CNS Drugs

, Volume 27, Issue 3, pp 221–232 | Cite as

Recent Progress in Understanding the Pathophysiology of Post-Traumatic Stress Disorder

Implications for Targeted Pharmacological Treatment
  • Christopher R. Bailey
  • Elisabeth Cordell
  • Sean M. Sobin
  • Alexander NeumeisterEmail author
Review Article


Post-traumatic stress disorder (PTSD) is a common and chronic anxiety disorder that can result after exposure to a traumatic event. Though our understanding of the aetiology of PTSD is incomplete, several neurobiological systems have been implicated in the pathophysiology and vulnerability towards developing PTSD after trauma exposure. We aimed to provide a concise review of benchmark findings in important neurobiological systems related to the aetiology and maintenance of PTSD symptomology. Specifically, we discuss functional aetiologies in the noradrenergic, serotonergic, endogenous cannabinoid and opioid systems as well as the hypothalamic-pituitary adrenal (HPA) axis. This article provides a succinct framework to appreciate the current understanding of neurobiological mechanisms related to the pathophysiology of PTSD and how these findings may impact the development of future, targeted pharmacological treatments for this debilitating disorder.


Rimonabant Ptsd Patient Fear Extinction Ptsd Symptomology Hamilton Anxiety Rate Scale Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project was supported by the National Institutes of Health through the following awards: R21 MH081103 (ARRA), R21 MH096105-01A1, R21 MH085627 and R01 MH096876-01A1. The authors have no conflicts of interest that are directly relevant to the content of this article.


  1. 1.
    Davidson JR, Hughes D, Blazer DG, et al. Post-traumatic stress disorder in the community: an epidemiological study. Psychol Med. 1991;21(3):713–21.PubMedCrossRefGoogle Scholar
  2. 2.
    Kessler RC, Sonnega A, Bromet E, et al. Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry. 1995;52(12):1048–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Breslau N, Kessler RC, Chilcoat HD, et al. Trauma and posttraumatic stress disorder in the community: the 1996 Detroit Area Survey of Trauma. Arch Gen Psychiatry. 1998;55(7):626–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Resnick HS, Kilpatrick DG, Dansky BS, et al. Prevalence of civilian trauma and posttraumatic stress disorder in a representative national sample of women. J Consult Clin Psychol. 1993;61(6):984–91.PubMedCrossRefGoogle Scholar
  5. 5.
    Breslau N, Davis GC, Andreski P, et al. Traumatic events and posttraumatic stress disorder in an urban population of young adults. Arch Gen Psychiatry. 1991;48(3):216–22.PubMedCrossRefGoogle Scholar
  6. 6.
    Koenen KC, Lyons MJ, Goldberg J, et al. A high risk twin study of combat-related PTSD comorbidity. Twin Res. 2003;6(3):218–26.PubMedGoogle Scholar
  7. 7.
    Neria Y, Bromet EJ. Comorbidity of PTSD and depression: linked or separate incidence. Biol Psychiatry. 2000;48(9):878–80.PubMedCrossRefGoogle Scholar
  8. 8.
    Gros DF, Frueh BC, Magruder KM. Prevalence and features of panic disorder and comparison to posttraumatic stress disorder in VA primary care. Gen Hosp Psychiatry. 2011;33(5):482–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Pietrzak RH, Goldstein RB, Southwick SM, et al. Psychiatric comorbidity of full and partial posttraumatic stress disorder among older adults in the United States: results from wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. Am J Geriatr Psychiatry. 2012;20(5):380–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Pietrzak RH, Goldstein RB, Southwick SM, et al. Medical comorbidity of full and partial posttraumatic stress disorder in US adults: results from Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. Psychosom Med. 2011;73(8):697–707.PubMedCrossRefGoogle Scholar
  11. 11.
    Leserman J, Drossman DA, Li Z, et al. Sexual and physical abuse history in gastroenterology practice: how types of abuse impact health status. Psychosom Med. 1996;58(1):4–15.PubMedGoogle Scholar
  12. 12.
    Solomon SD, Davidson JR. Trauma: prevalence, impairment, service use, and cost. J Clin Psychiatry. 1997;58(Suppl. 9):5–11.PubMedGoogle Scholar
  13. 13.
    Zoellner LA, Foa EB, Brigidi BD. Interpersonal friction and PTSD in female victims of sexual and nonsexual assault. J Trauma Stress. 1999;12(4):689–700.PubMedCrossRefGoogle Scholar
  14. 14.
    Charney DS, Manji HK. Life stress, genes, and depression: multiple pathways lead to increased risk and new opportunities for intervention. Sci STKE. 2004;2004(225):RE5.Google Scholar
  15. 15.
    Krystal JH, Neumeister A. Noradrenergic and serotonergic mechanisms in the neurobiology of posttraumatic stress disorder and resilience. Brain Res. 2009;1293:13–23.PubMedCrossRefGoogle Scholar
  16. 16.
    Benedek DM, Friedman MJ, Zatzick D, et al. Guideline watch (March 2009): practice guideline for the treatment of patients with acute stress disorder and posttraumatic stress disorder. Arlington: American Psychiatric Association; 2009.Google Scholar
  17. 17.
    VA/DoD. VA/DoD clinical practice guideline for management of post-traumatic stress. Washington, DC: U.S. Department of Veterans Affairs; 2010.Google Scholar
  18. 18.
    Davidson JR. Pharmacologic treatment of acute and chronic stress following trauma: 2006. J Clin Psychiatry. 2006;67(Suppl. 2):34–9.PubMedGoogle Scholar
  19. 19.
    Friedman MJ, Marmar CR, Baker DG, et al. Randomized, double-blind comparison of sertraline and placebo for posttraumatic stress disorder in a Department of Veterans Affairs setting. J Clin Psychiatry. 2007;68(5):711–20.PubMedCrossRefGoogle Scholar
  20. 20.
