinesia, and the concept of atypicality. J Clin Psychiatry. 2000;61(Suppl. 3):16–21.PubMedGoogle Scholar
  19. 19.
    Reynolds GP. Antipsychotic drug mechanisms and neurotransmitter systems in schizophrenia. Acta Psychiatr Scand Suppl. 1994;380:36–40.PubMedCrossRefGoogle Scholar
  20. 20.
    Jauss M, Krack P, Franz M, et al. Imaging of dopamine receptors with [123I]iodobenzamide single-photon emission-computed tomography in neuroleptic malignant syndrome. Mov Disord. 1996;11(6):726–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Seeman P, Weinshenker D, Quirion R, et al. Dopamine supersensitivity correlates with D2high states, implying many paths to psychosis. Proc Natl Acad Sci USA. 2005;102(9):3513–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Akhondzadeh S, Malek-Hosseini M, Ghoreishi A, et al. Effect of ritanserin, a 5HT2A/2C antagonist, on negative symptoms of schizophrenia: a double-blind randomized placebo-controlled study. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(8):1879–83.PubMedCrossRefGoogle Scholar
  23. 23.
    Baumgarten HG, Grozdanovic Z. Psychopharmacology of central serotonergic systems. Pharmacopsychiatry. 1995;28(Suppl. 2):73–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Roth BL. Multiple serotonin receptors: clinical and experimental aspects. Ann Clin Psychiatry. 1994;6(2):67–78.PubMedCrossRefGoogle Scholar
  25. 25.
    MacDonald GJ, Bartolome JM. A decade of progress in the discovery and development of ‘atypical’ antipsychotics. Prog Med Chem. 2010;49:37–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Meltzer HY, Massey BW. The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol. 2011;11(1):59–67.PubMedCrossRefGoogle Scholar
  27. 27.
    Meltzer HY, Horiguchi M, Massey BW. The role of serotonin in the NMDA receptor antagonist models of psychosis and cognitive impairment. Psychopharmacology (Berl). 2011;213(2–3):289–305.CrossRefGoogle Scholar
  28. 28.
    Schmidt CJ, Sorensen SM, Kehne JH, et al. The role of 5-HT2A receptors in antipsychotic activity. Life Sci. 1995;56(25):2209–22.PubMedCrossRefGoogle Scholar
  29. 29.
    Kroeze WK, Hufeisen SJ, Popadak BA, et al. H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology. 2003;28(3):519–26.PubMedCrossRefGoogle Scholar
  30. 30.
    Freedman R, Adams CE, Leonard S. The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat. 2000;20(3–4):299–306.PubMedCrossRefGoogle Scholar
  31. 31.
    Olincy A, Harris JG, Johnson LL, et al. Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry. 2006;63(6):630–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Langmead CJ, Watson J, Reavill C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther. 2008;117(2):232–43.PubMedCrossRefGoogle Scholar
  33. 33.
    Raedler TJ, Bymaster FP, Tandon R, et al. Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry. 2007;12(3):232–46.PubMedGoogle Scholar
  34. 34.
    Scarr E, Dean B. Muscarinic receptors: do they have a role in the pathology and treatment of schizophrenia? J Neurochem 2008 Dec;107(5):1188-95.Google Scholar
  35. 35.
    Fisher A, Heldman E, Gurwitz D, et al. M1 agonists for the treatment of Alzheimer’s disease: novel properties and clinical update. Ann N Y Acad Sci. 1996;777:189–96.PubMedCrossRefGoogle Scholar
  36. 36.
    Iversen SD. Behavioural evaluation of cholinergic drugs. Life Sci. 1997;60(13–14):1145–52.PubMedCrossRefGoogle Scholar
  37. 37.
    Bymaster FP, Felder CC, Tzavara E, et al. Muscarinic mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(7):1125–43.PubMedCrossRefGoogle Scholar
  38. 38.
    Hein L. Adrenoceptors and signal transduction in neurons. Cell Tissue Res. 2006;326(2):541–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Marcus MM, Jardemark KE, Wadenberg ML, et al. Combined alpha2 and D2/3 receptor blockade enhances cortical glutamatergic transmission and reverses cognitive impairment in the rat. Int J Neuropsychopharmacol. 2005;8(3):315–27.PubMedCrossRefGoogle Scholar
  40. 40.
    Svensson TH. Alpha-adrenoceptor modulation hypothesis of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(7):1145–58.PubMedCrossRefGoogle Scholar
  41. 41.
    Ungerstedt U. Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl. 1971;367:69–93.PubMedGoogle Scholar
  42. 42.
    Muller P, Seeman P. Dopaminergic supersensitivity after neuroleptics: time-course and specificity. Psychopharmacology (Berl). 1978;60(1):1–11.CrossRefGoogle Scholar
  43. 43.
    Ekblom B, Eriksson K, Lindstrom LH. Supersensitivity psychosis in schizophrenic patients after sudden clozapine withdrawal. Psychopharmacology (Berl). 1984;83(3):293–4.CrossRefGoogle Scholar
  44. 44.
    Kapur S, Seeman P. Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics?: A new hypothesis. Am J Psychiatry. 2001;158(3):360–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Seeman P, Tallerico T. Rapid release of antipsychotic drugs from dopamine D2 receptors: an explanation for low receptor occupancy and early clinical relapse upon withdrawal of clozapine or quetiapine. Am J Psychiatry. 1999;156(6):876–84.PubMedGoogle Scholar
  46. 46.
    Fallon P, Dursun SM. A naturalistic controlled study of relapsing schizophrenic patients with tardive dyskinesia and supersensitivity psychosis. J Psychopharmacol. 2011;25(6):755–62.PubMedCrossRefGoogle Scholar
  47. 47.
    Davis KL, Rosenberg GS. Is there a limbic system equivalent of tardive dyskinesia? Biol Psychiatry. 1979;14(4):699–703.PubMedGoogle Scholar
  48. 48.
    Margolese HC, Chouinard G, Beauclair L, et al. Therapeutic tolerance and rebound psychosis during quetiapine maintenance monotherapy in patients with schizophrenia and schizoaffective disorder. J Clin Psychopharmacol. 2002;22(4):347–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Perenyi A, Kuncz E, Bagdy G. Early relapse after sudden withdrawal or dose reduction of clozapine. Psychopharmacology (Berl). 1985;86(1–2):244.CrossRefGoogle Scholar
  50. 50.
    Alphs LD, Lee HS. Comparison of withdrawal of typical and atypical antipsychotic drugs: a case study. J Clin Psychiatry. 1991;52(8):346–8.PubMedGoogle Scholar
  51. 51.
    Parsa MA, al-Lahham YH, Ramirez LF, et al. Prolonged psychotic relapse after abrupt clozapine withdrawal. J Clin Psychopharmacol. 1993;13(2):154–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Meltzer HY. Clozapine withdrawal: serotonergic or dopaminergic mechanisms? Arch Gen Psychiatry. 1997;54(8):760–3.PubMedCrossRefGoogle Scholar
  53. 53.
    Meltzer HY, Lee MA, Ranjan R, et al. Relapse following clozapine withdrawal: effect of neuroleptic drugs and cyproheptadine. Psychopharmacology (Berl). 1996;124(1–2):176–87.CrossRefGoogle Scholar
  54. 54.
    Llorca PM, Penault F, Lancon C, et al. The concept of supersensitivity psychosis: the particular case of clozapine. Encephale. 1999;25(6):638–44.PubMedGoogle Scholar
  55. 55.
    Wadekar M, Syed S. Clozapine-withdrawal catatonia. Psychosomatics. 2010;51(4):355.PubMedGoogle Scholar
  56. 56.
    Ahmed S, Chengappa KN, Naidu VR, et al. Clozapine withdrawal-emergent dystonias and dyskinesias: a case series. J Clin Psychiatry. 1998;59(9):472–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Songer DA, Schulte HM. Withdrawal dyskinesia after abrupt cessation of clozapine and benztropine. J Clin Psychiatry. 1996;57(1):40.PubMedGoogle Scholar
  58. 58.
    Radford JM, Brown TM, Borison RL. Unexpected dystonia while changing from clozapine to risperidone. J Clin Psychopharmacol. 1995;15(3):225–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Llorca PM, Vaiva G, Lancon C. Supersensitivity psychosis in patients with schizophrenia after sudden olanzapine withdrawal. Can J Psychiatry. 2001;46(1):87–8.PubMedGoogle Scholar
  60. 60.
    Baldessarini RJ, Gardner DM, Garver DL. Conversions from clozapine to other antipsychotic drugs. Arch Gen Psychiatry. 1995;52(12):1071–2.PubMedCrossRefGoogle Scholar
  61. 61.
    Lu ML, Pan JJ, Teng HW, et al. Metoclopramide-induced supersensitivity psychosis. Ann Pharmacother. 2002;36(9):1387–90.PubMedCrossRefGoogle Scholar
  62. 62.
    Turrone P, Remington G, Kapur S, et al. Differential effects of within-day continuous vs. transient dopamine D2 receptor occupancy in the development of vacuous chewing movements (VCMs) in rats. Neuropsychopharmacology. 2003;28(8):1433–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Turrone P, Remington G, Kapur S, et al. Continuous but not intermittent olanzapine infusion induces vacuous chewing movements in rats. Biol Psychiatry. 2005;57(4):406–11.PubMedCrossRefGoogle Scholar
  64. 64.
    Goudie AJ, Cole JC, Sumnall HR. Olanzapine withdrawal/discontinuation-induced hyperthermia in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(7):1500–3.PubMedCrossRefGoogle Scholar
  65. 65.
    Buckley PF, Correll CU. Strategies for dosing and switching antipsychotics for optimal clinical management. J Clin Psychiatry. 2008;69(Suppl. 1):4–17.Google Scholar
  66. 66.
    Buckley PF. Introduction: the art and science of switching antipsychotic medications. J Clin Psychiatry. 2007;68(Suppl. 6):4.PubMedGoogle Scholar
  67. 67.
    Viguera AC, Baldessarini RJ, Hegarty JD, et al. Clinical risk following abrupt and gradual withdrawal of maintenance neuroleptic treatment. Arch Gen Psychiatry. 1997;54(1):49–55.PubMedCrossRefGoogle Scholar
  68. 68.
