CNS Drugs

, Volume 27, Issue 4, pp 301–319 | Cite as

Plant-Based Medicines for Anxiety Disorders, Part 2: A Review of Clinical Studies with Supporting Preclinical Evidence

  • Jerome SarrisEmail author
  • Erica McIntyre
  • David A. Camfield
Review Article


Research in the area of herbal psychopharmacology has revealed a variety of promising medicines that may provide benefit in the treatment of general anxiety and specific anxiety disorders. However, a comprehensive review of plant-based anxiolytics has been absent to date. Thus, our aim was to provide a comprehensive narrative review of plant-based medicines that have clinical and/or preclinical evidence of anxiolytic activity. We present the article in two parts. In part one, we reviewed herbal medicines for which only preclinical investigations for anxiolytic activity have been performed. In this current article (part two), we review herbal medicines for which there have been both preclinical and clinical investigations of anxiolytic activity. A search of MEDLINE (PubMed), CINAHL, Scopus and the Cochrane Library databases was conducted (up to 28 October 2012) for English language papers using the search terms ‘anxiety’ OR ‘anxiety disorder’ OR ‘generalized anxiety disorder’ OR ‘social phobia’ OR ‘post-traumatic stress disorder’ OR ‘panic disorder’ OR ‘agoraphobia’ OR ‘obsessive compulsive disorder’ in combination with the search terms ‘Herb*’ OR ‘Medicinal Plants’ OR ‘Botanical Medicine’ OR ‘Chinese herb*’, in addition to individual herbal medicines. This search of the literature revealed 1,525 papers, of which 53 plants were included in the review (having at least one study using the whole plant extract). Of these plants, 21 had human clinical trial evidence (reviewed here in part two), with the other 32 having solely preclinical evidence (reviewed in part one). Support for efficacy was found for chronic use (i.e. greater than one day) of the following herbs in treating a range of anxiety disorders in human clinical trials: Piper methysticum, Matricaria recutita, Ginkgo biloba, Scutellaria lateriflora, Silybum marianum, Passiflora incarnata, Withania somniferum, Galphimia glauca, Centella asiatica, Rhodiola rosea, Echinacea spp., Melissa officinalis and Echium amoenum. For several of the plants studied, conclusions need to be tempered due to methodological issues such as small sample sizes, brief intervention durations and non-replication. Current evidence does not support Hypericum perforatum or Valeriana spp. for any anxiety disorder. Acute anxiolytic activity was found for Centella asiatica, Salvia spp., Melissa officinalis, Passiflora incarnata and Citrus aurantium. Bacopa monnieri has shown anxiolytic effects in people with cognitive decline. The therapeutic application of psychotropic plant-based treatments for anxiety disorders is also discussed, specifically Psychotria viridis and Banisteriopsis caarti (ayahuasca), Psilocybe spp. and cannabidiol-enriched (low tetrahydrocannabinol (Δ9-THC)) Cannabis spp.


Generalize Anxiety Disorder Rosmarinic Acid Anxiolytic Effect Silibinin Salidroside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr Jerome Sarris is funded by an Australian National Health & Medical Research Council fellowship (NHMRC funding ID 628875), in a strategic partnership with The University of Melbourne, The Centre for Human Psychopharmacology at the Swinburne University of Technology. Jerome Sarris, Erica McIntyre and David A. Camfield have no conflicts of interest that are directly relevant to the content of this article.


  1. 1.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th text revision ed. Arlington (VA): American Psychiatric Association; 2000.Google Scholar
  2. 2.
    Sarris J, McIntyre E, Camfield D. Plant-based medicines for anxiety disorders, part 1: a review of preclinical studies. CNS Drugs. 2013;27(3):207–19.PubMedCrossRefGoogle Scholar
  3. 3.
    Sarris J. Herbal medicines in the treatment of psychiatric disorders: a systematic review. Phytother Res. 2007;21(8):703–16.PubMedCrossRefGoogle Scholar
  4. 4.
    Sarris J, Kavanagh DJ. Kava and St John’s wort: current evidence for use in mood and anxiety disorders. J Altern Complement Med. 2009;15(8):827–36.PubMedCrossRefGoogle Scholar
  5. 5.
    Spinella M. The psychopharmacology of herbal medicine: plant drugs that alter mind, brain and behavior. Cambridge: MIT Press; 2001.Google Scholar
  6. 6.
    Awad R, Levac D, Cybulska P, et al. Effects of traditionally used anxiolytic botanicals on enzymes of the gamma-aminobutyric acid (GABA) system. Can J Physiol Pharmacol. 2007;85(9):933–42.PubMedCrossRefGoogle Scholar
  7. 7.
    Kumar V. Potential medicinal plants for CNS disorders: an overview. Phytother Res. 2006;20(12):1023–35.PubMedCrossRefGoogle Scholar
  8. 8.
    Sarris J, Panossian A, Schweitzer I, et al. Herbal medicine for depression, anxiety and insomnia: a review of psychopharmacology and clinical evidence. Eur Neuropsychopharmacol. 2011;21(12):841–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Lakhan SE, Vieira KF. Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review. Nutr J. 2010;9:42.PubMedCrossRefGoogle Scholar
  10. 10.
    Chen HC, Hsieh MT, Lai E. Studies on the suanzaorentang in the treatment of anxiety. Psychopharmacology (Berl). 1985;85(4):486–7.CrossRefGoogle Scholar
  11. 11.
    Yuzurihara M, Ikarashi Y, Ishige A, et al. Anxiolytic-like effect of saiboku-to, an oriental herbal medicine, on histaminergics-induced anxiety in mice. Pharmacol Biochem Behav. 2000;67(3):489–95.PubMedCrossRefGoogle Scholar
  12. 12.