    Institute of Medicine. Treatment of PTSD: an assessment of the evidence. Washington, DC: National Academies Press; 2007.Google Scholar
  21. 21.
    Myers KM, Carlezon WA Jr, Davis M. Glutamate receptors in extinction and extinction-based therapies for psychiatric illness. Neuropsychopharmacology. 2011;36(1):274–93.PubMedCrossRefGoogle Scholar
  22. 22.
    Nair J, Singh Ajit S. The role of the glutamatergic system in posttraumatic stress disorder. CNS Spectr. 2008;13(7):585–91.Google Scholar
  23. 23.
    Strawn JR, Geracioti TD Jr. Noradrenergic dysfunction and the psychopharmacology of posttraumatic stress disorder. Depress Anxiety. 2008;25(3):260–71.PubMedCrossRefGoogle Scholar
  24. 24.
    Morilak DA, Barrera G, Echevarria DJ, et al. Role of brain norepinephrine in the behavioral response to stress. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(8):1214–24.PubMedCrossRefGoogle Scholar
  25. 25.
    Southwick SM, Bremner JD, Rasmusson A, et al. Role of norepinephrine in the pathophysiology and treatment of posttraumatic stress disorder. Biol Psychiatry. 1999;46(9):1192–204.PubMedCrossRefGoogle Scholar
  26. 26.
    O’Donnell T, Hegadoren KM, Coupland NC. Noradrenergic mechanisms in the pathophysiology of post-traumatic stress disorder. Neuropsychobiology. 2004;50(4):273–83.PubMedCrossRefGoogle Scholar
  27. 27.
    Shin LM, Rauch SL, Pitman RK. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci. 2006;1071:67–79.PubMedCrossRefGoogle Scholar
  28. 28.
    Wong EH, Sonders MS, Amara SG, et al. Reboxetine: a pharmacologically potent, selective, and specific norepinephrine reuptake inhibitor. Biol Psychiatry. 2000;47(9):818–29.PubMedCrossRefGoogle Scholar
  29. 29.
    Cheok F, Schrader G, Banham D, et al. Identification, course, and treatment of depression after admission for a cardiac condition: rationale and patient characteristics for the Identifying Depression As a Comorbid Condition (IDACC) project. Am Heart J. 2003;146(6):978–84.PubMedCrossRefGoogle Scholar
  30. 30.
    Kobori N, Hu B, Dash PK. Altered adrenergic receptor signaling following traumatic brain injury contributes to working memory dysfunction. Neuroscience. 2011;172:293–302.PubMedCrossRefGoogle Scholar
  31. 31.
    Charney DS, Woods SW, Goodman WK, et al. Neurobiological mechanisms of panic anxiety: biochemical and behavioral correlates of yohimbine-induced panic attacks. Am J Psychiatry. 1987;144(8):1030–6.PubMedGoogle Scholar
  32. 32.
    Tanaka M, Yoshida M, Emoto H, et al. Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: basic studies. Eur J Pharmacol. 2000;405(1–3):397–406.PubMedCrossRefGoogle Scholar
  33. 33.
    Geracioti TD Jr, Baker DG, Ekhator NN, et al. CSF norepinephrine concentrations in posttraumatic stress disorder. Am J Psychiatry. 2001;158(8):1227–30.PubMedCrossRefGoogle Scholar
  34. 34.
    Tanaka Y, Ishitobi Y, Maruyama Y, et al. Salivary alpha-amylase and cortisol responsiveness following electrical stimulation stress in panic disorder patients. Neurosci Res. 2012;73(1):80–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Debiec J, Bush DE, LeDoux JE. Noradrenergic enhancement of reconsolidation in the amygdala impairs extinction of conditioned fear in rats: a possible mechanism for the persistence of traumatic memories in PTSD. Depress Anxiety. 2011;28(3):186–93.PubMedCrossRefGoogle Scholar
  36. 36.
    Onur OA, Walter H, Schlaepfer TE, et al. Noradrenergic enhancement of amygdala responses to fear. Soc Cogn Affect Neurosci. 2009;4(2):119–26.PubMedCrossRefGoogle Scholar
  37. 37.
    Miner LH, Jedema HP, Moore FW, et al. Chronic stress increases the plasmalemmal distribution of the norepinephrine transporter and the coexpression of tyrosine hydroxylase in norepinephrine axons in the prefrontal cortex. J Neurosci. 2006;26(5):1571–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Milad MR, Quirk GJ. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature. 2002;420(6911):70–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Morgan CA 3rd, Southwick SM, Grillon C, et al. Yohimbine-facilitated acoustic startle reflex in humans. Psychopharmacology. 1993;110(3):342–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Bremner JD, Innis RB, Ng CK, et al. Positron emission tomography measurement of cerebral metabolic correlates of yohimbine administration in combat-related posttraumatic stress disorder. Arch Gen Psychiatry. 1997;54(3):246–54.PubMedCrossRefGoogle Scholar
  41. 41.
    Southwick SM, Krystal JH, Bremner JD, et al. Noradrenergic and serotonergic function in posttraumatic stress disorder. Arch Gen Psychiatry. 1997;54(8):749–58.PubMedCrossRefGoogle Scholar
  42. 42.
    Cohen H, Kaplan Z, Koresh O, et al. Early post-stressor intervention with propranolol is ineffective in preventing posttraumatic stress responses in an animal model for PTSD. Eur Neuropsychopharmacol. 2011;21(3):230–40.PubMedCrossRefGoogle Scholar
  43. 43.
    Muravieva EV, Alberini CM. Limited efficacy of propranolol on the reconsolidation of fear memories. Learn Mem. 2010;17(6):306–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Pitman RK, Sanders KM, Zusman RM, et al. Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biol Psychiatry. 2002;51(2):189–92.PubMedCrossRefGoogle Scholar
  45. 45.