    Svensson TH, Strombom U. Discontinuation of chronic clonidine treatment: evidence for facilitated brain noradrenergic neurotransmission. Naunyn Schmiedebergs Arch Pharmacol. 1977;299(1):83–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Thoolen MJ, Hendriks JC, Timmermans PB, et al. Precipitation by yohimbine of the withdrawal syndromes of clonidine, guanfacine, and methyldopa in the spontaneously hypertensive rat. J Cardiovasc Pharmacol. 1983;5(2):224–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Correll CU. Real-life switching strategies with second-generation antipsychotics. J Clin Psychiatry. 2006;67(1):160–1.PubMedCrossRefGoogle Scholar
  71. 71.
    Edlinger M, Baumgartner S, Eltanaihi-Furtmuller N, et al. Switching between second-generation antipsychotics: why and how? CNS Drugs. 2005;19(1):27–42.PubMedCrossRefGoogle Scholar
  72. 72.
    Lin CC, Bai YM, Wang YC, et al. Improved body weight and metabolic outcomes in overweight or obese psychiatric patients switched to amisulpride from other atypical antipsychotics. J Clin Psychopharmacol. 2009;29(6):529–36.PubMedCrossRefGoogle Scholar
  73. 73.
    Linden M, Scheel T, Eich FX. Improvement of patient compliance after switching from conventional neuroleptics to the atypical neuroleptic amisulpride. J Psychopharmacol. 2006;20(6):815–23.PubMedCrossRefGoogle Scholar
  74. 74.
    Byerly MJ, Marcus RN, Tran QV, et al. Effects of aripiprazole on prolactin levels in subjects with schizophrenia during cross-titration with risperidone or olanzapine: analysis of a randomized, open-label study. Schizophr Res. 2009;107(2–3):218–22.PubMedCrossRefGoogle Scholar
  75. 75.
    Ganguli R, Brar JS, Garbut R, et al. Changes in weight and other metabolic indicators in persons with schizophrenia following a switch to aripiprazole. Clin Schizophr Relat Psychoses. 2011;5(2):75–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Chen CY, Lin TY, Wang CC, et al. Improvement of serum prolactin and sexual function after switching to aripiprazole from risperidone in schizophrenia: a case series. Psychiatry Clin Neurosci. 2011;65(1):95–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Kim CY, Chung S, Lee JN, et al. A 12-week, naturalistic switch study of the efficacy and tolerability of aripiprazole in stable outpatients with schizophrenia or schizoaffective disorder. Int Clin Psychopharmacol. 2009;24(4):181–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Kim SH, Ivanova O, Abbasi FA, et al. Metabolic impact of switching antipsychotic therapy to aripiprazole after weight gain: a pilot study. J Clin Psychopharmacol. 2007;27(4):365–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Lee BH, Kim YK, Park SH. Using aripiprazole to resolve antipsychotic-induced symptomatic hyperprolactinemia: a pilot study. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(4):714–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Lin HC, Chong MY, Lee Y, et al. Switching of antipsychotics to aripiprazole in the treatment of schizophrenia. Chang Gung Med J. 2009;32(4):409–16.PubMedGoogle Scholar
  81. 81.
    Lu ML, Shen WW, Chen CH. Time course of the changes in antipsychotic-induced hyperprolactinemia following the switch to aripiprazole. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(8):1978–81.PubMedCrossRefGoogle Scholar
  82. 82.
    Mir A, Shivakumar K, Williamson RJ, et al. Change in sexual dysfunction with aripiprazole: a switching or add-on study. J Psychopharmacol. 2008;22(3):244–53.PubMedCrossRefGoogle Scholar
  83. 83.
    Pae CU, Serretti A, Chiesa A, et al. Immediate versus gradual suspension of previous treatments during switch to aripiprazole: results of a randomized, open label study. Eur Neuropsychopharmacol. 2009;19(8):562–70.PubMedCrossRefGoogle Scholar
  84. 84.
    Pae CU, Chiesa A, Mandelli L, et al. Predictors of early worsening after switch to aripiprazole: a randomized, controlled, open-label study. Clin Drug Investig. 2010;30(3):187–93.PubMedCrossRefGoogle Scholar
  85. 85.
    Ryckmans V, Kahn JP, Modell S, et al. Switching to aripiprazole in outpatients with schizophrenia experiencing insufficient efficacy and/or safety/tolerability issues with risperidone: a randomized, multicentre, open-label study. Pharmacopsychiatry. 2009;42(3):114–21.PubMedCrossRefGoogle Scholar
  86. 86.
    Sarin A, Nagpal J, Bohra NK, et al. Open labeled, randomized, switch-over study of two fixed doses (10/15 mg) of aripiprazole: to evaluate its safety and efficacy in the treatment of Indian patients of schizophrenia. Indian J Psychiatry. 2004;46(1):64–71.PubMedGoogle Scholar
  87. 87.
    Spurling RD, Lamberti JS, Olsen D, et al. Changes in metabolic parameters with switching to aripiprazole from another second-generation antipsychotic: a retrospective chart review. J Clin Psychiatry. 2007;68(3):406–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Stroup TS, McEvoy JP, Ring KD, et al. A randomized trial examining the effectiveness of switching from olanzapine, quetiapine, or risperidone to aripiprazole to reduce metabolic risk: comparison of antipsychotics for metabolic problems (CAMP). Am J Psychiatry. 2011;168(9):947–56.PubMedCrossRefGoogle Scholar
  89. 89.
    Takeuchi H, Suzuki T, Uchida H, et al. A randomized, open-label comparison of 2 switching strategies to aripiprazole treatment in patients with schizophrenia: add-on, wait, and tapering of previous antipsychotics versus add-on and simultaneous tapering. J Clin Psychopharmacol. 2008;28(5):540–3.PubMedCrossRefGoogle Scholar
  90. 90.
    Kim SW, Shin IS, Kim JM, et al. Effects of switching to long-acting injectable risperidone from oral atypical antipsychotics on cognitive function in patients with schizophrenia. Hum Psychopharmacol. 2009;24(7):565–73.PubMedCrossRefGoogle Scholar
  91. 91.
    Hsu WY, Lee CI, Chiu NY, et al. Aripiprazole in treatment-refractory schizophrenia. J Psychiatr Pract. 2009;15(3):221–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Hughes D, Morcos M. Use of aripiprazole in treatment resistant schizophrenia. J Psychopharmacol. 2008;22(8):927–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Kuloglu M, Ekinci O, Albayrak Y, et al. Benefits of switching women schizophrenic patients to aripiprazole: a case study and brief review of the literature. Arch Womens Ment Health. 2010;13(5):443–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Kim SW, Shin IS, Kim JM, et al. Effectiveness of switching to aripiprazole from atypical antipsychotics in patients with schizophrenia. Clin Neuropharmacol. 2009;32(5):243–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Mago R. Proposed strategies for successful clinical management with aripiprazole. Expert Opin Pharmacother. 2008;9(8):1279–90.PubMedCrossRefGoogle Scholar
  96. 96.
    Burris KD, Molski TF, Xu C, et al. Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther. 2002;302(1):381–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Schering-Plough Corporation. Saphris (Asenapine) sublingual tablets: US prescribing information. (Accessed 2 Feb 2012).
  98. 98.
    Kane JM, Mackle M, Snow-Adami L, et al. A randomized placebo-controlled trial of asenapine for the prevention of relapse of schizophrenia after long-term treatment. J Clin Psychiatry. 2011;72(3):349–55.PubMedCrossRefGoogle Scholar
  99. 99.
    Schoemaker J, Naber D, Vrijland P, et al. Long-term assessment of asenapine vs. olanzapine in patients with schizophrenia or schizoaffective disorder. Pharmacopsychiatry. 2010;43(4):138–46.PubMedCrossRefGoogle Scholar
  100. 100.
    Buchanan RW, Panagides J, Zhao J, et al. Asenapine versus olanzapine in people with persistent negative symptoms of schizophrenia. J Clin Psychopharmacol. 2012;32(1):36–45.PubMedCrossRefGoogle Scholar
  101. 101.
    Kane JM, Cohen M, Zhao J, et al. Efficacy and safety of asenapine in a placebo- and haloperidol-controlled trial in patients with acute exacerbation of schizophrenia. J Clin Psychopharmacol. 2010;30(2):106–15.PubMedCrossRefGoogle Scholar
  102. 102.
    Potkin SG, Cohen M, Panagides J. Efficacy and tolerability of asenapine in acute schizophrenia: a placebo- and risperidone-controlled trial. J Clin Psychiatry. 2007;68(10):1492–500.PubMedCrossRefGoogle Scholar
  103. 103.
    Dubovsky SL, Frobose C, Phiri P, et al. Short-term safety and pharmacokinetic profile of asenapine in older patients with psychosis. Int J Geriatr Psychiatry. 2012;27(5):472–82.PubMedCrossRefGoogle Scholar
  104. 104.
    Citrome L. Asenapine for schizophrenia and bipolar disorder: a review of the efficacy and safety profile for this newly approved sublingually absorbed second-generation antipsychotic. Int J Clin Pract. 2009;63(12):1762–84.PubMedCrossRefGoogle Scholar
  105. 105.
    Kane JM, Lauriello J, Laska E, et al. Long-term efficacy and safety of iloperidone: results from 3 clinical trials for the treatment of schizophrenia. J Clin Psychopharmacol. 2008;28 Suppl. 1(2):S29–35.CrossRefGoogle Scholar
  106. 106.
    Potkin SG, Litman RE, Torres R, et al. Efficacy of iloperidone in the treatment of schizophrenia: initial phase 3 studies. J Clin Psychopharmacol. 2008;28 Suppl. 1(2):S4–11.CrossRefGoogle Scholar
  107. 107.
    Cutler AJ, Kalali AH, Weiden PJ, et al. Four-week, double-blind, placebo- and ziprasidone-controlled trial of iloperidone in patients with acute exacerbations of schizophrenia. J Clin Psychopharmacol. 2008;28(2 Suppl. 1):S20–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Vanda Pharmaceuticals. Fanapt (iloperidone) tablets. (Accessed 6 Feb 2012).
  109. 109.
    Weiden PJ, Cutler AJ, Polymeropoulos MH, et al. Safety profile of iloperidone: a pooled analysis of 6-week acute-phase pivotal trials. J Clin Psychopharmacol. 2008;28 Suppl. 1(2):S12–9.CrossRefGoogle Scholar
  110. 110.