    Kuribara H, Iwata H, Tomioka H, et al. The anxiolytic effect of Sho-ju-sen, a Japanese herbal medicine, assessed by an elevated plus-maze test in mice. Phytother Res. 2001;15(2):142–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Mantani N, Hisanaga A, Kogure T, et al. Four cases of panic disorder successfully treated with Kampo (Japanese herbal) medicines: Kami-shoyo-san and Hange-koboku-to. Psychiatry Clin Neurosci. 2002;56(6):617–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Lin YC, Hsieh MT, Chen CF, et al. Anxiolytic effect of ting-chih-wan in mouse behavior models of anxiety. Am J Chin Med. 2003;31(1):47–59.PubMedCrossRefGoogle Scholar
  15. 15.
    Mizoguchi K, Ikeda R, Shoji H, et al. Saikokaryukotsuboreito, a herbal medicine, prevents chronic stress-induced anxiety in rats: comparison with diazepam. J Nat Med. 2009;63(1):69–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Mizoguchi K, Tanaka Y, Tabira T. Anxiolytic effect of a herbal medicine, yokukansan, in aged rats: involvement of serotonergic and dopaminergic transmissions in the prefrontal cortex. J Ethnopharmacol. 2010;127(1):70–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang HN, Peng Y, Tan QR, et al. Free and Easy Wanderer Plus (FEWP), a polyherbal preparation, ameliorates PTSD-like behavior and cognitive impairments in stressed rats. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(8):1458–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Meng XZ, Wu F, Wei PK, et al. A chinese herbal formula to improve general psychological status in posttraumatic stress disorder: a randomized placebo-controlled trial on sichuan earthquake survivors. Evid Based Complement Alternat Med. 2012;2012:691258.PubMedGoogle Scholar
  19. 19.
    Bhattacharya SK, Muruganandam AV. Adaptogenic activity of Withania somnifera: an experimental study using a rat model of chronic stress. Pharmacol Biochem Behav. 2003;75(3):547–55.PubMedCrossRefGoogle Scholar
  20. 20.
    Mehta AK, Binkley P, Gandhi SS, et al. Pharmacological effects of Withania somnifera root extract on GABAA receptor complex. Indian J Med Res. 1991;94:312–5.PubMedGoogle Scholar
  21. 21.
    Bhattacharya SK, Bhattacharya A, Sairam K, et al. Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: an experimental study. Phytomedicine. 2000;7(6):463–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Andrade C, Aswath A, Chaturvedi SK, et al. A double-blind, placebo-controlled evaluation of the anxiolytic efficacy of an ethanolic extract of Withania somnifera. Indian J Psychiatry. 2000;42(3):295–301.PubMedGoogle Scholar
  23. 23.
    Russo A, Borrelli F. Bacopa monniera, a reputed nootropic plant: an overview. Phytomedicine. 2005;12(4):305–17.PubMedCrossRefGoogle Scholar
  24. 24.
    Raghav SS, Dalal H, Srivastava PK, et al. Randomized controlled trial of standardized Bacopa monniera extract in age-associated memory impairment. Indian J Psychiatry. 2006;48:238–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Charles PD, Ambigapathy G, Geraldine P, et al. Bacopa monniera leaf extract up-regulates tryptophan hydroxylase (TPH2) and serotonin transporter (SERT) expression: implications in memory formation. J Ethnopharmacol. 2011;134(1):55–61.PubMedCrossRefGoogle Scholar
  26. 26.
    Singh HK, Dhawan BN. Neuropsychopharmacological effects of the ayurvedic nootropic Bacopa monniera Linn. Indian J Pharmacol. 1997;29(5):S359–65.Google Scholar
  27. 27.
    Chatterjee M, Verma P, Palit G. Comparative evaluation of Bacopa monniera and Panax quniquefolium in experimental anxiety and depressive models in mice. Indian J Exp Biol. 2010;48(3):306–13.PubMedGoogle Scholar
  28. 28.
    Pase M, Kean J, Sarris J, et al. The cognitive enhancing effects of Bacopa monneiri: a systematic review of randomized, controlled human clinical trials. J Altern Complement Med. 2012;18(7):647–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Calabrese C, Gregory WL, Leo M, et al. Effects of a standardized Bacopa monnieri extract on cognitive performance, anxiety, and depression in the elderly: a randomized, double-blind, placebo-controlled trial. J Altern Complement Med. 2008;14(6):707–13.PubMedCrossRefGoogle Scholar
  30. 30.
    Stough C, Lloyd J, Clarke J, et al. The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology (Berl). 2001;156(4):481–4.CrossRefGoogle Scholar
  31. 31.
    Bagetta G, Morrone LA, Rombola L, et al. Neuropharmacology of the essential oil of bergamot. Fitoterapia. 2010;81(6):453–61.PubMedCrossRefGoogle Scholar
  32. 32.
    Saiyudthong S, Marsden CA. Acute effects of bergamot oil on anxiety-related behaviour and corticosterone level in rats. Phytother Res. 2011;25(6):858–62.PubMedCrossRefGoogle Scholar
  33. 33.
    Akhlaghi M, Shabanian G, Rafieian-Kopaei M, et al. Citrus aurantium blossom and preoperative anxiety. Revista brasileira de anestesiologia. 2011;61(6):702–12.PubMedGoogle Scholar
  34. 34.
    Amsterdam JD, Li Y, Soeller I, et al. A randomized, double-blind, placebo-controlled trial of oral Matricaria recutita (chamomile) extract therapy for generalized anxiety disorder. J Clin Psychopharmacol. 2009;29(4):378–82.PubMedCrossRefGoogle Scholar
  35. 35.
    Avallone R, Zanoli P, Puia G, et al. Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochem Pharmacol. 2000;59(11):1387–94.PubMedCrossRefGoogle Scholar
  36. 36.
    Awad R, Levac D, Cybulska P, et al. Effects of traditionally used anxiolytic botanicals on enzymes of the γ-aminobutyric acid (GABA) system. Can J Physiol Pharmacol. 2007;85(9):933–42.PubMedCrossRefGoogle Scholar
  37. 37.
    Viola H, Wasowski C, Levi de Stein M, et al. Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepine receptors-ligand with anxiolytic effects. Planta Med. 1995;61(3):213–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Salgueiro JB, Ardenghi P, Dias M, et al. Anxiolytic natural and synthetic flavonoid ligands of the central benzodiazepine receptor have no effect on memory tasks in rats. Pharmacol Biochem Behav. 1997;58(4):887–91.PubMedCrossRefGoogle Scholar
  39. 39.