    Tarsitani L, De Santis V, Mistretta M, et al. Treatment with beta-blockers and incidence of post-traumatic stress disorder after cardiac surgery: a prospective observational study. J Cardiothorac Vasc Anesth. 2012;26(2):265–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Stein MB, Kerridge C, Dimsdale JE, et al. Pharmacotherapy to prevent PTSD: results from a randomized controlled proof-of-concept trial in physically injured patients. J Trauma Stress. 2007;20(6):923–32.PubMedCrossRefGoogle Scholar
  47. 47.
    Hoge EA, Worthington JJ, Nagurney JT, et al. Effect of acute posttrauma propranolol on PTSD outcome and physiological responses during script-driven imagery. CNS Neurosci Ther. 2012;18(1):21–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Amara SG, Kuhar MJ. Neurotransmitter transporters: recent progress. Annu Rev Neurosci. 1993;16:73–93.PubMedCrossRefGoogle Scholar
  49. 49.
    Ordway GA, Stockmeier C, Cason GW, et al. Pharmacology and distribution of norepinephrine transporters in the human locus coeruleus and raphe nuclei. J Neurosci. 1997;17(21):8451–8.PubMedGoogle Scholar
  50. 50.
    Torres GE, Gainetdinov RR, Caron MG. Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci. 2003;4(1):13–25.PubMedCrossRefGoogle Scholar
  51. 51.
    Moron JA, Brockington A, Wise RA, et al. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci. 2002;22(2):389–95.PubMedGoogle Scholar
  52. 52.
    Liprando LA, Miner LH, Blakely RD, et al. Ultrastructural interactions between terminals expressing the norepinephrine transporter and dopamine neurons in the rat and monkey ventral tegmental area. Synapse. 2004;52(4):233–44.PubMedCrossRefGoogle Scholar
  53. 53.
    Arnsten AF, Li BM. Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry. 2005;57(11):1377–84.PubMedCrossRefGoogle Scholar
  54. 54.
    Rusnak M, Kvetnansky R, Jelokova J, et al. Effect of novel stressors on gene expression of tyrosine hydroxylase and monoamine transporters in brainstem noradrenergic neurons of long-term repeatedly immobilized rats. Brain Res. 2001;899(1–2):20–35.PubMedCrossRefGoogle Scholar
  55. 55.
    Dazzi L, Seu E, Cherchi G, et al. Antagonism of the stress-induced increase in cortical norepinephrine output by the selective norepinephrine reuptake inhibitor reboxetine. Eur J Pharmacol. 2003;476(1–2):55–61.PubMedCrossRefGoogle Scholar
  56. 56.
    Goddard AW, Ball SG, Martinez J, et al. Current perspectives of the roles of the central norepinephrine system in anxiety and depression. Depress Anxiety. 2010;27(4):339–50.PubMedCrossRefGoogle Scholar
  57. 57.
    Wong ML, Kling MA, Munson PJ, et al. Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: relation to hypercortisolism and corticotropin-releasing hormone. Proc Natl Acad Sci USA. 2000;97(1):325–30.PubMedCrossRefGoogle Scholar
  58. 58.
    Petrakis IL, Ralevski E, Desai N, et al. Noradrenergic vs serotonergic antidepressant with or without naltrexone for veterans with PTSD and comorbid alcohol dependence. Neuropsychopharmacology. 2012;37(4):996–1004.PubMedCrossRefGoogle Scholar
  59. 59.
    Barrett EL, Mills KL, Teesson M. Hurt people who hurt people: violence amongst individuals with comorbid substance use disorder and post traumatic stress disorder. Addict Behav. 2011;36(7):721–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Marshall-Berenz EC, Vujanovic AA, Macpherson L. Impulsivity and alcohol use coping motives in a trauma-exposed sample: the mediating role of distress tolerance. Pers Individ Dif. 2011;50(5):588–92.PubMedCrossRefGoogle Scholar
  61. 61.
    Weiss NH, Tull MT, Viana AG, et al. Impulsive behaviors as an emotion regulation strategy: examining associations between PTSD, emotion dysregulation, and impulsive behaviors among substance dependent inpatients. J Anxiety Disord. 2012;26(3):453–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Chamberlain SR, Hampshire A, Muller U, et al. Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Biol Psychiatry. 2009;65(7):550–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Gabriel A, Violato C. Adjunctive atomoxetine to SSRIs or SNRIs in the treatment of adult ADHD patients with comorbid partially responsive generalized anxiety (GA): an open-label study. Atten Defic Hyperact Disord. 2011;3(4):319–26.PubMedCrossRefGoogle Scholar
  64. 64.
    Spencer TJ, Faraone SV, Michelson D, et al. Atomoxetine and adult attention-deficit/hyperactivity disorder: the effects of comorbidity. J Clin Psychiatry. 2006;67(3):415–20.PubMedCrossRefGoogle Scholar
  65. 65.
    Davidson J, Baldwin D, Stein DJ, et al. Treatment of posttraumatic stress disorder with venlafaxine extended release: a 6-month randomized controlled trial. Arch Gen Psychiatry. 2006;63(10):1158–65.PubMedCrossRefGoogle Scholar
  66. 66.
    Davidson J, Rothbaum BO, Tucker P, et al. Venlafaxine extended release in posttraumatic stress disorder: a sertraline- and placebo-controlled study. J Clin Psychopharmacol. 2006;26(3):259–67.PubMedCrossRefGoogle Scholar
  67. 67.
    Yang CH, Shi HS, Zhu WL, et al. Venlafaxine facilitates between-session extinction and prevents reinstatement of auditory-cue conditioned fear. Behav Brain Res. 2012;230(1):268–73.PubMedCrossRefGoogle Scholar
  68. 68.
    Hannon J, Hoyer D. Molecular biology of 5-HT receptors. Behav Brain Res. 2008;195(1):198–213.PubMedCrossRefGoogle Scholar
  69. 69.
    Cools R, Roberts AC, Robbins TW. Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn Sci. 2008;12(1):31–40.PubMedCrossRefGoogle Scholar
  70. 70.