    Kalkman HO, Subramanian N, Hoyer D. Extended radioligand binding profile of iloperidone: a broad spectrum dopamine/serotonin/norepinephrine receptor antagonist for the management of psychotic disorders. Neuropsychopharmacology. 2001;25(6):904–14.PubMedCrossRefGoogle Scholar
  111. 111.
    Citrome L. Lurasidone for schizophrenia: a review of the efficacy and safety profile for this newly approved second-generation antipsychotic. Int J Clin Pract. 2011;65(2):189–210.PubMedCrossRefGoogle Scholar
  112. 112.
    Sunovion. Latuda (lurasidone HCl) tablets: prescribing information. Available from URL: (Accessed 9 Feb 2012).
  113. 113.
    Nakamura M, Ogasa M, Guarino J, et al. Lurasidone in the treatment of acute schizophrenia: a double-blind, placebo-controlled trial. J Clin Psychiatry. 2009;70(6):829–36.PubMedCrossRefGoogle Scholar
  114. 114.
    Cucchiaro J, Potkin SG, Ogasa M, et al. A double-blind comparison of the safety and efficacy of lurasidone and ziprasidone in clinically stable outpatients with schizophrenia or schizoaffective disorder. Schizophr Bull. 2009;35(Suppl. 1):342–3.Google Scholar
  115. 115.
    Potkin SG, Ogasa M, Cucchiaro J, Loebel A. Double-blind comparison of the safety and efficacy of lurasidone and ziprasidone in clinically stable outpatients with schizophrenia or schizoaffective disorder. Schizophr Res. 2011;132(2–3):101–7.PubMedCrossRefGoogle Scholar
  116. 116.
    Meltzer HY, Cucchiaro J, Silva R, et al. Lurasidone in the treatment of schizophrenia: a randomized, double-blind, placebo- and olanzapine-controlled study. Am J Psychiatry. 2011;168(9):957–67.PubMedCrossRefGoogle Scholar
  117. 117.
    Costa e Silva JA, Alvarez N, Mazzotti G, et al. Olanzapine as alternative therapy for patients with haloperidol-induced extrapyramidal symptoms: results of a multicenter, collaborative trial in Latin America. J Clin Psychopharmacol. 2001;21(4):375–81.PubMedCrossRefGoogle Scholar
  118. 118.
    Dossenbach MR, Kratky P, Schneidman M, et al. Evidence for the effectiveness of olanzapine among patients nonresponsive and/or intolerant to risperidone. J Clin Psychiatry. 2001;62(Suppl 2):28–34.PubMedGoogle Scholar
  119. 119.
    Dossenbach MRK, Beuzen JN, Avnon M, et al. The effectiveness of olanzapine in treatment-refractory schizophrenia when patients are nonresponsive to or unable to tolerate clozapine. Clin Ther. 2000;22(9):1021–34.PubMedCrossRefGoogle Scholar
  120. 120.
    Faries DE, Ascher-Svanum H, Nyhuis AW, Kinon BJ. Switching from risperidone to olanzapine in a one-year, randomized, open-label effectiveness study of schizophrenia. Curr Med Res Opin. 2008;24(5):1399–405.PubMedCrossRefGoogle Scholar
  121. 121.
    Godleski LS, Goldsmith LJ, Vieweg WV, Zettwoch NC, Stikovac DM, Lewis SJ. Switching from depot antipsychotic drugs to olanzapine in patients with chronic schizophrenia. J Clin Psychiatry. 2003;64(2):119–22.PubMedCrossRefGoogle Scholar
  122. 122.
    Henderson DC, Nasrallah RA, Goff DC. Switching from clozapine to olanzapine in treatment-refractory schizophrenia: safety, clinical efficacy, and predictors of response. J Clin Psychiatry. 1998;59(11):585–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Lee CT, Conde BJ, Mazlan M, et al. Switching to olanzapine from previous antipsychotics: a regional collaborative multicenter trial assessing 2 switching techniques in Asia Pacific. J Clin Psychiatry. 2002;63(7):569–76.PubMedCrossRefGoogle Scholar
  124. 124.
    Lindenmayer JP, Czobor P, Volavka J, et al. Olanzapine in refractory schizophrenia after failure of typical or atypical antipsychotic treatment: an open-label switch study. J Clin Psychiatry. 2002;63(10):931–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Kim KS, Pae CU, Chae JH, et al. Effects of olanzapine on prolactin levels of female patients with schizophrenia treated with risperidone. J Clin Psychiatry. 2002;63(5):408–13.PubMedCrossRefGoogle Scholar
  126. 126.
    Kinon BJ, Basson BR, Gilmore JA, Malcolm S, Stauffer VL. Strategies for switching from conventional antipsychotic drugs or risperidone to olanzapine. J Clin Psychiatry. 2000;61(11):833–40.PubMedCrossRefGoogle Scholar
  127. 127.
    Kluge M, Wehmeier PM, Dittmann RW, et al. A simple switching strategy for inadequately treated patients with schizophrenia to olanzapine: changes in psychopathology and subjective well-being. Pharmacopsychiatry. 2005;38(1):6–12.PubMedCrossRefGoogle Scholar
  128. 128.
    Labelle A, Bourget D, Boulay LJ, Ellis J, Tessier P. Switching outpatients with schizophrenia and related disorders on long-acting injectable antipsychotics to olanzapine: an open-label naturalistic pilot study. J Clin Psychopharmacol. 2002;22(6):545–53.PubMedCrossRefGoogle Scholar
  129. 129.
    Lu Z, Hu J, Chen CK, et al. Effectiveness and safety of olanzapine in the treatment of schizophrenia among Asian patients switching from conventional antipsychotics. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(1):32–40.PubMedCrossRefGoogle Scholar
  130. 130.
    Novick D, Haro JM, Suarez D, Marques-Teixeira J, Naber D. Clinical consequences of switching antipsychotic drugs in outpatients with schizophrenia: 36-month results from the European Schizophrenia Outpatient Health Outcomes study. Int Clin Psychopharmacol. 2008;23(4):203–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Ritchie CW, Chiu E, Harrigan S, et al. The impact upon extra-pyramidal side effects, clinical symptoms and quality of life of a switch from conventional to atypical antipsychotics (risperidone or olanzapine) in elderly patients with schizophrenia. Int J Geriatr Psychiatry. 2003;18(5):432–40.PubMedCrossRefGoogle Scholar
  132. 132.
    Takahashi H, Kamata M, Yoshida K, Ishigooka J, Higuchi H. Switching to olanzapine after unsuccessful treatment with risperidone during the first episode of schizophrenia: an open-label trial. J Clin Psychiatry. 2006;67(10):1577–82.PubMedCrossRefGoogle Scholar
  133. 133.
    Littrell KH, Johnson CG, Hilligoss NM, Peabody CD, Littrell SH. Switching clozapine responders to olanzapine. J Clin Psychiatry. 2000;61(12):912–5.PubMedCrossRefGoogle Scholar
  134. 134.
    Delassus-Guenault N, Jegouzo A, Odou P, et al. Clozapine-olanzapine: a potentially dangerous switch: a report of two cases. J Clin Pharm Ther. 1999;24(3):191–5.PubMedCrossRefGoogle Scholar
  135. 135.
    Gopal S, Vijapurkar U, Lim P, Morozova M, Eerdekens M, Hough D. A 52-week open-label study of the safety and tolerability of paliperidone palmitate in patients with schizophrenia. J Psychopharmacol. 2011;25(5):685–97.PubMedCrossRefGoogle Scholar
  136. 136.
    Hough D, Gopal S, Vijapurkar U, Lim P, Morozova M, Eerdekens M. Paliperidone palmitate maintenance treatment in delaying the time-to-relapse in patients with schizophrenia: a randomized, double-blind, placebo-controlled study. Schizophr Res. 2010;116(2–3):107–17.PubMedCrossRefGoogle Scholar
  137. 137.
    Kramer M, Litman R, Hough D, et al. Paliperidone palmitate, a potential long-acting treatment for patients with schizophrenia. Results of a randomized, double-blind, placebo-controlled efficacy and safety study. Int J Neuropsychopharmacol. 2010;13(5):635–47.PubMedCrossRefGoogle Scholar
  138. 138.
    Janssen Pharmaceuticals Inc. InvegaSustenna (paliperidone palmitate) Extended-release injectable suspension for intramuscular use. (Accessed 2 Oct 2012).
  139. 139.
    Hoy SM, Scott LJ, Keating GM. Intramuscular paliperidone palmitate. CNS Drugs. 2010;24(3):227–44.PubMedCrossRefGoogle Scholar
  140. 140.
    Nasrallah HA, Gopal S, Gassmann-Mayer C, et al. A controlled, evidence-based trial of paliperidone palmitate, a long-acting injectable antipsychotic, in schizophrenia. Neuropsychopharmacology. 2010;35(10):2072–82.PubMedCrossRefGoogle Scholar
  141. 141.
    Johnson & Johnson Pharmaceutical Research & Development L.L.C. Efficacy and safety of a long acting anti-psychotic versus placebo inpatients with schizophrenia. (Accessed 2 Oct 2012).
  142. 142.
    Gopal S, Gassmann-Mayer C, Palumbo J, Samtani MN, Shiwach R, Alphs L. Practical guidance for dosing and switching paliperidone palmitate treatment in patients with schizophrenia. Curr Med Res Opin. 2010;26(2):377–87.PubMedCrossRefGoogle Scholar
  143. 143.
    Samtani MN, Gopal S, Gassmann-Mayer C, Alphs L, Palumbo JM. Dosing and switching strategies for paliperidone palmitate: based on population pharmacokinetic modelling and clinical trial data. CNS Drugs. 2011;25(10):829–45.PubMedGoogle Scholar
  144. 144.
    Janssen Pharmaceuticals. INVEGA SUSTENNA (paliperidone palmitate) Extended-Release Injectable Suspension for intramuscular use. Available from URL: (Accessed 5 May 2012).
  145. 145.
    Lai CH. Improvement of oral dyskinesia after switching from aripiprazole to paliperidone: a case report. J Neuropsychiatry Clin Neurosci. 2011;23(3):E18.CrossRefGoogle Scholar
  146. 146.
    Teng PR, Lane HY. Emergence of neuroleptic malignant syndrome while switching between risperidone and paliperidone. J Neuropsychiatry Clin Neurosci. 2011;23(4):E16–7.PubMedCrossRefGoogle Scholar
  147. 147.
