Advertisement

CNS Drugs

, Volume 27, Issue 3, pp 207–219 | Cite as

Plant-Based Medicines for Anxiety Disorders, Part 1

A Review of Preclinical Studies
  • Jerome Sarris
  • Erica McIntyre
  • David A. Camfield
Review Article

Abstract

Research in the area of herbal psychopharmacology has revealed a variety of promising medicines that may provide benefit in the treatment of general anxiety and specific anxiety disorders. However, a comprehensive review of plant-based anxiolytics has been absent to date. This article (part 1) reviews herbal medicines for which only preclinical investigations for anxiolytic activity have been performed. In part 2, we review herbal medicines for which there have been clinical investigations for anxiolytic activity. An open-ended, language-restricted (English) search of MEDLINE (PubMed), CINAHL, Scopus and the Cochrane Library databases was conducted (up to 28 October 2012) using specific search criteria to identify herbal medicines that have been investigated for anxiolytic activity. This search of the literature revealed 1,525 papers, from which 53 herbal medicines were included in the full review (having at least one study using the whole plant extract). Of these plants, 21 had human clinical trial evidence (reviewed in part 2), with another 32 having solely preclinical studies (reviewed here in part 1). Preclinical evidence of anxiolytic activity (without human clinical trials) was found for Albizia julibrissin, Sonchus oleraceus, Uncaria rhynchophylla, Stachys lavandulifolia, Cecropia glazioui, Magnolia spp., Eschscholzia californica, Erythrina spp., Annona spp., Rubus brasiliensis, Apocynum venetum, Nauclea latifolia, Equisetum arvense, Tilia spp., Securidaca longepedunculata, Achillea millefolium, Leea indica, Juncus effusus, Coriandrum sativum, Eurycoma longifolia, Turnera diffusa, Euphorbia hirta, Justicia spp., Crocus sativus, Aloysia polystachya, Albies pindrow, Casimiroa edulis, Davilla rugosa, Gastrodia elata, Sphaerathus indicus, Zizyphus jujuba and Panax ginseng. Common mechanisms of action for the majority of botanicals reviewed primarily involve GABA, either via direct receptor binding or ionic channel or cell membrane modulation; GABA transaminase or glutamic acid decarboxylase inhibition; a range of monoaminergic effects; and potential cannabinoid receptor modulation. Future research should focus on conducting human clinical trials on the plants reviewed with promising anxiolytic activity.

Keywords

Flumazenil Saffron Elevated Plus Maze Anxiolytic Effect Honokiol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Dr Jerome Sarris is funded by an Australian National Health & Medical Research Council fellowship (NHMRC funding ID 628875), in a strategic partnership with The University of Melbourne, The Centre for Human Psychopharmacology at Swinburne University of Technology. All authors have no conflicts of interest directly relevant to the content of this article.