    Zanoli P, Avallone R, Baraldi M. Behavioral characterisation of the flavonoids apigenin and chrysin. Fitoterapia. 2000;71(Suppl 1):S117–23.PubMedCrossRefGoogle Scholar
  40. 40.
    Haller J, Hohmann J, Freund TF. The effect of Echinacea preparations in three laboratory tests of anxiety: comparison with chlordiazepoxide. Phytother Res. 2010;24(11):1605–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Haller J, Freund TF, Pelczer KG, et al. The anxiolytic potential and psychotropic side effects of an echinacea preparation in laboratory animals and healthy volunteers. Phytother Res. 2013;27(1):54–61.PubMedCrossRefGoogle Scholar
  42. 42.
    Gertsch J, Schoop R, Kuenzle U, et al. Echinacea alkylamides modulate TNF-alpha gene expression via cannabinoid receptor CB2 and multiple signal transduction pathways. FEBS Lett. 2004;577(3):563–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Tambaro S, Bortolato M. Cannabinoid-related agents in the treatment of anxiety disorders: current knowledge and future perspectives. Recent Pat CNS Drug Discov. 2012;7(1):25–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Rabbani M, Vaseghi G, Sajjadi SE, et al. Persian herbal medicines with anxiolytic properties. J Med Plant. 2011;10(39):7–11.Google Scholar
  45. 45.
    Sayyah M, Boostani H, Pakseresht S, et al. Efficacy of aqueous extract of Echium amoenum in treatment of obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(8):1513–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Rabbani M, Sajjadi SE, Vaseghi G, et al. Anxiolytic effects of Echium amoenum on the elevated plus-maze model of anxiety in mice. Fitoterapia. 2004;75(5):457–64.PubMedCrossRefGoogle Scholar
  47. 47.
    Jimenez-Ferrer E, Herrera-Ruiz M, Ramirez-Garcia R, et al. Interaction of the natural anxiolytic galphimine-B with serotonergic drugs on dorsal hippocampus in rats. J Ethnopharmacol. 2011;137(1):724–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Herrera-Ruiz M, Gonzalez-Cortazar M, Jimenez-Ferrer E, et al. Anxiolytic effect of natural galphimines from Galphimia glauca and their chemical derivatives. J Nat Prod. 2006;69(1):59–61.PubMedCrossRefGoogle Scholar
  49. 49.
    Herrera-Ruiz M, Jimenez-Ferrer JE, De Lima TC, et al. Anxiolytic and antidepressant-like activity of a standardized extract from Galphimia glauca. Phytomedicine. 2006;13(1–2):23–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Herrera-Arellano A, Jimenez-Ferrer E, Zamilpa A, et al. Efficacy and tolerability of a standardized herbal product from Galphimia glauca on generalized anxiety disorder: a randomized, double-blind clinical trial controlled with lorazepam. Planta Med. 2007;73(8):713–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Herrera-Arellano A, Jiménez-Ferrer JE, Zamilpa A, et al. Therapeutic effectiveness of Galphimia glauca vs lorazepam in generalized anxiety disorder: a controlled 15-week clinical trial. Planta Medica. 2012;78(14):1529–35.PubMedCrossRefGoogle Scholar
  52. 52.
    Bradwejn J, Zhou Y, Koszycki D, et al. A double-blind, placebo-controlled study on the effects of gotu kola (Centella asiatica) on acoustic startle response in healthy subjects. J Clin Psychopharmacol. 2000;20(6):680.PubMedCrossRefGoogle Scholar
  53. 53.
    Wijeweera P, Arnason JT, Koszycki D, et al. Evaluation of anxiolytic properties of Gotu kola (Centella asiatica) extracts and asiaticoside in rat behavioral models. Phytomedicine. 2006;13(9–10):668–76.PubMedCrossRefGoogle Scholar
  54. 54.
    Chen Y, Han T, Rui Y, et al. Effects of total triterpenes of Centella asiatica on the corticosterone levels in serum and contents of monoamine in depression rat brain. J Chin Med Mater (Zhongyaocai). 2005;28(6):492–6.Google Scholar
  55. 55.
    Bradwejn J, Zhou Y, Koszycki D, et al. A double-blind, placebo-controlled study on the effects of gotu kola (Centella asiatica) on acoustic startle response in healthy subjects. J Clin Psychopharmacol. 2000;20(6):680–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Jana U, Sur TK, Maity LN, et al. A clinical study on the management of generalized anxiety disorder with Centella asiatica. NMCJ. 2010;12(1):8–11.PubMedGoogle Scholar
  57. 57.
    Yoshitake T, Yoshitake S, Kehr J. The Ginkgo biloba extract EGb 761(R) and its main constituent flavonoids and ginkgolides increase extracellular dopamine levels in the rat prefrontal cortex. Br J Pharmacol. 2010;159(3):659–68.PubMedCrossRefGoogle Scholar
  58. 58.
    Fehske CJ, Leuner K, Muller WE. Ginkgo biloba extract (EGb761) influences monoaminergic neurotransmission via inhibition of NE uptake, but not MAO activity after chronic treatment. Pharmacol Res. 2009;60(1):68–73.PubMedCrossRefGoogle Scholar
  59. 59.
    Kuribara H, Weintraub ST, Yoshihama T, et al. An anxiolytic-like effect of Ginkgo biloba extract and its constituent, ginkgolide-A, in mice. J Nat Prod. 2003;66(10):1333–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Woelk H, Arnoldt KH, Kieser M, et al. Ginkgo biloba special extract EGb 761((R)) in generalized anxiety disorder and adjustment disorder with anxious mood: a randomized, double-blind, placebo-controlled trial. J Psychiatr Res. 2007;41(6):472–80.PubMedCrossRefGoogle Scholar
  61. 61.