    Cortese L, Caligiuri MP, Williams R, et al. Reduction in neuroleptic-induced movement disorders after a switch to quetiapine in patients with schizophrenia. J Clin Psychopharmacol. 2008;28(1):69–73.PubMedCrossRefGoogle Scholar
  148. 148.
    Gupta S, Masand PS, Virk S, et al. Weight decline in patients switching from olanzapine to quetiapine. Schizophr Res. 2004;70(1):57–62.PubMedCrossRefGoogle Scholar
  149. 149.
    Larmo I, De Nayer A, Windhager E et al. Efficacy and tolerability of quetiapine in patients with schizophrenia who switched from haloperidol, olanzapine or risperidone. Hum Psychopharmacol. 2005;20(8):573–81.PubMedCrossRefGoogle Scholar
  150. 150.
    Nakajima M, Terao T, Iwata N, Nakamura J. Switching female schizophrenic patients to quetiapine from conventional antipsychotic drugs: effects on hyperprolactinemia. Pharmacopsychiatry. 2005;38(1):17–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Ganesan S, Agambaram V, Randeree F, Eggens I, Huizar K, Meulien D. Switching from other antipsychotics to once-daily extended release quetiapine fumarate in patients with schizophrenia. Curr Med Res Opin. 2008;24(1):21–32.PubMedGoogle Scholar
  152. 152.
    Moller HJ, Johnson S, Mateva T, et al. Evaluation of the feasibility of switching from immediate release quetiapine to extended release quetiapine fumarate in stable outpatients with schizophrenia. Int Clin Psychopharmacol. 2008;23(2):95–105.PubMedCrossRefGoogle Scholar
  153. 153.
    Ganguli R, Brar JS, Mahmoud R, Berry SA, Pandina GJ. Assessment of strategies for switching patients from olanzapine to risperidone: a randomized, open-label, rater-blinded study. BMC Med. 2008;6:17.PubMedCrossRefGoogle Scholar
  154. 154.
    Still DJ, Dorson PG, Crismon ML, Pousson C. Effects of switching inpatients with treatment-resistant schizophrenia from clozapine to risperidone. Psychiatr Serv. 1996;47(12):1382–4.PubMedGoogle Scholar
  155. 155.
    Kirov GK, Murray RM, Seth RV, Feeney S. Observations on switching patients with schizophrenia to risperidone treatment. Risperidone Switching Study Group. Acta Psychiatr Scand. 1997;95(5):439–43.PubMedCrossRefGoogle Scholar
  156. 156.
    Malla AK, Norman RM, Kotteda V, Zirul S. Switching from therapy with typical antipsychotic agents to risperidone: long-term impact on patient outcome. Clin Ther. 1999;21(5):806–17.PubMedCrossRefGoogle Scholar
  157. 157.
    Meyer JM, Pandina G, Bossie CA, Turkoz I, Greenspan A. Effects of switching from olanzapine to risperidone on the prevalence of the metabolic syndrome in overweight or obese patients with schizophrenia or schizoaffective disorder: analysis of a multicenter, rater-blinded, open-label study. Clin Ther. 2005;27(12):1930–41.PubMedCrossRefGoogle Scholar
  158. 158.
    Nakanishi S, Kunugi H, Murray RM, Nojima S, Ogawa T, Takahashi T. Effects of switching from conventional antipsychotics to risperidone in Japanese patients with chronic schizophrenia. Psychiatry Clin Neurosci. 2006;60(6):751–7.PubMedCrossRefGoogle Scholar
  159. 159.
    van Os J, Bossie CA, Lasser RA. Improvements in stable patients with psychotic disorders switched from oral conventional antipsychotics therapy to long-acting risperidone. Int Clin Psychopharmacol. 2004;19(4):229–32.PubMedCrossRefGoogle Scholar
  160. 160.
    Mahmoud RA, Engelhart LM, Janagap CC, Oster G, Ollendorf D. Risperidone versus conventional antipsychotics for schizophrenia and schizoaffective disorder: symptoms, quality of life and resource use under customary clinical care. Clin Drug Investig. 2004;24(5):275–86.PubMedCrossRefGoogle Scholar
  161. 161.
    Hawley C, Turner M, Latif MA, Curtis V, Saleem PT, Wilton K. Switching stable patients with schizophrenia from depot and oral antipsychotics to long-acting injectable risperidone: reasons for switching and safety. Hum Psychopharmacol. 2010;25(1):37–46.PubMedCrossRefGoogle Scholar
  162. 162.
    Marinis TD, Saleem PT, Glue P, et al. Switching to long-acting injectable risperidone is beneficial with regard to clinical outcomes, regardless of previous conventional medication in patients with schizophrenia. Pharmacopsychiatry. 2007;40(6):257–63.PubMedCrossRefGoogle Scholar
  163. 163.
    Muscatello MR, Bruno A, Pandolfo G, Mico U, Settineri S, Zoccali R. Emerging treatments in the management of schizophrenia: focus on sertindole. Drug Des Devel Ther. 2010;4:187–201.PubMedGoogle Scholar
  164. 164.
    de Hert M, Mittoux A, He Y, Peuskens J. Metabolic parameters in the short- and long-term treatment of schizophrenia with sertindole or risperidone. Eur Arch Psychiatry Clin Neurosci. 2011;261(4):231–9.PubMedCrossRefGoogle Scholar
  165. 165.
    Berecz R, Glaub T, Kellermann M, de la Rubia A, Llerena A, Degrell I. Clozapine withdrawal symptoms after change to sertindole in a schizophrenic patient. Pharmacopsychiatry. 2000;33(1):42–4.PubMedCrossRefGoogle Scholar
  166. 166.
    Hanisch F, Friedemann J, Pillmann F. Combined treatment with quetiapine and sertindole in therapy refractory insomnia after clozapine discontinuation. J Psychopharmacol. 2010;24(11):1725–6.PubMedCrossRefGoogle Scholar
  167. 167.
    Perquin LN. Treatment with the new antipsychotic sertindole for late-occurring undesirable movement effects. Int Clin Psychopharmacol. 2005;20(6):335–8.PubMedCrossRefGoogle Scholar
  168. 168.
    Thomas SH, Drici MD, Hall GC, et al. Safety of sertindole versus risperidone in schizophrenia: principal results of the sertindole cohort prospective study (SCoP). Acta Psychiatr Scand. 2010;122(5):345–55.PubMedCrossRefGoogle Scholar
  169. 169.
    Alptekin K, Hafez J, Brook S, et al. Efficacy and tolerability of switching to ziprasidone from olanzapine, risperidone or haloperidol: an international, multicenter study. Int Clin Psychopharmacol. 2009;24(5):229–38.PubMedCrossRefGoogle Scholar
  170. 170.
    Harvey PD, Meltzer H, Simpson GM, et al. Improvement in cognitive function following a switch to ziprasidone from conventional antipsychotics, olanzapine, or risperidone in outpatients with schizophrenia. Schizophr Res. 2004;66(2–3):101–13.PubMedCrossRefGoogle Scholar
  171. 171.
    Karayal ON, Glue P, Bachinsky M, et al. Switching from quetiapine to ziprasidone: a sixteen-week, open-label, multicenter study evaluating the effectiveness and safety of ziprasidone in outpatient subjects with schizophrenia or schizoaffective disorder. J Psychiatr Pract. 2011;17(2):100–9.PubMedCrossRefGoogle Scholar
  172. 172.
    Weiden PJ, Daniel DG, Simpson G, Romano SJ. Improvement in indices of health status in outpatients with schizophrenia switched to ziprasidone. J Clin Psychopharmacol. 2003;23(6):595–600.PubMedCrossRefGoogle Scholar
  173. 173.
    Kim SW, Shin IS, Kim JM, Bae KY, Yang SJ, Yoon JS. Effectiveness of switching from aripiprazole to ziprasidone in patients with schizophrenia. Clin Neuropharmacol. 2010;33(3):121–5.PubMedCrossRefGoogle Scholar
  174. 174.
    Montes JM, Rodriguez JL, Balbo E, et al. Improvement in antipsychotic-related metabolic disturbances in patients with schizophrenia switched to ziprasidone. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(2):383–8.PubMedCrossRefGoogle Scholar
  175. 175.
    Rossi A, Vita A, Tiradritti P, Romeo F. Assessment of clinical and metabolic status, and subjective well-being, in schizophrenic patients switched from typical and atypical antipsychotics to ziprasidone. Int Clin Psychopharmacol. 2008;23(4):216–22.PubMedCrossRefGoogle Scholar
  176. 176.
    Stip E, Zhornitsky S, Potvin S, Tourjman V. Switching from conventional antipsychotics to ziprasidone: a randomized, open-label comparison of regimen strategies. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(6):997–1000.PubMedCrossRefGoogle Scholar
  177. 177.
    Weiden PJ, Simpson GM, Potkin SG, O’Sullivan RL. Effectiveness of switching to ziprasidone for stable but symptomatic outpatients with schizophrenia. J Clin Psychiatry. 2003;64(5):580–8.PubMedCrossRefGoogle Scholar
  178. 178.
    Rossi A, Canas F, Fagiolini A, et al. Switching among antipsychotics in everyday clinical practice: focus on ziprasidone. Postgrad Med. 2011;123(1):135–59.PubMedCrossRefGoogle Scholar
  179. 179.
    Essock SM, Covell NH, Davis SM, Stroup TS, Rosenheck RA, Lieberman JA. Effectiveness of switching antipsychotic medications. Am J Psychiatry. 2006;163(12):2090–5.PubMedCrossRefGoogle Scholar
  180. 180.
    Faries DE, Ascher-Svanum H, Nyhuis AW, Kinon BJ. Clinical and economic ramifications of switching antipsychotics in the treatment of schizophrenia. BMC Psychiatry. 2009;9:54.PubMedCrossRefGoogle Scholar
  181. 181.
    Rosenheck RA, Davis S, Covell N, et al. Does switching to a new antipsychotic improve outcomes? Data from the CATIE trial. Schizophr Res. 2009;107(1):22–9.PubMedCrossRefGoogle Scholar
  182. 182.
    Miller CH, Hummer M, Oberbauer H, Kurzthaler I, DeCol C, Fleischhacker WW. Risk factors for the development of neuroleptic induced akathisia. Eur Neuropsychopharmacol. 1997;7(1):51–5.PubMedCrossRefGoogle Scholar
  183. 183.