References

  1. 1.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders, text revision. 4th ed. Arlington: American Psychiatric Association; 2000.Google Scholar
  2. 2.
    Sarris J. Herbal medicines in the treatment of psychiatric disorders: a systematic review. Phytother Res. 2007;21(8):703–16.PubMedCrossRefGoogle Scholar
  3. 3.
    Sarris J, Kavanagh DJ. Kava and St John’s wort: current evidence for use in mood and anxiety disorders. J Altern Complement Med. 2009;15(8):827–36.PubMedCrossRefGoogle Scholar
  4. 4.
    Spinella M. The psychopharmacology of herbal medicine: plant drugs that alter mind. In: Brain and behavior. Cambridge: MIT Press; 2001.Google Scholar
  5. 5.
    Awad R, Levac D, Cybulska P, et al. Effects of traditionally used anxiolytic botanicals on enzymes of the gamma-aminobutyric acid (GABA) system. Can J Physiol Pharmacol. 2007;85(9):933–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Kumar V. Potential medicinal plants for CNS disorders: an overview. Phytother Res. 2006;20(12):1023–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Sarris J, Panossian A, Schweitzer I, et al. Herbal medicine for depression, anxiety and insomnia: a review of psychopharmacology and clinical evidence. Eur Neuropsychopharmacol. 2011;21(12):841–60.PubMedCrossRefGoogle Scholar
  8. 8.
    Lakhan SE, Vieira KF. Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review. Nutr J. 2010;9:42.PubMedCrossRefGoogle Scholar
  9. 9.
    Sarris J, McIntyre E, Camfield D. Plant-based medicines for anxiety disorders, part 2: a review of clinical studies with supporting preclinical evidence. CNS Drugs (In press).Google Scholar
  10. 10.
    Lister RG. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl). 1987;92(2):180–5.CrossRefGoogle Scholar
  11. 11.
    Ngo Bum E, Taiwe GS, Moto FC, et al. Anticonvulsant, anxiolytic, and sedative properties of the roots of Nauclea latifolia Smith in mice. Epilepsy Behav. 2009;15(4):434–40.Google Scholar
  12. 12.
    Hellion-Ibarrola MC, Ibarrola DA, Montalbetti Y, et al. The anxiolytic-like effects of Aloysia polystachya (Griseb.) Moldenke (Verbenaceae) in mice. J Ethnopharmacol. 2006;105(3):400–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Mora S, Diaz-Veliz G, Millan R, et al. Anxiolytic and antidepressant-like effects of the hydroalcoholic extract from Aloysia polystachya in rats. Pharmacol Biochem Behav. 2005;82(2):373–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Lopez-Rubalcava C, Pina-Medina B, Estrada-Reyes R, et al. Anxiolytic-like actions of the hexane extract from leaves of Annona cherimolia in two anxiety paradigms: possible involvement of the GABA/benzodiazepine receptor complex. Life Sci. 2006;78(7):730–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Gonzalez-Trujano ME, Lopez-Meraz L, Reyes-Ramirez A, et al. Effect of repeated administration of Annona diversifolia Saff. (ilama) extracts and palmitone on rat amygdala kindling. Epilepsy Behav. 2009;16(4):590–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Gonzalez-Trujano ME, Martinez AL, Reyes-Ramirez A, et al. Palmitone isolated from Annona diversifolia induces an anxiolytic-like effect in mice. Planta Med. 2006;72(8):703–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Rejon-Orantes Jdel C, Gonzalez-Esquinca AR, de la Mora MP, et al. Annomontine, an alkaloid isolated from Annona purpurea, has anxiolytic-like effects in the elevated plus-maze. Planta Med. 2011;77(4):322–7.Google Scholar
  18. 18.
    Lanhers MC, Fleurentin J, Cabalion P, et al. Behavioral effects of Euphorbia hirta L.: sedative and anxiolytic properties. J Ethnopharmacol. 1990;29(2):189–98.PubMedCrossRefGoogle Scholar
  19. 19.
    Anuradha H, Srikumar BN. Shankaranarayana Rao BS, et al. Euphorbia hirta reverses chronic stress-induced anxiety and mediates its action through the GABA(A) receptor benzodiazepine receptor-Cl(−) channel complex. J Neural Transm. 2008;115(1):35–42.PubMedCrossRefGoogle Scholar
  20. 20.
    Srinivasan GV, Ranjith C, Vijayan KK. Identification of chemical compounds from the leaves of Leea indica. Acta Pharm. 2008;58(2):207–14.PubMedCrossRefGoogle Scholar
  21. 21.
    Raihan MO, Habib MR, Brishti A, et al. Sedative and anxiolytic effects of the methanolic extract of Leea indica (Burm. f.) Merr. leaf. Drug Discov Ther. 2011;5(4):185–9.Google Scholar
  22. 22.