    Koch E. Inhibition of platelet activating factor (PAF)-induced aggregation of human thrombocytes by ginkgolides: considerations on possible bleeding complications after oral intake of Ginkgo biloba extracts. Phytomedicine. 2005;12(1–2):10–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Bilia AR, Gallon S, Vincieri FF. Kava-kava and anxiety: growing knowledge about the efficacy and safety. Life Sci. 2002;70(22):2581–97.PubMedCrossRefGoogle Scholar
  63. 63.
    Raduege KM, Kleshinski JF, Ryckman JV, et al. Anesthetic considerations of the herbal, kava. J Clin Anesth. 2004;16(4):305–11.PubMedCrossRefGoogle Scholar
  64. 64.
    Singh YN, Singh NN. Therapeutic potential of kava in the treatment of anxiety disorders. CNS Drugs. 2002;16(11):731–43.PubMedCrossRefGoogle Scholar
  65. 65.
    Nerurkar PV, Dragull K, Tang CS. In vitro toxicity of kava alkaloid, pipermethystine, in HepG2 cells compared to kavalactones. Toxicol Sci. 2004;79(1):106–11.PubMedCrossRefGoogle Scholar
  66. 66.
    Lebot V, Lévesque J. The origin and distribution of kava (Piper methysticum Forst. f. and Piper wichmannii C. DC., Piperaceae): a phytochemical approach. Allertonia. 1989;5:223–80.Google Scholar
  67. 67.
    Sarris J, LaPorte E, Schweitzer I. Kava: a comprehensive review of efficacy, safety, and psychopharmacology. Aust N Z J Psychiatry. 2011;45(1):27–35.PubMedCrossRefGoogle Scholar
  68. 68.
    Magura EI, Kopanitsa MV, Gleitz J, et al. Kava extract ingredients, (+)-methysticin and (+/−)-kavain inhibit voltage-operated Na(+)-channels in rat CA1 hippocampal neurons. Neuroscience. 1997;81(2):345–51.PubMedCrossRefGoogle Scholar
  69. 69.
    Gleitz J, Beile A, Peters T. (+/−)-Kavain inhibits veratridine-activated voltage-dependent Na(+)-channels in synaptosomes prepared from rat cerebral cortex. Neuropharmacology. 1995;34(9):1133–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Martin HB, McCallum M, Stofer WD, et al. Kavain attenuates vascular contractility through inhibition of calcium channels. Planta Med. 2002;68(9):784–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Walden J, von Wegerer J, Winter U, et al. Effects of kawain and dihydromethysticin on field potential changes in the hippocampus. Prog Neuropsychopharmacol Biol Psychiatry. 1997;21(4):697–706.PubMedCrossRefGoogle Scholar
  72. 72.
    Jussofie A, Schmiz A, Hiemke C. Kavapyrone enriched extract from Piper methysticum as modulator of the GABA binding site in different regions of rat brain. Psychopharmacology (Berl). 1994;116(4):469–74.CrossRefGoogle Scholar
  73. 73.
    Uebelhack R, Franke L, Schewe HJ. Inhibition of platelet MAO-B by kava pyrone-enriched extract from Piper methysticum Forster (kava-kava). Pharmacopsychiatry. 1998;31(5):187–92.PubMedCrossRefGoogle Scholar
  74. 74.
    Wu D, Yu L, Nair M, et al. Cyclooxygenase enzyme inhibitory compounds with antioxidant activities from Piper methysticum (kava kava) roots. Phytomedicine. 2002;9:41–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Baum SS, Hill R, Rommelspacher H. Effect of kava extract and individual kavapyrones on neurotransmitter levels in the nucleus accumbens of rats. Prog Neuropsychopharmacol Biol Psychiatry. 1998;22(7):1105–20.PubMedCrossRefGoogle Scholar
  76. 76.
    Seitz U, Schule A, Gleitz J. [3H]-monoamine uptake inhibition properties of kava pyrones. Planta Med. 1997;63(6):548–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Rex A, Morgenstern E, Fink H. Anxiolytic-like effects of kava-kava in the elevated plus maze test: a comparison with diazepam. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(5):855–60.PubMedCrossRefGoogle Scholar
  78. 78.
    Pittler MH, Ernst E. Kava extract for treating anxiety. Cochrane Database Syst Rev. 2003(1):CD003383.Google Scholar
  79. 79.
    Sarris J, La Porte E, Schweitzer I. Kava: a comprehensive review of efficacy, safety, and psychopharmacology. Aust N Z J Psychiatry. 2011;45(1):27–35.PubMedCrossRefGoogle Scholar
  80. 80.
    Sarris J, Kavanagh D, Byrne G, et al. The Kava Anxiety Depression Spectrum Study (KADSS): a randomized, placebo-controlled, cross-over trial using an aqueous extract of Piper methysticum. Psychopharmacology (Berl). 2009;205(3):399–407.CrossRefGoogle Scholar
  81. 81.
    Sarris J, Scholey A, Schweitzer I, et al. The acute effects of kava and oxazepam on anxiety, mood, neurocognition, and genetic correlates: a randomized, placebo-controlled, double-blind study. Human Psychopharm. 2012;27(3):262–9.CrossRefGoogle Scholar
  82. 82.
    Teschke R, Sarris J, Glass X, et al. Kava, the anxiolytic herb: back to basics to prevent liver injury? Br J Clin Pharm. 2011;71(3):445–8.CrossRefGoogle Scholar
  83. 83.
    Sarris J, Teschke R, Stough C, et al. Re-introduction of Kava (Piper methysticum) to the EU: is there a way forward? Planta Med. 2011;77(2):107–10.PubMedCrossRefGoogle Scholar
  84. 84.
    Cases J, Ibarra A, Feuillere N, et al. Pilot trial of Melissa officinalis L. leaf extract in the treatment of volunteers suffering from mild-to-moderate anxiety disorders and sleep disturbances. Med J Nutrition Metab. 2011;4(3):211–218.Google Scholar
  85. 85.
    Awad R, Muhammad A, Durst T, et al. Bioassay-guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity. Phytother Res. 2009;23(8):1075–81.PubMedCrossRefGoogle Scholar
  86. 86.