    Haddad PM, Das A, Keyhani S, Chaudhry IB. Antipsychotic drugs and extrapyramidal side effects in first episode psychosis: a systematic review of head-head comparisons. J Psychopharmacol. 2012;26(5 Suppl):15–26.PubMedCrossRefGoogle Scholar
  184. 184.
    Stubner S, Rustenbeck E, Grohmann R, et al. Severe and uncommon involuntary movement disorders due to psychotropic drugs. Pharmacopsychiatry. 2004;37(Suppl 1):S54–64.PubMedGoogle Scholar
  185. 185.
    Burns T, Chabannes JP, Demyttenaere K. Switching antipsychotic medications: general recommendations and switching to amisulpride. Curr Med Res Opin. 2002;18(4):201–8.PubMedCrossRefGoogle Scholar
  186. 186.
    Conley RR, Kelly DL. Drug-drug interactions associated with second-generation antipsychotics: considerations for clinicians and patients. Psychopharmacol Bull. 2007;40(1):77–97.PubMedGoogle Scholar
  187. 187.
    de Leon J, Santoro V, D’Arrigo C, Spina E. Interactions between antiepileptics and second-generation antipsychotics. Expert Opin Drug Metab Toxicol. 2012;8(3):311–34.PubMedCrossRefGoogle Scholar
  188. 188.
    Urichuk L, Prior TI, Dursun S, Baker G. Metabolism of atypical antipsychotics: involvement of cytochrome p450 enzymes and relevance for drug-drug interactions. Curr Drug Metab. 2008;9(5):410–8.PubMedCrossRefGoogle Scholar
  189. 189.
    Mori K, Nagao M, Yamashita H, Morinobu S, Yamawaki S. Effect of switching to atypical antipsychotics on memory in patients with chronic schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(4):659–65.PubMedCrossRefGoogle Scholar
  190. 190.
    Davis JM, Leucht S. Commentary on strategies for switching antipsychotics. BMC Med. 2008;6:18.PubMedCrossRefGoogle Scholar
  191. 191.
    Kane JM, Leucht S, Carpenter D, Docherty JP. The expert consensus guideline series. Optimizing pharmacologic treatment of psychotic disorders: introduction: methods, commentary, and summary. J Clin Psychiatry. 2003;64(Suppl 12):5–19.PubMedGoogle Scholar
  192. 192.
    Edlinger M, Wolfgang FW. Review: no evidence to support gradual over abrupt switching of antipsychotics. Evid Based Ment Health. 2006;9(1):10.PubMedCrossRefGoogle Scholar
  193. 193.
    Remington G, Chue P, Stip E, Kopala L, Girard T, Christensen B. The crossover approach to switching antipsychotics: what is the evidence? Schizophr Res. 2005;76(2–3):267–72.PubMedCrossRefGoogle Scholar
  194. 194.
    Miodownik C, Lerner V, Kibari A, Toder D, Cohen H. The effect of sudden clozapine discontinuation on management of schizophrenic patients: A retrospective controlled study. J Clin Psychiatry. 2006;67(8):1204–8.PubMedCrossRefGoogle Scholar
  195. 195.
    Scheifler PL, Weiden PJ. Beyond psychopharmacology. Psychosocial strategies for getting the best results when switching antipsychotic medications. Postgrad Med. 2006;Spec No: 45–53.Google Scholar
  196. 196.
    Abbas AI, Hedlund PB, Huang XP, Tran TB, Meltzer HY, Roth BL. Amisulpride is a potent 5-HT7 antagonist: relevance for antidepressant actions in vivo. Psychopharmacology (Berl). 2009;205(1):119–28.CrossRefGoogle Scholar
  197. 197.
    Keck PE Jr, McElroy SL. Aripiprazole: a partial dopamine D2 receptor agonist antipsychotic. Expert Opin Investig Drugs. 2003;12(4):655–62.PubMedCrossRefGoogle Scholar
  198. 198.
    Shahid M, Walker GB, Zorn SH, Wong EH. Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol. 2009;23(1):65–73.PubMedCrossRefGoogle Scholar
  199. 199.
    Bymaster FP, Calligaro DO, Falcone JF, et al. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology. 1996;14(2):87–96.PubMedCrossRefGoogle Scholar
  200. 200.
    Citrome L. Iloperidone: chemistry, pharmacodynamics, pharmacokinetics and metabolism, clinical efficacy, safety and tolerability, regulatory affairs, and an opinion. Expert Opin Drug Metab Toxicol. 2010;6(12):1551–64.PubMedCrossRefGoogle Scholar
  201. 201.
    Leysen JE, Janssen PM, Megens AA, Schotte A. Risperidone: a novel antipsychotic with balanced serotonin-dopamine antagonism, receptor occupancy profile, and pharmacologic activity. J Clin Psychiatry. 1994;55(Suppl):5–12.PubMedGoogle Scholar
  202. 202.
    Arnt J, Skarsfeldt T. Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology. 1998;18(2):63–101.PubMedCrossRefGoogle Scholar
  203. 203.
    Ishibashi T, Horisawa T, Tokuda K, et al. Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther. 2010;334(1):171–81.PubMedCrossRefGoogle Scholar
  204. 204.
    Bishara D, Taylor D. Upcoming agents for the treatment of schizophrenia: mechanism of action, efficacy and tolerability. Drugs. 2008;68(16):2269–92.PubMedCrossRefGoogle Scholar
  205. 205.
    Balle T, Perregaard J, Ramirez MT, et al. Synthesis and structure-affinity relationship investigations of 5-heteroaryl-substituted analogues of the antipsychotic sertindole. A new class of highly selective alpha(1) adrenoceptor antagonists. J Med Chem. 2003;46(2):265–83.PubMedCrossRefGoogle Scholar
  206. 206.
    Seeger TF, Seymour PA, Schmidt AW, et al. Ziprasidone (CP-88,059): a new antipsychotic with combined dopamine and serotonin receptor antagonist activity. J Pharmacol Exp Ther. 1995;275(1):101–13.PubMedGoogle Scholar
  207. 207.
    Kongsamut S, Roehr JE, Cai J, et al. Iloperidone binding to human and rat dopamine and 5-HT receptors. Eur J Pharmacol. 1996;317(2–3):417–23.PubMedCrossRefGoogle Scholar
  208. 208.
    Meyer JM, Loebel AD, Schweizer E. Lurasidone: a new drug in development for schizophrenia. Expert Opin Investig Drugs. 2009;18(11):1715–26.PubMedCrossRefGoogle Scholar
  209. 209.
    Richelson E, Souder T. Binding of antipsychotic drugs to human brain receptors focus on newer generation compounds. Life Sci. 2000;68(1):29–39.PubMedCrossRefGoogle Scholar
  210. 210.
    Mork A, Witten LM, Arnt J. Effect of sertindole on extracellular dopamine, acetylcholine, and glutamate in the medial prefrontal cortex of conscious rats: a comparison with risperidone and exploration of mechanisms involved. Psychopharmacology (Berl). 2009;206(1):39–49.CrossRefGoogle Scholar
  211. 211.
    Knight JA, Smith C, Toohey N, Klein MT, Teitler M. Pharmacological analysis of the novel, rapid, and potent inactivation of the human 5-hydroxytryptamine7 receptor by risperidone, 9-OH-risperidone, and other inactivating antagonists. Mol Pharmacol. 2009;75(2):374–80.PubMedCrossRefGoogle Scholar
  212. 212.
    Subramanian N, Kalkman HO. Receptor profile of P88–8991 and P95–12113, metabolites of the novel antipsychotic iloperidone. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(3):553–60.PubMedCrossRefGoogle Scholar
  213. 213.
    Schotte A, Janssen PF, Gommeren W, et al. Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology (Berl). 1996;124(1–2):57–73.CrossRefGoogle Scholar
  214. 214.
    Kalkman HO, Feuerbach D, Lotscher E, Schoeffter P. Functional characterization of the novel antipsychotic iloperidone at human D2, D3, alpha 2C, 5-HT6, and 5-HT1A receptors. Life Sci. 2003;73(9):1151–9.PubMedCrossRefGoogle Scholar
  215. 215.
    Cosi C, Koek W. Agonist, antagonist, and inverse agonist properties of antipsychotics at human recombinant 5-HT(1A) receptors expressed in HeLa cells. Eur J Pharmacol. 2001;433(1):55–62.PubMedCrossRefGoogle Scholar
  216. 216.
    Herrick-Davis K, Grinde E, Teitler M. Inverse agonist activity of atypical antipsychotic drugs at human 5-hydroxytryptamine2C receptors. J Pharmacol Exp Ther. 2000;295(1):226–32.PubMedGoogle Scholar
  217. 217.
    Zahrt J, Taylor JR, Mathew RG, Arnsten AF. Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci. 1997;17(21):8528–35.PubMedGoogle Scholar
  218. 218.
    Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW. Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci. 2000;20(3):1208–15.PubMedGoogle Scholar
  219. 219.
    Mattay VS, Goldberg TE, Fera F, et al. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA. 2003;100(10):6186–91.PubMedCrossRefGoogle Scholar
  220. 220.
    Xu TX, Sotnikova TD, Liang C, et al. Hyperdopaminergic tone erodes prefrontal long-term potential via a D2 receptor-operated protein phosphatase gate. J Neurosci. 2009;29(45):14086–99.PubMedCrossRefGoogle Scholar
  221. 221.
    Tarsy D, Baldessarini RJ. Epidemiology of tardive dyskinesia: is risk declining with modern antipsychotics? Mov Disord. 2006;21(5):589–98.PubMedCrossRefGoogle Scholar
  222. 222.
    Joseph JD, Wang YM, Miles PR, et al. Dopamine autoreceptor regulation of release and uptake in mouse brain slices in the absence of D(3) receptors. Neuroscience. 2002;112(1):39–49.PubMedCrossRefGoogle Scholar
  223. 223.
    De Mei C, Ramos M, Iitaka C, Borrelli E. Getting specialized: presynaptic and postsynaptic dopamine D2 receptors. Curr Opin Pharmacol. 2009;9(1):53–8.PubMedCrossRefGoogle Scholar
  224. 224.
    Rondou P, Haegeman G, Van CK. The dopamine D4 receptor: biochemical and signalling properties. Cell Mol Life Sci. 2010;67(12):1971–86.PubMedCrossRefGoogle Scholar
  225. 225.