    Murrough JW, Neumeister A. The serotonin 1B receptor: a new target for depression therapeutics? Biol Psychiatry. 2011;69(8):714–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Carr GV, Lucki I. The role of serotonin receptor subtypes in treating depression: a review of animal studies. Psychopharmacology (Berl). 2011;213(2–3):265–87.CrossRefGoogle Scholar
  72. 72.
    Furay AR, Neumaier JF, Mullenix AT, et al. Overexpression of 5-HT(1B) mRNA in nucleus accumbens shell projection neurons differentially affects microarchitecture of initiation and maintenance of ethanol consumption. Alcohol. 2011;45(1):19–32.PubMedCrossRefGoogle Scholar
  73. 73.
    Hu J, Henry S, Gallezot JD, et al. Serotonin 1B receptor imaging in alcohol dependence. Biol Psychiatry. 2010;67(9):800–3.PubMedCrossRefGoogle Scholar
  74. 74.
    Murrough JW, Czermak C, Henry S, et al. The effect of early trauma exposure on serotonin type 1B receptor expression revealed by reduced selective radioligand binding. Arch Gen Psychiatry. 2011;68(9):892–900.PubMedCrossRefGoogle Scholar
  75. 75.
    Xie P, Kranzler HR, Poling J, et al. Interactive effect of stressful life events and the serotonin transporter 5-HTTLPR genotype on posttraumatic stress disorder diagnosis in 2 independent populations. Arch Gen Psychiatry. 2009;66(11):1201–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Zanoveli JM, Carvalho MC, Cunha JM, et al. Extracellular serotonin level in the basolateral nucleus of the amygdala and dorsal periaqueductal gray under unconditioned and conditioned fear states: an in vivo microdialysis study. Brain Res. 2009;1294:106–15.PubMedCrossRefGoogle Scholar
  77. 77.
    Muller JM, Morelli E, Ansorge M, et al. Serotonin transporter deficient mice are vulnerable to escape deficits following inescapable shocks. Genes Brain Behav. 2011;10(2):166–75.PubMedCrossRefGoogle Scholar
  78. 78.
    Rogan MT, Staubli UV, LeDoux JE. Fear conditioning induces associative long-term potentiation in the amygdala. Nature. 1997;390(6660):604–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Rodrigues SM, Schafe GE, LeDoux JE. Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron. 2004;44(1):75–91.PubMedCrossRefGoogle Scholar
  80. 80.
    Wellman CL, Izquierdo A, Garrett JE, et al. Impaired stress-coping and fear extinction and abnormal corticolimbic morphology in serotonin transporter knock-out mice. J Neurosci. 2007;27(3):684–91.PubMedCrossRefGoogle Scholar
  81. 81.
    Krystal JH, Webb E, Cooney NL, et al. Serotonergic and noradrenergic dysregulation in alcoholism: m-chlorophenylpiperazine and yohimbine effects in recently detoxified alcoholics and healthy comparison subjects. Am J Psychiatry. 1996;153(1):83–92.PubMedGoogle Scholar
  82. 82.
    Price LH, Malison RT, McDougle CJ, et al. Neurobiology of tryptophan depletion in depression: effects of m-chlorophenylpiperazine (mCPP). Neuropsychopharmacology. 1997;17(5):342–50.PubMedCrossRefGoogle Scholar
  83. 83.
    Spinelli S, Chefer S, Carson RE, et al. Effects of early-life stress on serotonin(1A) receptors in juvenile Rhesus monkeys measured by positron emission tomography. Biol Psychiatry. 2010;67(12):1146–53.PubMedCrossRefGoogle Scholar
  84. 84.
    McDevitt RA, Hiroi R, Mackenzie SM, et al. Serotonin 1B autoreceptors originating in the caudal dorsal raphe nucleus reduce expression of fear and depression-like behavior. Biol Psychiatry. 2011;69(8):780–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Azmitia EC, Whitaker-Azmitia PM. Awakening the sleeping giant: anatomy and plasticity of the brain serotonergic system. J Clin Psychiatry. 1991;52 Suppl:4–16.Google Scholar
  86. 86.
    Frazer A, Hensler JG. 5-HT1A receptors and 5-HT1A-mediated responses: effect on treatments that modify serotonergic neurotransmission. In: Whitaker-Azmitia PM, Peroutka SJ, editors. The neuropharmacology of serotonin. New York: The New York Academy of Sciences; 1990. p. 460–75.Google Scholar
  87. 87.
    Palacios J, Pazos A, Hoyer D. Characterisation and mapping of 5-HT1A receptors in animals and in man. In: Dourish C, Ahlenius S, Hutson P, editors. Brain 5-HT1A receptors: behavioural and neurochemical pharmacology, chap 6. Chichester: Ellis Horwood; 1987.Google Scholar
  88. 88.
    Pazos A, Probst A, Palacios JM. Serotonin receptors in the human brain: III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience. 1987;21(1):97–122.PubMedCrossRefGoogle Scholar
  89. 89.
    Whitaker-Azmitia PM, Clarke C, Azmitia EC. Localization of 5-HT1A receptors to astroglial cells in adult rats: implications for neuronal–glial interactions and psychoactive drug mechanism of action. Synapse. 1993;14(3):201–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Whitaker-Azmitia PM, Azmitia EC. Stimulation of astroglial serotonin receptors produces culture media which regulates growth of serotonergic neurons. Brain Res. 1989;497(1):80–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Azmitia EC. Serotonin neurons, neuroplasticity, and homeostasis of neural tissue. Neuropsychopharmacology. 1999;21(2 Suppl.):33S–45S.PubMedGoogle Scholar
  92. 92.
    McEwen BS. Stress and hippocampal plasticity. Annu Rev Neurosci. 1999;22:105–22.PubMedCrossRefGoogle Scholar
  93. 93.