    Awad R, Muhammad A, Durst T, et al. Bioassay-guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity. Phytotherapy Res. 2009;23(8):1075–81.CrossRefGoogle Scholar
  87. 87.
    Yoo DY, Choi JH, Kim W, et al. Effects of Melissa officinalis L. (Lemon Balm) extract on neurogenesis associated with serum corticosterone and GABA in the mouse dentate gyrus. Neurochem Res. 2011;36(2):250–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Ibarra A, Feuillere N, Roller M, et al. Effects of chronic administration of Melissa officinalis L. extract on anxiety-like reactivity and on circadian and exploratory activities in mice. Phytomedicine. 2010;17(6):397–403.PubMedCrossRefGoogle Scholar
  89. 89.
    Lopez V, Martin S, Gomez-Serranillos MP, et al. Neuroprotective and neurological properties of Melissa officinalis. Neurochem Res. 2009;34(11):1955–61.PubMedCrossRefGoogle Scholar
  90. 90.
    Kennedy DO, Scholey AB, Tildesley NTJ, et al. Modulation of mood and cognitive performance following acute administration of Melissa officinalis (lemon balm). Pharmacol Biochem Behav. 2002;72(4):953–64.PubMedCrossRefGoogle Scholar
  91. 91.
    Kennedy DO, Little W, Scholey AB. Attenuation of laboratory-induced stress in humans after acute administration of Melissa officinalis (lemon balm). Psychosom Med. 2004;66(4):607–13.PubMedCrossRefGoogle Scholar
  92. 92.
    Sayyah M, Boostani H, Pakseresht S, et al. Comparison of Silybum marianum (L.) Gaertn. with fluoxetine in the treatment of obsessive-compulsive disorder. Prog NeuroPsychopharmacol Biol Psychiatry. 2010;34(2):362–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Osuchowski MF, Johnson VJ, He Q, et al. Alterations in regional brain neurotransmitters by silymarin, a natural antioxidant flavonoid mixture. BALB/c mice. Pharm Biol. 2004;42(4–5):384–9.CrossRefGoogle Scholar
  94. 94.
    Lu P, Mamiya T, Lu L, et al. Silibinin attenuates cognitive deficits and decreases of dopamine and serotonin induced by repeated methamphetamine treatment. Behav Brain Res. 2010;207(2):387–93.PubMedCrossRefGoogle Scholar
  95. 95.
    Mazzio EA, Harris N, Soliman KFA. Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells. Planta Medica. 1998;64(7):603–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Akhondzadeh S, Naghavi HR, Vazirian M, et al. Passionflower in the treatment of generalized anxiety: a pilot double-blind randomized controlled trial with oxazepam. J Clin Pharm Ther. 2001;26(5):363–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Dhawan K, Kumar S, Sharma A. Anxiolytic activity of aerial and underground parts of Passiflora incarnata. J Ethnopharmacol. 2001;72(8):922–6.Google Scholar
  98. 98.
    Dhawan K, Kumar S, Sharma A. Comparative biological activity study on Passiflora incarnata and P. edulis. Fitoterapia. 2001;72(6):698–702.PubMedCrossRefGoogle Scholar
  99. 99.
    Awad R, Arnason JT, Trudeau V, et al. Phytochemical and biological analysis of skullcap (Scutellaria lateriflora L.): a medicinal plant with anxiolytic properties. Phytomedicine. 2003;10(8):640–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Dhawan K, Kumar S, Sharma A. Anti-anxiety studies on extracts of Passiflora incarnata linneaus. J Ethnopharmacol. 2001;78(2–3):165–70.PubMedCrossRefGoogle Scholar
  101. 101.
    Brown E, Hurd NS, McCall S, et al. Evaluation of the anxiolytic effects of chrysin, a Passiflora incarnata extract, in the laboratory rat. AANA J. 2007;75(5):333–7.Google Scholar
  102. 102.
    de Castro PCF, Hoshino A, Silva JCd, et al. Possible anxiolytic effect of two extracts of Passiflora quadrangularis L. in experimental models. Phytotherapy Res. 2007;21(5):481–4.CrossRefGoogle Scholar
  103. 103.
    Wolfman C, Viola H, Paladini A, et al. Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea. Pharmacol Biochem Behav. 1994;47(1):1–4.PubMedCrossRefGoogle Scholar
  104. 104.
    Sampath C, Holbik M, Krenn L, et al. Anxiolytic effects of fractions obtained from Passiflora incarnata L. in the elevated plus maze in mice. Phytotherapy Res. 2011;25(6):789–95.CrossRefGoogle Scholar
  105. 105.
    Dhawan K, Kumar S, Sharma A. Comparative anxiolytic activity profile of various preparations of Passiflora incarnata linneaus: a comment on medicinal plants’ standardization. J Altern Comp Med. 2002;8(3):283–91.CrossRefGoogle Scholar
  106. 106.
    Movafegh A, Alizadeh R, Hajimohamadi F, et al. Preoperative oral Passiflora incarnata reduces anxiety in ambulatory surgery patients: a double-blind, placebo-controlled study. Anesth Analg. 2008;106(6):1728–32.PubMedCrossRefGoogle Scholar
  107. 107.
    Aslanargun P, Cuvas O, Dikmen B, et al. Passiflora incarnata Linneaus as an anxiolytic before spinal anesthesia. J Anesth. 2012;26(1):39–44.PubMedCrossRefGoogle Scholar
  108. 108.
    Appel K, Rose T, Fiebich B, et al. Modulation of the γ-aminobutyric acid (GABA) system by Passiflora incarnata L. Phytotherapy Res. 2011;25(6):838–43.CrossRefGoogle Scholar
  109. 109.
    Petry RD, Reginatto F, de-Paris F, et al. Comparative pharmacological study of hydroethanol extracts of Passiflora alata and Passiflora edulis leaves. Phytotherapy Res. 2001;15(2):162–4.CrossRefGoogle Scholar
  110. 110.
    Grundmann O, Wahling C, Staiger C, et al. Anxiolytic effects of a passion flower (Passiflora incarnata L.) extract in the elevated plus maze in mice. Die Pharmazie. 2009;64(1):63–4.PubMedGoogle Scholar
  111. 111.