    Meador-Woodruff JH, Grandy DK, Van Tol HH, et al. Dopamine receptor gene expression in the human medial temporal lobe. Neuropsychopharmacology. 1994;10(4):239–48.PubMedGoogle Scholar
  226. 226.
    Wong AH, Van Tol HH. The dopamine D4 receptors and mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(7):1091–9.PubMedCrossRefGoogle Scholar
  227. 227.
    Wilson JM, Sanyal S, Van Tol HH. Dopamine D2 and D4 receptor ligands: relation to antipsychotic action. Eur J Pharmacol. 1998;351(3):273–86.PubMedCrossRefGoogle Scholar
  228. 228.
    Pucadyil TJ, Kalipatnapu S, Chattopadhyay A. The serotonin1A receptor: a representative member of the serotonin receptor family. Cell Mol Neurobiol. 2005;25(3–4):553–80.PubMedCrossRefGoogle Scholar
  229. 229.
    Luna-Munguia H, Manuel-Apolinar L, Rocha L, Meneses A. 5-HT1A receptor expression during memory formation. Psychopharmacology (Berl). 2005;181(2):309–18.CrossRefGoogle Scholar
  230. 230.
    Kusserow H, Davies B, Hortnagl H, et al. Reduced anxiety-related behaviour in transgenic mice overexpressing serotonin 1A receptors. Brain Res Mol Brain Res. 2004;129(1–2):104–16.PubMedCrossRefGoogle Scholar
  231. 231.
    Meltzer HY, Sumiyoshi T. Does stimulation of 5-HT(1A) receptors improve cognition in schizophrenia? Behav Brain Res. 2008;195(1):98–102.PubMedCrossRefGoogle Scholar
  232. 232.
    Sumiyoshi T, Park S, Jayathilake K, Roy A, Ertugrul A, Meltzer HY. Effect of buspirone, a serotonin1A partial agonist, on cognitive function in schizophrenia: a randomized, double-blind, placebo-controlled study. Schizophr Res. 2007;95(1–3):158–68.PubMedCrossRefGoogle Scholar
  233. 233.
    Sumiyoshi T, Meltzer HY. Serotonin 1A receptors in memory function. Am J Psychiatry. 2004;161(8):1505–6.PubMedCrossRefGoogle Scholar
  234. 234.
    Ohno Y. Therapeutic role of 5-HT1A receptors in the treatment of schizophrenia and Parkinson’s disease. CNS Neurosci Ther. 2011;17(1):58–65.PubMedCrossRefGoogle Scholar
  235. 235.
    Neal-Beliveau BS, Joyce JN, Lucki I. Serotonergic involvement in haloperidol-induced catalepsy. J Pharmacol Exp Ther. 1993;265(1):207–17.PubMedGoogle Scholar
  236. 236.
    Prinssen EP, Colpaert FC, Koek W. 5-HT1A receptor activation and anti-cataleptic effects: high-efficacy agonists maximally inhibit haloperidol-induced catalepsy. Eur J Pharmacol. 2002;453(2–3):217–21.PubMedCrossRefGoogle Scholar
  237. 237.
    Prinssen EP, Koek W, Colpaert FC, Kleven MS. Repeated treatment with 8-OH-DPAT induces tolerance to its ability to produce the 5-HT1A behavioural syndrome, but not to its ability to attenuate haloperidol-induced catalepsy. Behav Pharmacol. 2000;11(3–4):299–305.PubMedCrossRefGoogle Scholar
  238. 238.
    Shimizu S, Tatara A, Imaki J, Ohno Y. Role of cortical and striatal 5-HT1A receptors in alleviating antipsychotic-induced extrapyramidal disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(6):877–81.PubMedCrossRefGoogle Scholar
  239. 239.
    Ohno Y, Shimizu S, Imaki J. Effects of tandospirone, a 5-HT1A agonistic anxiolytic agent, on haloperidol-induced catalepsy and forebrain Fos expression in mice. J Pharmacol Sci. 2009;109(4):593–9.PubMedCrossRefGoogle Scholar
  240. 240.
    Ohno Y, Shimizu S, Imaki J, et al. Anticataleptic 8-OH-DPAT preferentially counteracts with haloperidol-induced Fos expression in the dorsolateral striatum and the core region of the nucleus accumbens. Neuropharmacology. 2008;55(5):717–23.PubMedCrossRefGoogle Scholar
  241. 241.
    Ohno Y, Shimizu S, Imaki J, et al. Evaluation of the antibradykinetic actions of 5-HT1A agonists using the mouse pole test. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(5):1302–7.PubMedCrossRefGoogle Scholar
  242. 242.
    Navailles S, De Deurwaerdère P. Presynaptic control of serotonin on striatal dopamine function. Psychopharmacology (Berl). 2011;213(2–3):213–42.CrossRefGoogle Scholar
  243. 243.
    Meltzer HY, Li Z, Kaneda Y, Ichikawa J. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(7):1159–72.PubMedCrossRefGoogle Scholar
  244. 244.
    Remington G, Kapur S. D2 and 5-HT2 receptor effects of antipsychotics: bridging basic and clinical findings using PET. J Clin Psychiatry. 1999;60(Suppl 10):15–9.PubMedGoogle Scholar
  245. 245.
    Kapur S, Remington G. Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatry. 1996;153(4):466–76.PubMedGoogle Scholar
  246. 246.
    Horacek J, Bubenikova-Valesova V, Kopecek M, et al. Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs. 2006;20(5):389–409.PubMedCrossRefGoogle Scholar
  247. 247.
    Meltzer HY, Huang M. In vivo actions of atypical antipsychotic drug on serotonergic and dopaminergic systems. Prog Brain Res. 2008;172:177–97.PubMedCrossRefGoogle Scholar
  248. 248.
    Creed-Carson M, Oraha A, Nobrega JN. Effects of 5-HT(2A) and 5-HT(2C) receptor antagonists on acute and chronic dyskinetic effects induced by haloperidol in rats. Behav Brain Res. 2011;219(2):273–9.PubMedCrossRefGoogle Scholar
  249. 249.
    Codony X, Vela JM, Ramirez MJ. 5-HT(6) receptor and cognition. Curr Opin Pharmacol. 2011;11(1):94–100.PubMedCrossRefGoogle Scholar
  250. 250.
    Marazziti D, Baroni S, Dell’Osso MC, Bordi F, Borsini F. Serotonin receptors of type 6 (5-HT6): what can we expect from them? Curr Med Chem. 2011;18(18):2783–90.PubMedCrossRefGoogle Scholar
  251. 251.
    Hedlund PB. The 5-HT7 receptor and disorders of the nervous system: an overview. Psychopharmacology (Berl). 2009;206(3):345–54.CrossRefGoogle Scholar
  252. 252.
    Brown RE, Stevens DR, Haas HL. The physiology of brain histamine. Prog Neurobiol. 2001;63(6):637–72.PubMedCrossRefGoogle Scholar
  253. 253.
    Fukagawa K, Sakata T, Shiraishi T, et al. Neuronal histamine modulates feeding behavior through H1-receptor in rat hypothalamus. Am J Physiol. 1989;256(3 Pt 2):R605–11.PubMedGoogle Scholar
  254. 254.
    Yanai K, Son LZ, Endou M, et al. Behavioural characterization and amounts of brain monoamines and their metabolites in mice lacking histamine H1 receptors. Neuroscience. 1998;87(2):479–87.PubMedCrossRefGoogle Scholar
  255. 255.
    Schwartz JC, Arrang JM, Garbarg M, Traiffort E. Histamine. In: Bloom FE, Kupfer DJ, editors. Psychopharmacology: the fourth generation of progress. New York: Raven Press; 1995. p. 397–405.Google Scholar
  256. 256.
    Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci. 2003;4(2):121–30.PubMedCrossRefGoogle Scholar
  257. 257.
    Mercer LP, Kelley DS, Humphries LL, Dunn JD. Manipulation of central nervous system histamine or histaminergic receptors (H1) affects food intake in rats. J Nutr. 1994;124(7):1029–36.PubMedGoogle Scholar
  258. 258.
    Watanabe T, Yanai K. Studies on functional roles of the histaminergic neuron system by using pharmacological agents, knockout mice and positron emission tomography. Tohoku J Exp Med. 2001;195(4):197–217.PubMedCrossRefGoogle Scholar
  259. 259.
    Masaki T, Yoshimatsu H, Chiba S, Watanabe T, Sakata T. Targeted disruption of histamine H1-receptor attenuates regulatory effects of leptin on feeding, adiposity, and UCP family in mice. Diabetes. 2001;50(2):385–91.PubMedCrossRefGoogle Scholar
  260. 260.
    Schwartz JC, Arrang JM, Garbarg M, Pollard H, Ruat M. Histaminergic transmission in the mammalian brain. Physiol Rev. 1991;71:1–51.PubMedGoogle Scholar
  261. 261.
    Bhargava KP, Kulshrestha VK, Santhakumari G, Srivastava YP. Mechanism of histamine-induced antidiuretic response. Br J Pharmacol. 1973;47(4):700–6.PubMedCrossRefGoogle Scholar
  262. 262.
    Kjaer A, Knigge U, Rouleau A, Garbarg M, Warberg J. Dehydration-induced release of vasopressin involves activation of hypothalamic histaminergic neurons. Endocrinology. 1994;135(2):675–81.PubMedCrossRefGoogle Scholar
  263. 263.
    Poulakos JJ, Gertner SB. Studies on the cardiovascular actions of central histamine H1 and H2 receptors. J Pharmacol Exp Ther. 1989;250(2):500–7.PubMedGoogle Scholar
  264. 264.
    Malmberg-Aiello P, Lamberti C, Ghelardini C, Giotti A, Bartolini A. Role of histamine in rodent antinociception. Br J Pharmacol. 1994;111(4):1269–79.PubMedCrossRefGoogle Scholar
  265. 265.
    Malmberg-Aiello P, Lamberti C, Ipponi A, Hanninen J, Ghelardini C, Bartolini A. Effects of two histamine-N-methyltransferase inhibitors, SKF 91488 and BW 301 U, in rodent antinociception. Naunyn Schmiedebergs Arch Pharmacol. 1997;355(3):354–60.PubMedCrossRefGoogle Scholar
  266. 266.