    Nogueira E, Vassilieff VS. Hypnotic, anticonvulsant and muscle relaxant effects of Rubus brasiliensis: involvement of GABA(A)-system. J Ethnopharmacol. 2000;70(3):275–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Nogueira E, Rosa GJ, Haraguchi M, et al. Anxiolytic effect of Rubus brasilensis in rats and mice. J Ethnopharmacol. 1998;61(2):111–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Nogueira E, Rosa GJ, Vassilieff VS. Involvement of GABA(A)-benzodiazepine receptor in the anxiolytic effect induced by hexanic fraction of Rubus brasiliensis. J Ethnopharmacol. 1998;61(2):119–26.PubMedCrossRefGoogle Scholar
  25. 25.
    Klvana M, Chen J, Lépine F, et al. Analysis of secondary metabolites from Eschscholtzia californica by high-performance liquid chromatography. Phytochem Anal. 2006;17(4):236–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Abascal K, Yarnell E. Nervine herbs for treating anxiety. Altern Comp Ther. 2004;10(6):309–15.CrossRefGoogle Scholar
  27. 27.
    Rolland A, Fleurentin J, Lanhers MC, et al. Behavioural effects of the American traditional plant Eschscholzia californica: sedative and anxiolytic properties. Planta Medica. 1991;57(3):212–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Rolland A, Fleurentin J, Lanhers MC, et al. Neurophysiological effects of an extract of Eschscholzia californica Cham. (Papaveraceae). Phytother Res. 2001;15(5):377–81.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhou J, Zhou S. Antihypertensive and neuroprotective activities of rhynchophylline: the role of rhynchophylline in neurotransmission and ion channel activity. J Ethnopharmacol. 2010;132(1):15–27.PubMedCrossRefGoogle Scholar
  30. 30.
    Emamghoreishi M, Khasaki M, Aazam MF. Coriandrum sativum: evaluation of its anxiolytic effect in the elevated plus-maze. J Ethnopharmacol. 2005;96(3):365–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Mahendra P, Bisht S. Anti-anxiety activity of Coriandrum sativum assessed using different experimental anxiety models. Indian J Pharmacol. 2011;43(5):574–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Kumar S, Sharma A. Anti-anxiety activity studies of various extracts of Turnera aphrodisiaca Ward. J Herb Pharmacother. 2005;5(4):13–21.PubMedCrossRefGoogle Scholar
  33. 33.
    Kumar S, Madaan R, Sharma A. Estimation of apigenin, an anxiolytic constituent, Turnera aphrodisiaca. Indian J Pharm Sci. 2008;70(6):847–51.PubMedCrossRefGoogle Scholar
  34. 34.
    Guaraldo L, Chagas DA, Konno AC, et al. Hydroalcoholic extract and fractions of Davilla rugosa Poiret: effects on spontaneous motor activity and elevated plus-maze behavior. J Ethnopharmacol. 2000;72(1–2):61–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Galani VJ, Patel BG, Rana DG. Sphaeranthus indicus Linn: a phytopharmacological review. Int J Ayurveda Res. 2010;1(4):247–53.PubMedCrossRefGoogle Scholar
  36. 36.
    Galani VJ, Patel BG. Effect of hydroalcoholic extract of Sphaeranthus indicus against experimentally induced anxiety, depression and convulsions in rodents. Int J Ayurveda Res. 2010;1(2):87–92.PubMedCrossRefGoogle Scholar
  37. 37.
    Flausino Jr OA, Pereira AM, da Silva Bolzani V, et al. Effects of erythrinian alkaloids isolated from Erythrina mulungu (Papilionaceae) in mice submitted to animal models of anxiety. Biol Pharm Bull. 2007;30(2):375–8.Google Scholar
  38. 38.
    Raupp IM, Sereniki A, Virtuoso S, et al. Anxiolytic-like effect of chronic treatment with Erythrina velutina extract in the elevated plus-maze test. J Ethnopharmacol. 2008;118(2):295–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Ribeiro MD, Onusic GM, Poltronieri SC, et al. Effect of Erythrina velutina and Erythrina mulungu in rats submitted to animal models of anxiety and depression. Braz J Med Biol Res. 2006;39(2):263–70.PubMedCrossRefGoogle Scholar
  40. 40.
    Onusic GM, Nogueira RL, Pereira AM, et al. Effects of chronic treatment with a water-alcohol extract from Erythrina mulungu on anxiety-related responses in rats. Biol Pharm Bull. 2003;26(11):1538–42.PubMedCrossRefGoogle Scholar
  41. 41.
    Onusic GM, Nogueira RL, Pereira AM, et al. Effect of acute treatment with a water-alcohol extract of Erythrina mulungu on anxiety-related responses in rats. Braz J Med Biol Res. 2002;35(4):473–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Singh N, Kaur S, Bedi PM, et al. Anxiolytic effects of Equisetum arvense Linn. extracts in mice. Indian J Exp Biol. 2011;49(5):352–6.PubMedGoogle Scholar
  43. 43.
    Jung JW, Yoon BH, Oh HR, et al. Anxiolytic-like effects of Gastrodia elata and its phenolic constituents in mice. Biol Pharm Bull. 2006;29(2):261–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Geng J, Dong J, Ni H, et al. Ginseng for cognition. Cochrane Database Syst Rev. 2010(12):CD007769.Google Scholar