    Grundmann O, Wang J, McGregor GP, et al. Anxiolytic activity of a phytochemically characterized Passiflora incarnata extract is mediated via the GABAergic system. Planta Med. 2008;74(15):1769–73.PubMedCrossRefGoogle Scholar
  112. 112.
    Barbosa PR, Valvassori SS, Bordignon CL, et al. The aqueous extracts of Passiflora alata and Passiflora edulis reduce anxiety-related behaviors without affecting memory process in rats. J Med Food. 2008;11(2):282–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Deng J, Zhou Y, Bai M, et al. Anxiolytic and sedative activities of Passiflora edulis f. flavicarpa. J Ethnopharmacol. 2010;128(1):148–53.PubMedCrossRefGoogle Scholar
  114. 114.
    Li H, Zhou P, Yang Q, et al. Comparative studies on anxiolytic activities and flavonoid compositions of Passiflora edulis ‘edulis’ and Passiflora edulis ‘flavicarpa’. J Ethnopharmacol. 2011;133(3):1085–90.PubMedCrossRefGoogle Scholar
  115. 115.
    Lolli LF, Sato CM, Romanini CV, et al. Possible involvement of GABAA-benzodiazepine receptor in the anxiolytic-like effect induced by Passiflora actinia extracts in mice. J Ethnopharmacol. 2007;111(2):308–14.PubMedCrossRefGoogle Scholar
  116. 116.
    Soulimani R, Younos C, Jarmouni S, et al. Behavioural effects of Passiflora incarnata L. and its indole alkaloid and flavonoid derivatives and maltol in the mouse. J Ethnopharmacol. 1997;57(1):11–20.PubMedCrossRefGoogle Scholar
  117. 117.
    Akhondzadeh S, Naghavi HR, Vazirian M, et al. Passionflower in the treatment of generalized anxiety: a pilot double-blind randomized controlled trial with oxazepam. J Clin Pharm Ther. 2001;26(5):363–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Movafegh A, Alizadeh R, Hajimohamadi F, et al. Preoperative oral Passiflora incarnata reduces anxiety in ambulatory surgery patients: a double-blind, placebo-controlled study. Anesth Analg. 2008;106(6):1728–32.PubMedCrossRefGoogle Scholar
  119. 119.
    Panossian A, Gabrielian E, Wagner H. On the mechanism of action of plant adaptogens with particular reference to Cucurbitacin R Diglucoside. Phytomedicine. 1999;6(3):147–55.PubMedCrossRefGoogle Scholar
  120. 120.
    Panossian A, Wikman G, Sarris J. Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine. 2010;17(7):481–93.PubMedCrossRefGoogle Scholar
  121. 121.
    Perfumi M, Mattioli L. Adaptogenic and central nervous system effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L. extract in mice. Phytother Res. 2007;21(1):37–43.PubMedCrossRefGoogle Scholar
  122. 122.
    Bystritsky A, Kerwin L, Feusner JD. A pilot study of Rhodiola rosea (Rhodax) for generalized anxiety disorder (GAD). J Altern Complement Med. 2008;14(2):175–80.PubMedCrossRefGoogle Scholar
  123. 123.
    Perry NSL, Houghton PJ, Sampson J, et al. In-vitro activity of S. lavandulaefolia (Spanish sage) relevant to treatment of Alzheimer’s disease. J Pharm Pharmacol. 2001;53(10):1347–56.PubMedCrossRefGoogle Scholar
  124. 124.
    Kennedy DO, Dodd FL, Robertson BC, et al. Monoterpenoid extract of sage (Salvia lavandulaefolia) with cholinesterase inhibiting properties improves cognitive performance and mood in healthy adults. J Psychopharmacol. 2011;25(8):1088–100.PubMedCrossRefGoogle Scholar
  125. 125.
    Herrera-Ruiz M, García-Beltrán Y, Mora S, et al. Antidepressant and anxiolytic effects of hydroalcoholic extract from Salvia elegans. J Ethnopharmacol. 2006;107(1):53–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Hosseinzadeh H, Danaee A, Ziaee T. Anti-anxiety effect of aqueous and ethanolic extracts of Salvia leriifolia Benth. leaves in mice using elevated plus maze. J Med Plant. 2008;7(27):25–36.Google Scholar
  127. 127.
    Rabbani M, Sajjadi SE, Jafarian A, et al. Anxiolytic effects of Salvia reuterana Boiss. on the elevated plus-maze model of anxiety in mice. J Ethnopharmacol. 2005;101(1–3):100–3.PubMedCrossRefGoogle Scholar
  128. 128.
    Kennedy DO, Pace S, Haskell C, et al. Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery. Neuropsychopharmacology. 2006;31(4):845–52.PubMedCrossRefGoogle Scholar
  129. 129.
    Tildesley NTJ, Kennedy DO, Perry EK, et al. Positive modulation of mood and cognitive performance following administration of acute doses of Salvia lavandulaefolia essential oil to healthy young volunteers. Physiol Behav. 2005;83(5):699–709.PubMedCrossRefGoogle Scholar
  130. 130.
    Wolfson P, Hoffmann D. An investigation into the efficacy of Scutellaria lateriflora in healthy volunteers. Altern Ther Health Med. 2003;9(2):74.PubMedGoogle Scholar
  131. 131.
    Li J, Wang Y-H, Smillie TJ, et al. Identification of phenolic compounds from Scutellaria lateriflora by liquid chromatography with ultraviolet photodiode array and electrospray ionization tandem mass spectrometry. J Pharml Biomed Anal. 2012;63:120–7.CrossRefGoogle Scholar
  132. 132.
    Zhang Z, Lian X-y, Li S, et al. Characterization of chemical ingredients and anticonvulsant activity of American skullcap (Scutellaria lateriflora). Phytomedicine. 2009;16(5):485–93.PubMedCrossRefGoogle Scholar
  133. 133.
    Kuroda M, Iwabuchi K, Mimaki Y. Chemical constituents of the aerial parts of Scutellaria lateriflora and their alpha-glucosidase inhibitory activities. Nat Prod Commun. 2012;7(4):471.PubMedGoogle Scholar
  134. 134.