    Traiffort E, Pollard H, Moreau J, et al. Pharmacological characterization and autoradiographic localization of histamine H2 receptors in human brain identified with [125I]iodoaminopotentidine. J Neurochem. 1992;59(1):290–9.PubMedCrossRefGoogle Scholar
  267. 267.
    Vizuete ML, Traiffort E, Bouthenet ML, et al. Detailed mapping of the histamine H2 receptor and its gene transcripts in guinea-pig brain. Neuroscience. 1997;80(2):321–43.PubMedCrossRefGoogle Scholar
  268. 268.
    Privou C, Knoche A, Hasenohrl RU, Huston JP. The H1- and H2-histamine blockers chlorpheniramine and ranitidine applied to the nucleus basalis magnocellularis region modulate anxiety and reinforcement related processes. Neuropharmacology. 1998;37(8):1019–32.PubMedCrossRefGoogle Scholar
  269. 269.
    Dhawan BN, Shukla R, Srimal RC. Analysis of histamine receptors in the central thermoregulatory mechanism of Mastomys natalensis. Br J Pharmacol. 1982;75(1):145–9.PubMedCrossRefGoogle Scholar
  270. 270.
    Donoso AO, Bannza AM. Acute effects of histamine on plasma prolactin and luteininzing hormone levels in male rats. J Neural Transm. 1976;39(1–2):95–101.PubMedCrossRefGoogle Scholar
  271. 271.
    Appl H, Holzammer T, Dove S, Haen E, Strasser A, Seifert R. Interactions of recombinant human histamine H(1), H (2), H (3), and H (4) receptors with 34 antidepressants and antipsychotics. Naunyn Schmiedebergs Arch Pharmacol. 2012;385(2):145–70.PubMedCrossRefGoogle Scholar
  272. 272.
    Arrang JM, Garbarg M, Schwartz JC. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature. 1983;302(5911):832–7.PubMedCrossRefGoogle Scholar
  273. 273.
    Ookuma K, Sakata T, Fukagawa K, et al. Neuronal histamine in the hypothalamus suppresses food intake in rats. Brain Res. 1993;628(1–2):235–42.PubMedCrossRefGoogle Scholar
  274. 274.
    Schwartz JC, Arrang JM, Garbarg M, Korner M. Properties and roles of the three subclasses of histamine receptors in brain. J Exp Biol. 1986;124:203–24.PubMedGoogle Scholar
  275. 275.
    Haaksma EE, Leurs R, Timmerman H. Histamine receptors: subclasses and specific ligands. Pharmacol Ther. 1990;47(1):73–104.PubMedCrossRefGoogle Scholar
  276. 276.
    Brown RE, Reymann KG. Histamine H3 receptor-mediated depression of synaptic transmission in the dentate gyrus of the rat in vitro. J Physiol. 1996;496(Pt 1):175–84.PubMedGoogle Scholar
  277. 277.
    Garcia M, Floran B, Arias-Montano JA, Young JM, Aceves J. Histamine H3 receptor activation selectively inhibits dopamine D1 receptor-dependent [3H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata. Neuroscience. 1997;80(1):241–9.PubMedCrossRefGoogle Scholar
  278. 278.
    Schlicker E, Fink K, Hinterthaner M, Gothert M. Inhibition of noradrenaline release in the rat brain cortex via presynaptic H3 receptors. Naunyn Schmiedebergs Arch Pharmacol. 1989;340(6):633–8.PubMedCrossRefGoogle Scholar
  279. 279.
    Schlicker E, Fink K, Detzner M, Gothert M. Histamine inhibits dopamine release in the mouse striatum via presynaptic H3 receptors. J Neural Transm Gen Sect. 1993;93(1):1–10.PubMedCrossRefGoogle Scholar
  280. 280.
    Arrang JM, Drutel G, Schwartz JC. Characterization of histamine H3 receptors regulating acetylcholine release in rat entorhinal cortex. Br J Pharmacol. 1995;114(7):1518–22.PubMedCrossRefGoogle Scholar
  281. 281.
    Schlicker E, Betz R, Gothert M. Histamine H3 receptor-mediated inhibition of serotonin release in the rat brain cortex. Naunyn Schmiedebergs Arch Pharmacol. 1988;337(5):588–90.PubMedCrossRefGoogle Scholar
  282. 282.
    Hill SJ, Ganellin CR, Timmerman H, et al. International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev. 1997;49(3):253–78.PubMedGoogle Scholar
  283. 283.
    Tokita S, Takahashi K, Kotani H. Recent advances in molecular pharmacology of the histamine systems: physiology and pharmacology of histamine H3 receptor: roles in feeding regulation and therapeutic potential for metabolic disorders. J Pharmacol Sci. 2006;101(1):12–8.PubMedCrossRefGoogle Scholar
  284. 284.
    Wada H, Inagaki N, Itowi N, Yamatodani A. Histaminergic neuron system: morphological features and possible functions. Agents Actions Suppl. 1991;33:11–27.PubMedGoogle Scholar
  285. 285.
    Ito C. Histamine H3-receptor inverse agonists as novel antipsychotics. Cent Nerv Syst Agents Med Chem. 2009;9(2):132–6.PubMedCrossRefGoogle Scholar
  286. 286.
    Nakamura T, Itadani H, Hidaka Y, Ohta M, Tanaka K. Molecular cloning and characterization of a new human histamine receptor, HH4R. Biochem Biophys Res Commun. 2000;279(2):615–20.PubMedCrossRefGoogle Scholar
  287. 287.
    Coruzzi G, Pozzoli C, Adami M, et al. Strain-dependent effects of the histamine H(4) receptor antagonist JNJ7777120 in a murine model of acute skin inflammation. Exp Dermatol. 2012;21(1):32–7.PubMedCrossRefGoogle Scholar
  288. 288.
    Hsieh GC, Chandran P, Salyers AK, et al. H4 receptor antagonism exhibits anti-nociceptive effects in inflammatory and neuropathic pain models in rats. Pharmacol Biochem Behav. 2010;95(1):41–50.PubMedCrossRefGoogle Scholar
  289. 289.
    Flynn DD, Ferrari-DiLeo G, Mash DC, Levey AI. Differential regulation of molecular subtypes of muscarinic receptors in Alzheimer’s disease. J Neurochem. 1995;64(4):1888–91.PubMedCrossRefGoogle Scholar
  290. 290.
    Alcantara AA, Mrzljak L, Jakab RL, Levey AI, Hersch SM, Goldman-Rakic PS. Muscarinic m1 and m2 receptor proteins in local circuit and projection neurons of the primate striatum: anatomical evidence for cholinergic modulation of glutamatergic prefronto-striatal pathways. J Comp Neurol. 2001;434(4):445–60.PubMedCrossRefGoogle Scholar
  291. 291.
    Mrzljak L, Levey AI, Goldman-Rakic PS. Association of m1 and m2 muscarinic receptor proteins with asymmetric synapses in the primate cerebral cortex: morphological evidence for cholinergic modulation of excitatory neurotransmission. Proc Natl Acad Sci USA. 1993;90(11):5194–8.PubMedCrossRefGoogle Scholar
  292. 292.
    Nathanson NM. Synthesis, trafficking, and localization of muscarinic acetylcholine receptors. Pharmacol Ther. 2008;119(1):33–43.PubMedCrossRefGoogle Scholar
  293. 293.
    Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ. Expression of m1–m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci. 1995;15(5 Pt 2):4077–92.PubMedGoogle Scholar
  294. 294.
    Rouse ST, Levey AI. Muscarinic acetylcholine receptor immunoreactivity after hippocampal commissural/associational pathway lesions: evidence for multiple presynaptic receptor subtypes. J Comp Neurol. 1997;380(3):382–94.PubMedCrossRefGoogle Scholar
  295. 295.
    Volpicelli LA, Levey AI. Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Prog Brain Res. 2004;145:59–66.PubMedCrossRefGoogle Scholar
  296. 296.
    Michal P, Lysikova M, El-Fakahany EE, Tucek S. Clozapine interaction with the M2 and M4 subtypes of muscarinic receptors. Eur J Pharmacol. 1999;376(1–2):119–25.PubMedCrossRefGoogle Scholar
  297. 297.
    Olianas MC, Maullu C, Onali P. Mixed agonist-antagonist properties of clozapine at different human cloned muscarinic receptor subtypes expressed in Chinese hamster ovary cells. Neuropsychopharmacology. 1999;20(3):263–70.PubMedCrossRefGoogle Scholar
  298. 298.
    Mrzljak L, Levey AI, Rakic P. Selective expression of m2 muscarinic receptor in the parvocellular channel of the primate visual cortex. Proc Natl Acad Sci USA. 1996;93(14):7337–40.PubMedCrossRefGoogle Scholar
  299. 299.
    Mrzljak L, Levey AI, Belcher S, Goldman-Rakic PS. Localization of the m2 muscarinic acetylcholine receptor protein and mRNA in cortical neurons of the normal and cholinergically deafferented rhesus monkey. J Comp Neurol. 1998;390(1):112–32.PubMedCrossRefGoogle Scholar
  300. 300.
    Decossas M, Bloch B, Bernard V. Trafficking of the muscarinic m2 autoreceptor in cholinergic basalocortical neurons in vivo: differential regulation of plasma membrane receptor availability and intraneuronal localization in acetylcholinesterase-deficient and -inhibited mice. J Comp Neurol. 2003;462(3):302–14.PubMedCrossRefGoogle Scholar
  301. 301.
    Bonsi P, Martella G, Cuomo D, et al. Loss of muscarinic autoreceptor function impairs long-term depression but not long-term potentiation in the striatum. J Neurosci. 2008;28(24):6258–63.PubMedCrossRefGoogle Scholar
  302. 302.
    Rouse ST, Edmunds SM, Yi H, Gilmor ML, Levey AI. Localization of M(2) muscarinic acetylcholine receptor protein in cholinergic and non-cholinergic terminals in rat hippocampus. Neurosci Lett. 2000;284(3):182–6.PubMedCrossRefGoogle Scholar
  303. 303.
    Shen KZ, Johnson SW. Presynaptic dopamine D2 and muscarine M3 receptors inhibit excitatory and inhibitory transmission to rat subthalamic neurones in vitro. J Physiol. 2000;525(Pt 2):331–41.PubMedCrossRefGoogle Scholar
  304. 304.
    Vilaro MT, Palacios JM, Mengod G. Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett. 1990;114(2):154–9.PubMedCrossRefGoogle Scholar
  305. 305.