    Drevets WC, Frank E, Price JC, et al. Serotonin type-1A receptor imaging in depression. Nucl Med Biol. 2000;27(5):499–507.PubMedCrossRefGoogle Scholar
  94. 94.
    Ramboz S, Oosting R, Amara DA, et al. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Nat Acad Sci. 1998;95:14476–81.PubMedCrossRefGoogle Scholar
  95. 95.
    Solati J, Salari AA, Bakhtiari A. 5HT(1A) and 5HT(1B) receptors of medial prefrontal cortex modulate anxiogenic-like behaviors in rats. Neurosci Lett. 2011;504(3):325–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Sari Y. Serotonin1B receptors: from protein to physiological function and behavior. Neurosci Biobehav Rev. 2004;28(6):565–82.PubMedCrossRefGoogle Scholar
  97. 97.
    Bramley JR, Sollars PJ, Pickard GE, et al. 5-HT1B receptor-mediated presynaptic inhibition of GABA release in the suprachiasmatic nucleus. J Neurophysiol. 2005;93(6):3157–64.PubMedCrossRefGoogle Scholar
  98. 98.
    Haddjeri N, de Montigny C, Blier P. Modulation of the firing activity of noradrenergic neurones in the rat locus coeruleus by the 5-hydroxtryptamine system. Br J Pharmacol. 1997;120(5):865–75.PubMedCrossRefGoogle Scholar
  99. 99.
    Yan QS, Zheng SZ, Feng MJ, et al. Involvement of 5-HT1B receptors within the ventral tegmental area in ethanol-induced increases in mesolimbic dopaminergic transmission. Brain Res. 2005;1060(1–2):126–37.PubMedCrossRefGoogle Scholar
  100. 100.
    File SE, Kenny PJ, Cheeta S. The role of the dorsal hippocampal serotonergic and cholinergic systems in the modulation of anxiety. Pharmacol Biochem Behav. 2000;66(1):65–72.PubMedCrossRefGoogle Scholar
  101. 101.
    Bonaventure P, Langlois X, Leysen JE. Co-localization of 5-HT1B- and 5-HT1D receptor mRNA in serotonergic cell bodies in guinea pig dorsal raphe nucleus: a double labeling in situ hybridization histochemistry study. Neurosci Lett. 1998;254(2):113–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Ruf BM, Bhagwagar Z. The 5-HT1B receptor: a novel target for the pathophysiology of depression. Curr Drug Targets. 2009;10(11):1118–38.PubMedCrossRefGoogle Scholar
  103. 103.
    Broocks A, Meyer T, Opitz M, et al. 5-HT1A responsivity in patients with panic disorder before and after treatment with aerobic exercise, clomipramine or placebo. Eur Neuropsychopharmacol. 2003;13(3):153–64.PubMedCrossRefGoogle Scholar
  104. 104.
    McAllister-Williams RH, Massey AE, Fairchild G. Repeated cortisol administration attenuates the EEG response to buspirone in healthy volunteers: evidence for desensitization of the 5-HT1A autoreceptor. J Psychopharmacol. 2007;21(8):826–32.PubMedCrossRefGoogle Scholar
  105. 105.
    Ramey T, Stiger T, Banerjee A, et al. Methodology of time to onset of response characterization in the proof of concept trial for a combination drug in MDD. In: 9th Annual Scientific Meeting plus Research-To-Policy Forum, International Society for CNS Clinical Trials and Methodology; 2009 Oct 5–6, San Diego (CA).Google Scholar
  106. 106.
    Krebs-Kraft DL, Hill MN, Hillard CJ, et al. Sex difference in cell proliferation in developing rat amygdala mediated by endocannabinoids has implications for social behavior. Proc Natl Acad Sci USA. 107(47):20535–40.Google Scholar
  107. 107.
    Hill MN, McLaughlin RJ, Bingham B, et al. Endogenous cannabinoid signaling is essential for stress adaptation. Proc Natl Acad Sci USA. 107(20):9406–11.Google Scholar
  108. 108.
    Rademacher DJ, Meier SE, Shi L, et al. Effects of acute and repeated restraint stress on endocannabinoid content in the amygdala, ventral striatum, and medial prefrontal cortex in mice. Neuropharmacology. 2008;54(1):108–16.PubMedCrossRefGoogle Scholar
  109. 109.
    Reich CG, Taylor ME, McCarthy MM. Differential effects of chronic unpredictable stress on hippocampal CB1 receptors in male and female rats. Behav Brain Res. 2009;203(2):264–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Gorzalka BB, Hill MN, Hillard CJ. Regulation of endocannabinoid signaling by stress: implications for stress-related affective disorders. Neurosci Biobehav Rev. 2008;32(6):1152–60.PubMedCrossRefGoogle Scholar
  111. 111.
    Hill MN, Miller GE, Carrier EJ, et al. Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology. 2009;34(8):1257–62.PubMedCrossRefGoogle Scholar
  112. 112.
    Hill MN, Miller GE, Ho WS, et al. Serum endocannabinoid content is altered in females with depressive disorders: a preliminary report. Pharmacopsychiatry. 2008;41(2):48–53.PubMedCrossRefGoogle Scholar
  113. 113.
    Hill MN, Patel S, Carrier EJ, et al. Downregulation of endocannabinoid signaling in the hippocampus following chronic unpredictable stress. Neuropsychopharmacology. 2005;30(3):508–15.PubMedCrossRefGoogle Scholar
  114. 114.
    Kathuria S, Gaetani S, Fegley D, et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med. 2003;9(1):76–81.PubMedCrossRefGoogle Scholar
  115. 115.
    Hill MN, McLaughlin RJ, Morrish AC, et al. Suppression of amygdalar endocannabinoid signaling by stress contributes to activation of the hypothalamic-pituitary-adrenal axis. Neuropsychopharmacology. 2009;34(13):2733–45.PubMedCrossRefGoogle Scholar
  116. 116.