    Yaghmai MS. Volatile constituents of Scutellaria lateriflora L. Flavour Fragr J. 1988;3(1):27–31.CrossRefGoogle Scholar
  135. 135.
    de Carvalho RSM, Duarte FS, de Lima TCM. Involvement of GABAergic non-benzodiazepine sites in the anxiolytic-like and sedative effects of the flavonoid baicalein in mice. Behav Brain Res. 2011;221(1):75–82.PubMedCrossRefGoogle Scholar
  136. 136.
    Hui KM, Huen MSY, Wang HY, et al. Anxiolytic effect of wogonin, a benzodiazepine receptor ligand isolated from Scutellaria baicalensis Georgi. Biochem Pharmacol. 2002;64(9):1415–24.PubMedCrossRefGoogle Scholar
  137. 137.
    Wolfson P, Hoffmann D. An investigation into the efficacy of Scutellaria lateriflora in healthy volunteers. Altern Ther Health Med. 2003;9(2):74.PubMedGoogle Scholar
  138. 138.
    Rahimi R, Nikfar S, Abdollahi M. Efficacy and tolerability of Hypericum perforatum in major depressive disorder in comparison with selective serotonin reuptake inhibitors: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(1):118–27.PubMedCrossRefGoogle Scholar
  139. 139.
    Butterweck V, Schmidt M. St. John’s wort: role of active compounds for its mechanism of action and efficacy. Wiener Medizinische Wochenschrift. 2007;157(13–14):356–61.PubMedCrossRefGoogle Scholar
  140. 140.
    Nathan PJ. Hypericum perforatum (St John’s Wort): a non-selective reuptake inhibitor? A review of the recent advances in its pharmacology. J Psychopharmacol. 2001;15(1):47–54.PubMedCrossRefGoogle Scholar
  141. 141.
    Taylor LH, Kobak KA. An open-label trial of St. John’s Wort (Hypericum perforatum) in obsessive-compulsive disorder. J Clin Psychiatry. 2000;61(8):575–8.PubMedCrossRefGoogle Scholar
  142. 142.
    Kobak KA, Taylor LV, Bystritsky A, et al. St John’s wort versus placebo in obsessive-compulsive disorder: results from a double-blind study. Int Clin Psychopharmacol. 2005;20(6):299–304.PubMedCrossRefGoogle Scholar
  143. 143.
    Kobak KA, Taylor LV, Warner G, et al. St. John’s wort versus placebo in social phobia: results from a placebo-controlled pilot study. J Clin Psychopharmacol. 2005;25(1):51–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Gao XQ, Björk L. Valerenic acid derivatives and valepotriates among individuals, varieties and species of Valeriana. Fitoterapia. 2000;71(1):19–24.PubMedCrossRefGoogle Scholar
  145. 145.
    Patočka J, Jakl J. Biomedically relevant chemical constituents of Valeriana officinalis. J Appl Biomed. 2010;8:11–8.CrossRefGoogle Scholar
  146. 146.
    Muller CE, Schumacher B, Brattstrom A, et al. Interactions of valerian extracts and a fixed valerian-hop extract combination with adenosine receptors. Life Sci. 2002;71(16):1939–49.PubMedCrossRefGoogle Scholar
  147. 147.
    Benke D, Barberis A, Kopp S, et al. GABA(A) receptors as in vivo substrate for the anxiolytic action of valerenic acid, a major constituent of valerian root extracts. Neuropharmacology. 2009;56(1):174–81.PubMedCrossRefGoogle Scholar
  148. 148.
    Dunayev VV, Trzhetsinsky SD, Tishkin VS, et al. Biological activity of the sum of valepotriates isolated from Val. alliariifolia Adams. Farmakologiya i Toksikologiya. 1987;50(6):33–7.Google Scholar
  149. 149.
    Andreatini R, Leite JR. Effect of valepotriates on the behavior of rats in the elevated plus-maze during diazepam withdrawal. Eur J Pharmacol. 1994;260(2–3):233–5.PubMedCrossRefGoogle Scholar
  150. 150.
    Miyasaka LS, Atallah AN, Soares BG. Valerian for anxiety disorders. Cochrane Database Syst Rev. 2006(4):CD004515.Google Scholar
  151. 151.
    Andreatini R, Sartori VA, Seabra MLV, et al. Effect of valepotriates (valerian extract) in generalized anxiety disorder: a randomized placebo-controlled pilot study. Phytotherapy Res. 2002;16(7):650–4.CrossRefGoogle Scholar
  152. 152.
    Bos R, Hendriks H, Scheffer JJC, et al. Cytotoxic potential of valerian constituents and valerian tinctures. Phytomedicine. 1998;5(3):219–25.PubMedCrossRefGoogle Scholar
  153. 153.
    Bounthanh C, Bergmann C, Beck JP, et al. Valepotriates, a new class of cytotoxic and antitumor agents. Planta Medica. 1981;41(1):21–8.PubMedCrossRefGoogle Scholar
  154. 154.
    Bhattacharyya D, Jana U, Debnath PK, et al. Initial exploratory observational pharmacology of Valeriana wallichii on stress management: a clinical report. NMCJ. 2007;9(1):36–9.PubMedGoogle Scholar
  155. 155.
    Griffiths RR, Johnson MW, Richards WA, et al. Psilocybin occasioned mystical-type experiences: immediate and persisting dose-related effects. Psychopharmacology. 2011;218(4):649–65.PubMedCrossRefGoogle Scholar
  156. 156.
    Passie T, Seifert J, Schneider U, et al. The pharmacology of psilocybin. Addict Biol. 2002;7(4):357–64.PubMedCrossRefGoogle Scholar
  157. 157.
    Studerus E, Kometer M, Hasler F, et al. Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies. J Psychopharmacol. 2011;25(11):1434–52.PubMedCrossRefGoogle Scholar
  158. 158.
    Halberstadt AL, Geyer MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology. 2011;61(3):364–81.PubMedCrossRefGoogle Scholar
  159. 159.