    Schambra UB, Mackensen GB, Stafford-Smith M, Haines DE, Schwinn DA. Neuron specific alpha-adrenergic receptor expression in human cerebellum: implications for emerging cerebellar roles in neurologic disease. Neuroscience. 2005;135(2):507–23.PubMedCrossRefGoogle Scholar
  306. 306.
    Spreng M, Cotecchia S, Schenk F. A behavioral study of alpha-1b adrenergic receptor knockout mice: increased reaction to novelty and selectively reduced learning capacities. Neurobiol Learn Mem. 2001;75(2):214–29.PubMedCrossRefGoogle Scholar
  307. 307.
    Watson M, McElligott JG. Cerebellar norepinephrine depletion and impaired acquisition of specific locomotor tasks in rats. Brain Res. 1984;296(1):129–38.PubMedCrossRefGoogle Scholar
  308. 308.
    Arnsten AF. Adrenergic targets for the treatment of cognitive deficits in schizophrenia. Psychopharmacology (Berl). 2004;174(1):25–31.CrossRefGoogle Scholar
  309. 309.
    van Kammen DP, Kelley M. Dopamine and norepinephrine activity in schizophrenia. An integrative perspective. Schizophr Res. 1991;4(2):173–91.PubMedCrossRefGoogle Scholar
  310. 310.
    Baldessarini RJ, Huston-Lyons D, Campbell A, Marsh E, Cohen BM. Do central antiadrenergic actions contribute to the atypical properties of clozapine? Br J Psychiatry Suppl. 1992;17:12–6.PubMedGoogle Scholar
  311. 311.
    Woodward DJ, Moises HC, Waterhouse BD, Yeh HH, Cheun JE. The cerebellar norepinephrine system: inhibition, modulation, and gating. Prog Brain Res. 1991;88:331–41.PubMedCrossRefGoogle Scholar
  312. 312.
    Birnbaum S, Gobeske KT, Auerbach J, Taylor JR, Arnsten AF. A role for norepinephrine in stress-induced cognitive deficits: alpha-1-adrenoceptor mediation in the prefrontal cortex. Biol Psychiatry. 1999;46(9):1266–74.PubMedCrossRefGoogle Scholar
  313. 313.
    Arnsten AF, Mathew R, Ubriani R, Taylor JR, Li BM. Alpha-1 noradrenergic receptor stimulation impairs prefrontal cortical cognitive function. Biol Psychiatry. 1999;45(1):26–31.PubMedCrossRefGoogle Scholar
  314. 314.
    Ferry B, Roozendaal B, McGaugh JL. Basolateral amygdala noradrenergic influences on memory storage are mediated by an interaction between beta- and alpha1-adrenoceptors. J Neurosci. 1999;19(12):5119–23.PubMedGoogle Scholar
  315. 315.
    Ferry B, Roozendaal B, McGaugh JL. Involvement of alpha1-adrenoceptors in the basolateral amygdala in modulation of memory storage. Eur J Pharmacol. 1999;372(1):9–16.PubMedCrossRefGoogle Scholar
  316. 316.
    Ferry B, Roozendaal B, McGaugh JL. Role of norepinephrine in mediating stress hormone regulation of long-term memory storage: a critical involvement of the amygdala. Biol Psychiatry. 1999;46(9):1140–52.PubMedCrossRefGoogle Scholar
  317. 317.
    Marshall I, Burt RP, Chapple CR. Noradrenaline contractions of human prostate mediated by alpha 1A-(alpha 1c-) adrenoceptor subtype. Br J Pharmacol. 1995;115(5):781–6.PubMedCrossRefGoogle Scholar
  318. 318.
    Furukawa K, Rosario DJ, Smith DJ, Chapple CR, Uchiyama T, Chess-Williams R. Alpha 1A-adrenoceptor-mediated contractile responses of the human vas deferens. Br J Pharmacol. 1995;116(1):1605–10.PubMedCrossRefGoogle Scholar
  319. 319.
    Moriyama N, Nasu K, Takeuchi T, et al. Quantification and distribution of alpha 1-adrenoceptor subtype mRNAs in human vas deferens: comparison with those of epididymal and pelvic portions. Br J Pharmacol. 1997;122(6):1009–14.PubMedCrossRefGoogle Scholar
  320. 320.
    Docherty JR. Subtypes of functional alpha1- and alpha2-adrenoceptors. Eur J Pharmacol. 1998;361(1):1–15.PubMedCrossRefGoogle Scholar
  321. 321.
    Devauges V, Sara SJ. Activation of the noradrenergic system facilitates an attentional shift in the rat. Behav Brain Res. 1990;39(1):19–28.PubMedCrossRefGoogle Scholar
  322. 322.
    Arnsten AF, Goldman-Rakic PS. Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science. 1985;230(4731):1273–6.PubMedCrossRefGoogle Scholar
  323. 323.
    Sara SJ, Dyon-Laurent C, Herve A. Novelty seeking behavior in the rat is dependent upon the integrity of the noradrenergic system. Brain Res Cogn Brain Res. 1995;2(3):181–7.PubMedCrossRefGoogle Scholar
  324. 324.
    Lakhlani PP, MacMillan LB, Guo TZ, et al. Substitution of a mutant alpha2a-adrenergic receptor via “hit and run” gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc Natl Acad Sci USA. 1997;94(18):9950–5.PubMedCrossRefGoogle Scholar
  325. 325.
    Yavich L, Lappalainen R, Sirvio J, Haapalinna A, MacDonald E. Alpha2-adrenergic control of dopamine overflow and metabolism in mouse striatum. Eur J Pharmacol. 1997;339(2–3):113–9.PubMedCrossRefGoogle Scholar
  326. 326.
    Scheibner J, Trendelenburg AU, Hein L, Starke K. Alpha2-adrenoceptors modulating neuronal serotonin release: a study in alpha2-adrenoceptor subtype-deficient mice. Br J Pharmacol. 2001;132(4):925–33.PubMedCrossRefGoogle Scholar
  327. 327.
    Kamibayashi T, Maze M. Clinical uses of alpha2-adrenergic agonists. Anesthesiology. 2000;93(5):1345–9.PubMedCrossRefGoogle Scholar
  328. 328.
    Knaus AE, Muthig V, Schickinger S, et al. Alpha2-adrenoceptor subtypes–unexpected functions for receptors and ligands derived from gene-targeted mouse models. Neurochem Int. 2007;51(5):277–81.PubMedCrossRefGoogle Scholar
  329. 329.
    Franowicz JS, Arnsten AF. Actions of alpha-2 noradrenergic agonists on spatial working memory and blood pressure in rhesus monkeys appear to be mediated by the same receptor subtype. Psychopharmacology (Berl). 2002;162(3):304–12.CrossRefGoogle Scholar
  330. 330.
    Franowicz JS, Arnsten AF. Treatment with the noradrenergic alpha-2 agonist clonidine, but not diazepam, improves spatial working memory in normal young rhesus monkeys. Neuropsychopharmacology. 1999;21(5):611–21.PubMedCrossRefGoogle Scholar
  331. 331.
    Link RE, Desai K, Hein L, et al. Cardiovascular regulation in mice lacking alpha2-adrenergic receptor subtypes b and c. Science. 1996;273(5276):803–5.PubMedCrossRefGoogle Scholar
  332. 332.
    Sallinen J, Haapalinna A, Viitamaa T, Kobilka BK, Scheinin M. Adrenergic alpha2C-receptors modulate the acoustic startle reflex, prepulse inhibition, and aggression in mice. J Neurosci. 1998;18(8):3035–42.PubMedGoogle Scholar
  333. 333.
    Imaki J, Mae Y, Shimizu S, Ohno Y. Therapeutic potential of alpha2 adrenoceptor antagonism for antipsychotic-induced extrapyramidal motor disorders. Neurosci Lett. 2009;454(2):143–7.PubMedCrossRefGoogle Scholar
  334. 334.
    Marcus MM, Wiker C, Franberg O, et al. Adjunctive alpha2-adrenoceptor blockade enhances the antipsychotic-like effect of risperidone and facilitates cortical dopaminergic and glutamatergic, NMDA receptor-mediated transmission. Int J Neuropsychopharmacol. 2010;13(7):891–903.PubMedCrossRefGoogle Scholar
  335. 335.
    Kalkman HO, Loetscher E. alpha2C-Adrenoceptor blockade by clozapine and other antipsychotic drugs. Eur J Pharmacol. 2003;462(1–3):33–40.PubMedCrossRefGoogle Scholar
  336. 336.
    Sallinen J, Link RE, Haapalinna A, et al. Genetic alteration of alpha 2C-adrenoceptor expression in mice: influence on locomotor, hypothermic, and neurochemical effects of dexmedetomidine, a subtype-nonselective alpha 2-adrenoceptor agonist. Mol Pharmacol. 1997;51(1):36–46.PubMedGoogle Scholar
  337. 337.
    Andrade R. Serotonergic regulation of neuronal excitability in the prefrontal cortex. Neuropharmacology. 2011;61(3):382–6.PubMedCrossRefGoogle Scholar
  338. 338.
    Hagan RM, Kilpatrick GJ, Tyers MB. Interactions between 5-HT3 receptors and cerebral dopamine function: implications for the treatment of schizophrenia and psychoactive substance abuse. Psychopharmacology (Berl). 1993;112(1 Suppl):S68–75.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Anja Cerovecki
    • 1
  • Richard Musil
    • 1
  • Ansgar Klimke
    • 3
  • Florian Seemüller
    • 1
  • Ekkehard Haen
    • 4
  • Rebecca Schennach
    • 1
  • Kai-Uwe Kühn
    • 5
  • Hans-Peter Volz
    • 6
  • Michael Riedel
    • 1
    • 2
  1. 1.Department of Psychiatry and PsychotherapyLudwig Maximilian UniversityMunichGermany
  2. 2.Vinzenz von Paul HospitalRottweilGermany
  3. 3.Clinic for Psychiatry and PsychotherapyVitos Waldkrankenhaus KöppernFriedrichsdorfGermany
  4. 4.Clinical Pharmacology, Department of Psychiatry and PsychotherapyUniversity of RegensburgRegensburgGermany
  5. 5.Department of Psychiatry and PsychotherapyUniversity of BonnBonnGermany
  6. 6.Clinic for Psychiatry and PsychotherapyWerneckGermany

Personalised recommendations