    Devane WA, Dysarz FA 3rd, Johnson MR, et al. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharm. 1988;34(5):605–13.Google Scholar
  117. 117.
    Hill MN. Introduction to the special issue on stress, emotional behavior, and the endocannabinoid system: a decade of research. Neuroscience. 2012;204:1–4.PubMedCrossRefGoogle Scholar
  118. 118.
    Viveros MP, Marco EM, File SE. Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav. 2005;81(2):331–42.PubMedCrossRefGoogle Scholar
  119. 119.
    Martin M, Ledent C, Parmentier M, et al. Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology (Berl). 2002;159(4):379–87.CrossRefGoogle Scholar
  120. 120.
    Ameri A. The effects of cannabinoids on the brain. Prog Neurobiol. 1999;58(4):315–48.PubMedCrossRefGoogle Scholar
  121. 121.
    Marsicano G, Wotjak CT, Azad SC, et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature. 2002;418(6897):530–4.PubMedCrossRefGoogle Scholar
  122. 122.
    Varvel SA, Wise LE, Niyuhire F, et al. Inhibition of fatty-acid amide hydrolase accelerates acquisition and extinction rates in a spatial memory task. Neuropsychopharmacology. 2007;32(5):1032–41.PubMedCrossRefGoogle Scholar
  123. 123.
    Chhatwal JP, Davis M, Maguschak KA, et al. Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology. 2005;30(3):516–24.PubMedCrossRefGoogle Scholar
  124. 124.
    Glass M, Dragunow M, Faull RL. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience. 1997;77(2):299–318.PubMedCrossRefGoogle Scholar
  125. 125.
    Herkenham M, Lynn AB, Little MD, et al. Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA. 1990;87(5):1932–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Haller J, Bakos N, Szirmay M, et al. The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety. Eur J Neurosci. 2002;16(7):1395–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Haller J, Varga B, Ledent C, et al. CB1 cannabinoid receptors mediate anxiolytic effects: convergent genetic and pharmacological evidence with CB1-specific agents. Behav Pharmacol. 2004;15(4):299–304.PubMedCrossRefGoogle Scholar
  128. 128.
    Viveros MP, Llorente R, Lopez-Gallardo M, et al. Sex-dependent alterations in response to maternal deprivation in rats. Psychoneuroendocrinology. 2009;34(Suppl. 1):S217–26.PubMedCrossRefGoogle Scholar
  129. 129.
    Hill MN, Carrier EJ, McLaughlin RJ, et al. Regional alterations in the endocannabinoid system in an animal model of depression: effects of concurrent antidepressant treatment. J Neurochem. 2008;106(6):2322–36.PubMedCrossRefGoogle Scholar
  130. 130.
    Suarez J, Llorente R, Romero-Zerbo SY, et al. Early maternal deprivation induces gender-dependent changes on the expression of hippocampal CB(1) and CB(2) cannabinoid receptors of neonatal rats. Hippocampus. 2009;19(7):623–32.PubMedCrossRefGoogle Scholar
  131. 131.
    Palanza P. Animal models of anxiety and depression: how are females different? Neurosci Biobehav Rev. 2001;25(3):219–33.PubMedCrossRefGoogle Scholar
  132. 132.
    Dell’osso L, Carmassi C, Massimetti G, et al. Full and partial PTSD among young adult survivors 10 months after the L’Aquila 2009 earthquake: gender differences. J Affect Disord. 2011;131(1–3):79–83.PubMedCrossRefGoogle Scholar
  133. 133.
    Freedy JR, Magruder KM, Mainous AG, et al. Gender differences in traumatic event exposure and mental health among veteran primary care patients. Mil Med. 2010;175(10):750–8.PubMedGoogle Scholar
  134. 134.
    Irish LA, Fischer B, Fallon W, et al. Gender differences in PTSD symptoms: an exploration of peritraumatic mechanisms. J Anxiety Disord. 2011;25(2):209–16.PubMedCrossRefGoogle Scholar
  135. 135.
    Luxton DD, Skopp NA, Maguen S. Gender differences in depression and PTSD symptoms following combat exposure. Depress Anxiety. 2010;27(11):1027–33.PubMedCrossRefGoogle Scholar
  136. 136.
    Ditlevsen DN, Elklit A. The combined effect of gender and age on post traumatic stress disorder: do men and women show differences in the lifespan distribution of the disorder? Ann Gen Psychiatry. 2010;9:32.PubMedCrossRefGoogle Scholar
  137. 137.
    Bowler RM, Han H, Gocheva V, et al. Gender differences in probable posttraumatic stress disorder among police responders to the 2001 World Trade Center terrorist attack. Am J Ind Med. 2010;53(12):1186–96.PubMedCrossRefGoogle Scholar
  138. 138.
    Galovski TE, Mott J, Young-Xu Y, et al. Gender differences in the clinical presentation of PTSD and its concomitants in survivors of interpersonal assault. J Interpers Violence. 2011;26(4):789–806.PubMedCrossRefGoogle Scholar
  139. 139.
    Breslau N, Anthony JC. Gender differences in the sensitivity to posttraumatic stress disorder: an epidemiological study of urban young adults. J Abnorm Psychol. 2007;116(3):607–11.PubMedCrossRefGoogle Scholar
  140. 140.
    Breslau N. Gender differences in trauma and posttraumatic stress disorder. J Gend Specif Med. 2002;5(1):34–40.PubMedGoogle Scholar
  141. 141.
    Stein MB, Walker JR, Forde DR. Gender differences in susceptibility to posttraumatic stress disorder. Behav Res Ther. 2000;38(6):619–28.PubMedCrossRefGoogle Scholar
  142. 142.
    Pardini M, Krueger F, Koenigs M, et al. Fatty-acid amide hydrolase polymorphisms and post-traumatic stress disorder after penetrating brain injury. Transl Psychiatry. 2012;2:e75.PubMedCrossRefGoogle Scholar
  143. 143.