    Vollenweider FX, Vollenweider-Scherpenhuyzen MFI, Bäbler A, et al. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. NeuroReport. 1998;9(17):3897–902.PubMedCrossRefGoogle Scholar
  160. 160.
    Frokjaer VG, Mortensen EL, Nielsen FÅ, et al. Frontolimbic serotonin 2A receptor binding in healthy subjects is associated with personality risk factors for affective disorder. Biol Psychiatry. 2008;63(6):569–76.PubMedCrossRefGoogle Scholar
  161. 161.
    Vollenweider FX, Kometer M. The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci. 2010;11(9):642–51.PubMedCrossRefGoogle Scholar
  162. 162.
    Grof S, Goodman L, Richards W, et al. LSD-assisted psychotherapy in patients with terminal cancer. Int Pharmacophsychiatry. 1973;8:129–44.Google Scholar
  163. 163.
    Grob CS, Danforth AL, Chopra GS, et al. Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Arch Gen Psychiatry. 2011;68(1):71–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Brandrup E, Vanggaard T. LSD treatment in a severe case of compulsive neurosis. Acta Psychiatrica Scandinavica. 1977;55(2):127–41.PubMedCrossRefGoogle Scholar
  165. 165.
    Moreno FA, Delgado PL. Hallucinogen-induced relief of obsessions and compulsions. Am J Psychiatry. 1997;154(7):1037–8.PubMedGoogle Scholar
  166. 166.
    Moreno FA, Wiegand CB, Taitano EK, et al. Safety, tolerability, and efficacy of psilocybin in 9 patients with obsessive-compulsive disorder. J Clin Psychiatry. 2006;67(11):1735–40.PubMedCrossRefGoogle Scholar
  167. 167.
    Matsushima Y, Shirota O, Kikura-Hanajiri R, et al. Effects of psilocybe argentipes on marble-burying behavior in mice. Biosci Biotechnol Biochem. 2009;73(8):1866–8.PubMedCrossRefGoogle Scholar
  168. 168.
    Dobkin De Ríos M. Visionary vine: psychedelic healing in the Peruvian Amazon. Int J Soc Psychiatry. 1972;17:256–69.Google Scholar
  169. 169.
    McKenna DJ. Clinical investigations of the therapeutic potential of ayahuasca: rationale and regulatory challenges. Pharmacol Ther. 2004;102(2):111–29.PubMedCrossRefGoogle Scholar
  170. 170.
    Riba J, Valle M, Urbano G, et al. Human pharmacology of ayahuasca: subjective and cardiovascular effects, monoamine metabolite excretion, and pharmacokinetics. J Pharmacol Exp Ther. 2003;306(1):73–83.PubMedCrossRefGoogle Scholar
  171. 171.
    Grob CS, McKenna DJ, Callaway JC, et al. Human psychopharmacology of hoasca, a plant hallucinogen used in ritual context in Brazil. J Nerv Ment Dis. 1996;184(2):86–94.PubMedCrossRefGoogle Scholar
  172. 172.
    Callaway JC, Airaksinen MM, McKenna DJ, et al. Platelet serotonin uptake sites increased in drinkers of ayahuasca. Psychopharmacology. 1994;116(3):385–7.PubMedCrossRefGoogle Scholar
  173. 173.
    Santos RG, Landeira-Fernandez J, Strassman RJ, et al. Effects of ayahuasca on psychometric measures of anxiety, panic-like and hopelessness in Santo Daime members. J Ethnopharmacol. 2007;112(3):507–13.PubMedCrossRefGoogle Scholar
  174. 174.
    Patton GC, Coffey C, Carlin JB, et al. Cannabis use and mental health in young people: cohort study. BMJ. 2002;325(7374):1195–8.PubMedCrossRefGoogle Scholar
  175. 175.
    Moore TH, Zammit S, Lingford-Hughes A, et al. Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. Lancet. 2007;370(9584):319–28.PubMedCrossRefGoogle Scholar
  176. 176.
    Campos AC, Guimarães FS. Involvement of 5HT1A receptors in the anxiolytic-like effects of cannabidiol injected into the dorsolateral periaqueductal gray of rats. Psychopharmacology. 2008;199(2):223–30.PubMedCrossRefGoogle Scholar
  177. 177.
    Resstel LBM, Tavares RF, Lisboa SFS, et al. 5-HT1A receptors are involved in the cannabidiol-induced attenuation of behavioural and cardiovascular responses to acute restraint stress in rats. Br J Pharmacol. 2009;156(1):181–8.PubMedCrossRefGoogle Scholar
  178. 178.
    Bergamaschi MM, Queiroz RHC, Chagas MHN, et al. Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-nave social phobia patients. Neuropsychopharmacology. 2011;36(6):1219–26.PubMedCrossRefGoogle Scholar
  179. 179.
    Zuardi AW, Cosme RA, Graeff FG, et al. Effects of ipsapirone and cannabidiol on human experimental anxiety. J Psychopharmacol. 1993;7(1):82–8.PubMedGoogle Scholar
  180. 180.
    Griffiths RR, Grob CS. Hallucinogens as medicine. Sci Am. 2010;303(6):77–9.CrossRefGoogle Scholar
  181. 181.
    Ulrich-Merzenich G, Zeitler H, Jobst D, et al. Application of the “Omic” technologies in phytomedicine. Phytomedicine. 2007;14(1):70–82.PubMedCrossRefGoogle Scholar
  182. 182.
    Sarris J, Ng C, Schweitzer I. “Omic” genetic technologies for herbal medicines in psychiatry. Phytother Res. 2012;26(4):522–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Jerome Sarris
    • 1
    • 2
    Email author
  • Erica McIntyre
    • 3
  • David A. Camfield
    • 2
  1. 1.Department of Psychiatry and The Melbourne Clinic, Faculty of MedicineUniversity of MelbourneRichmondAustralia
  2. 2.The Centre for Human PsychopharmacologySwinburne University of TechnologyMelbourneAustralia
  3. 3.School of PsychologyCharles Sturt UniversityWagga WaggaAustralia

Personalised recommendations