    Lutz B. The endocannabinoid system and extinction learning. Mol Neurobiol. 2007;36:92–101.PubMedCrossRefGoogle Scholar
  144. 144.
    Hill MN, Tasker JG. Endocannabinoid signaling, glucocorticoid-mediated negative feedback, and regulation of the hypothalamic-pituitary-adrenal axis. Neuroscience. 2012;204:5–16.PubMedCrossRefGoogle Scholar
  145. 145.
    Kudielka BM, Kirschbaum C. Sex differences in HPA axis responses to stress: a review. Biol Psychol. 2005;69(1):113–32.PubMedCrossRefGoogle Scholar
  146. 146.
    Chrousos GP, Gold PW. The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis. JAMA. 1992;267(9):1244–52.PubMedCrossRefGoogle Scholar
  147. 147.
    Heim C, Ehlert U, Hellhammer DH. The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology. 2000;25(1):1–35.PubMedCrossRefGoogle Scholar
  148. 148.
    Heim C, Newport DJ, Heit S, et al. Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. JAMA. 2000;284(5):592–7.PubMedCrossRefGoogle Scholar
  149. 149.
    Holsboer F. Psychiatric implications of altered limbic-hypothalamic-pituitary-adrenocortical activity. Eur Arch Psychiatry Neurol Sci. 1989;238(5–6):302–22.PubMedCrossRefGoogle Scholar
  150. 150.
    Raison CL, Miller AH. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry. 2003;160(9):1554–65.PubMedCrossRefGoogle Scholar
  151. 151.
    Stratakis CA, Chrousos GP. Neuroendocrinology and pathophysiology of the stress system. Ann New York Acad Sci. 1995;771:1–18.CrossRefGoogle Scholar
  152. 152.
    Tsigos C, Chrousos GP. Physiology of the hypothalamic-pituitary-adrenal axis in health and dysregulation in psychiatric and autoimmune disorders. Endocrinol Metab Clin North Am. 1994;23(3):451–66.PubMedGoogle Scholar
  153. 153.
    Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res. 2002;53(4):865–71.PubMedCrossRefGoogle Scholar
  154. 154.
    Young EA. Sex differences and the HPA axis: implications for psychiatric disease. JGSM. 1998;1(1):21–7.PubMedGoogle Scholar
  155. 155.
    Hubbard DT, Nakashima BR, Lee I, et al. Activation of basolateral amygdala corticotropin-releasing factor 1 receptors modulates the consolidation of contextual fear. Neuroscience. 2007;150(4):818–28.PubMedCrossRefGoogle Scholar
  156. 156.
    Roozendaal B, Schelling G, McGaugh JL. Corticotropin-releasing factor in the basolateral amygdala enhances memory consolidation via an interaction with the beta-adrenoceptor-cAMP pathway: dependence on glucocorticoid receptor activation. J Neurosci. 2008;28(26):6642–51.PubMedCrossRefGoogle Scholar
  157. 157.
    Adamec R, Fougere D, Risbrough V. CRF receptor blockade prevents initiation and consolidation of stress effects on affect in the predator stress model of PTSD. Int J Neuropsychopharmacol. 2010;13(6):747–57.PubMedCrossRefGoogle Scholar
  158. 158.
    Steckler T, Risbrough V. Pharmacological treatment of PTSD: established and new approaches. Neuropharmacology. 2012;62(2):617–27.PubMedCrossRefGoogle Scholar
  159. 159.
    Bale TL, Contarino A, Smith GW, et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nature Gen. 2000;24(4):410–4.CrossRefGoogle Scholar
  160. 160.
    Bale TL, Picetti R, Contarino A, et al. Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. J Neurosci. 2002;22(1):193–9.PubMedGoogle Scholar
  161. 161.
    Coste SC, Kesterson RA, Heldwein KA, et al. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nature Gen. 2000;24(4):403–9.CrossRefGoogle Scholar
  162. 162.
    Baker DG, West SA, Nicholson WE, et al. Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. Am J Psychiatry. 1999;156(4):585–8.PubMedGoogle Scholar
  163. 163.
    Bremner JD, Licinio J, Darnell A, et al. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am J Psychiatry. 1997;154(5):624–9.PubMedGoogle Scholar
  164. 164.
    Ressler KJ, Mercer KB, Bradley B, et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature. 2011;470(7335):492–7.PubMedCrossRefGoogle Scholar
  165. 165.
    Baker DG, Nievergelt CM, Risbrough VB. Post-traumatic stress disorder: emerging concepts of pharmacotherapy. Expert Opin Emerg Drugs. 2009;14(2):251–72.PubMedCrossRefGoogle Scholar
  166. 166.
    Zobel AW, Nickel T, Kunzel HE, et al. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res. 2000;34(3):171–81.PubMedCrossRefGoogle Scholar
  167. 167.
    Binneman B, Feltner D, Kolluri S, et al. A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression. Am J Psychiatry. 2008;165(5):617–20.PubMedCrossRefGoogle Scholar
  168. 168.
    Patel S, Roelke CT, Rademacher DJ, et al. Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology. 2004;145(12):5431–8.PubMedCrossRefGoogle Scholar
  169. 169.
    Dhawan BN, Cesselin F, Raghubir R, et al. International Union of Pharmacology: XII. Classification of opioid receptors. Pharmacol Rev. 1996;48(4):567–92.PubMedGoogle Scholar
  170. 170.
    Mello NK, Negus SS. Interactions between kappa opioid agonists and cocaine: preclinical studies. Ann N Y Acad Sci. 2000;909:104–32.PubMedCrossRefGoogle Scholar
  171. 171.
    de Lanerolle NC, Williamson A, Meredith C, et al. Dynorphin and the kappa 1 ligand [3H]U69,593 binding in the human epileptogenic hippocampus. Epilepsy Res. 1997;28(3):189–205.PubMedCrossRefGoogle Scholar
  172. 172.
    Chappell PB, Leckman JF, Scahill LD, et al. Neuroendocrine and behavioral effects of the selective kappa agonist spiradoline in Tourette’s syndrome: a pilot study. Psychiatry Res. 1993;47(3):267–80.PubMedCrossRefGoogle Scholar
  173. 173.
    Mathieu-Kia AM, Fan LQ, Kreek MJ, et al. Mu-, delta- and kappa-opioid receptor populations are differentially altered in distinct areas of postmortem brains of Alzheimer’s disease patients. Brain Res. 2001;893(1–2):121–34.PubMedCrossRefGoogle Scholar
  174. 174.
    Sauriyal DS, Jaggi AS, Singh N. Extending pharmacological spectrum of opioids beyond analgesia: multifunctional aspects in different pathophysiological states. Neuropeptides. 2011;45(3):175–88.PubMedCrossRefGoogle Scholar
  175. 175.
    Hiller JM, Fan LQ. Laminar distribution of the multiple opioid receptors in the human cerebral cortex. Neurochem Res. 1996;21(11):1333–45.PubMedCrossRefGoogle Scholar
  176. 176.
    Simonin F, Gaveriaux-Ruff C, Befort K, et al. kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system. Proc Natl Acad Sci USA. 1995;92(15):7006–10.PubMedCrossRefGoogle Scholar
  177. 177.
    Bruchas MR, Land BB, Lemos JC, et al. CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior. PLoS One. 2009;4(12):e8528.PubMedCrossRefGoogle Scholar
  178. 178.
    Knoll AT, Carlezon WA Jr. Dynorphin, stress, and depression. Brain Res. 1314:56–73.Google Scholar
  179. 179.
    Carr GV, Bangasser DA, Bethea T, et al. Antidepressant-like effects of kappa-opioid receptor antagonists in Wistar Kyoto rats. Neuropsychopharmacology. 2010;35(3):752–63.PubMedCrossRefGoogle Scholar
  180. 180.
    Friedman MJ, Resick PA, Bryant RA, et al. Considering PTSD for DSM-5. Depress Anxiety. 2011;28(9):750–69.PubMedCrossRefGoogle Scholar
  181. 181.
    Berger W, Mendlowicz MV, Marques-Portella C, et al. Pharmacologic alternatives to antidepressants in posttraumatic stress disorder: a systematic review. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(2):169–80.PubMedCrossRefGoogle Scholar
  182. 182.
    Stein DJ, Ipser JC, Seedat S. Pharmacotherapy for post traumatic stress disorder (PTSD). Cochrane Database Syst Rev. 2006;(1):CD002795.Google Scholar
  183. 183.
    Knoll AT, Meloni EG, Thomas JB, et al. Anxiolytic-like effects of kappa-opioid receptor antagonists in models of unlearned and learned fear in rats. J Pharmacol Exp Ther. 2007;323(3):838–45.PubMedCrossRefGoogle Scholar
  184. 184.
    Jovanovic T, Ressler KJ. How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am J Psychiatry. 2010;167(6):648–62.PubMedCrossRefGoogle Scholar
  185. 185.
    Wuest J, Merritt-Gray M, Ford-Gilboe M, et al. Chronic pain in women survivors of intimate partner violence. J Pain. 2008;9(11):1049–57.PubMedCrossRefGoogle Scholar
  186. 186.
    Schiff M, Levit S, Cohen-Moreno R. Childhood sexual abuse, post-traumatic stress disorder, and use of heroin among female clients in Israeli methadone maintenance treatment programs (MMTPS). Soc Work Health Care. 2010;49(9):799–813.PubMedCrossRefGoogle Scholar
  187. 187.
    Holbrook TL, Galarneau MR, Dye JL, et al. Morphine use after combat injury in Iraq and post-traumatic stress disorder. N Engl J Med. 2010;362(2):110–7.PubMedCrossRefGoogle Scholar
  188. 188.
    Stoddard FJ Jr, Sorrentino EA, Ceranoglu TA, et al. Preliminary evidence for the effects of morphine on posttraumatic stress disorder symptoms in one- to four-year-olds with burns. J Burn Care Res. 2009;30(5):836–43.PubMedCrossRefGoogle Scholar
  189. 189.
    Nixon RD, Nehmy TJ, Ellis AA, et al. Predictors of posttraumatic stress in children following injury: the influence of appraisals, heart rate, and morphine use. Behav Res Ther. 2010;48(8):810–5.PubMedCrossRefGoogle Scholar
  190. 190.
    Bryant RA, Creamer M, O’Donnell M, et al. A study of the protective function of acute morphine administration on subsequent posttraumatic stress disorder. Biol Psychiatry. 2009;65(5):438–40.PubMedCrossRefGoogle Scholar
  191. 191.
    Henriksen G, Willoch F. Imaging of opioid receptors in the central nervous system. Brain. 2008;131(Pt 5):1171–96.PubMedGoogle Scholar
  192. 192.
    Cukor J, Spitalnick J, Difede J, et al. Emerging treatments for PTSD. Clin Psychol Rev. 2009;29(8):715–26.PubMedCrossRefGoogle Scholar
  193. 193.
    Pietrzak RH, Henry S, Southwick SM, et al. Linking in vivo brain serotonin type 1B receptor density to phenotypic heterogeneity of posttraumatic stress symptomatology. Mol Psychiatry. 2012; in press.Google Scholar
  194. 194.
    Pietrzak R, Gallezot J-D, Ding Y-S, et al. Posttraumatic stress disorder is associated with reduced in vivo norepinephrine transporter availability in the locus coeruleus. JAMA Psychiatry. 2013; in press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Christopher R. Bailey
    • 1
  • Elisabeth Cordell
    • 2
  • Sean M. Sobin
    • 2
  • Alexander Neumeister
    • 2
    Email author
  1. 1.Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of Psychiatry and RadiologyNYU School of Medicine, Molecular Imaging Program for Mood and Anxiety DisordersNew YorkUSA

Personalised recommendations