  45. 45.
    Panossian A. Stimulating effect of adaptogens: an overview with particular reference to their efficacy following single dose administration. Phytother Res. 2005;19:819–38.PubMedCrossRefGoogle Scholar
  46. 46.
    Bhattacharya SK, Mitra SK. Anxiolytic activity of Panax ginseng roots: an experimental study. J Ethnopharmacol. 1991;34(1):87–92.PubMedCrossRefGoogle Scholar
  47. 47.
    Carr MN, Bekku N, Yoshimura H. Identification of anxiolytic ingredients in ginseng root using the elevated plus-maze test in mice. Eur J Pharmacol. 2006;531(1–3):160–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Park JH, Cha HY, Seo JJ, et al. Anxiolytic-like effects of ginseng in the elevated plus-maze model: comparison of red ginseng and sun ginseng. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(6):895–900.PubMedCrossRefGoogle Scholar
  49. 49.
    Cha HY, Park JH, Hong JT, et al. Anxiolytic-like effects of ginsenosides on the elevated plus-maze model in mice. Biol Pharm Bull. 2005;28(9):1621–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Kim TW, Choi HJ, Kim NJ, et al. Anxiolytic-like effects of ginsenosides Rg3 and Rh2 from red ginseng in the elevated plus-maze model. Planta Med. 2009;75(8):836–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Perez-Ortega G, Guevara-Fefer P, Chavez M, et al. Sedative and anxiolytic efficacy of Tilia americana var. mexicana inflorescences used traditionally by communities of State of Michoacan, Mexico. J Ethnopharmacol. 2008;116(3):461–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Aguirre-Hernandez E, Martinez AL, Gonzalez-Trujano ME, et al. Pharmacological evaluation of the anxiolytic and sedative effects of Tilia americana L. var. mexicana in mice. J Ethnopharmacol. 2007;109(1):140–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Herrera-Ruiz M, Roman-Ramos R, Zamilpa A, et al. Flavonoids from Tilia americana with anxiolytic activity in plus-maze test. J Ethnopharmacol. 2008;118(2):312–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Aguirre-Hernandez E, Gonzalez-Trujano ME, Martinez AL, et al. HPLC/MS analysis and anxiolytic-like effect of quercetin and kaempferol flavonoids from Tilia americana var. mexicana. J Ethnopharmacol. 2010;127(1):91–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Kuo CS, Kwan CY, Gong CL, et al. Apocynum venetum leaf aqueous extract inhibits voltage-gated sodium channels of mouse neuroblastoma N2A cells. J Ethnopharmacol. 2011;136(1):149–55.PubMedCrossRefGoogle Scholar
  56. 56.
    Grundmann O, Nakajima J, Seo S, et al. Anti-anxiety effects of Apocynum venetum L. in the elevated plus maze test. J Ethnopharmacol. 2007;110(3):406–11.PubMedCrossRefGoogle Scholar
  57. 57.
    Koetter U, Barrett M, Lacher S, et al. Interactions of Magnolia and Ziziphus extracts with selected central nervous system receptors. J Ethnopharmacol. 2009;124(3):421–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Martinez AL, Dominguez F, Orozco S, et al. Neuropharmacological effects of an ethanol extract of the Magnolia dealbata Zucc. leaves in mice. J Ethnopharmacol. 2006;106(2):250–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Kuribara H, Kishi E, Hattori N, et al. The anxiolytic effect of two oriental herbal drugs in Japan attributed to honokiol from magnolia bark. J Pharm Pharmacol. 2000;52(11):1425–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Han H, Jung JK, Han SB, et al. Anxiolytic-like effects of 4-O-methylhonokiol isolated from Magnolia officinalis through enhancement of GABAergic transmission and chloride influx. J Med Food. 2011;14(7–8):724–31.PubMedCrossRefGoogle Scholar
  61. 61.
    Alexeev M, Grosenbaugh DK, Mott DD, et al. The natural products magnolol and honokiol are positive allosteric modulators of both synaptic and extra-synaptic GABA(A) receptors. Neuropharmacology. 2012;62(8):2507–14.PubMedCrossRefGoogle Scholar
  62. 62.
    Seo JJ, Lee SH, Lee YS, et al. Anxiolytic-like effects of obovatol isolated from Magnolia obovata: involvement of GABA/benzodiazepine receptors complex. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(7):1363–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Ku TH, Lee YJ, Wang SJ, et al. Effect of honokiol on activity of GAD(65) and GAD(67) in the cortex and hippocampus of mice. Phytomedicine. 2011;18(13):1126–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Jung JW, Cho JH, Ahn NY, et al. Effect of chronic Albizzia julibrissin treatment on 5-hydroxytryptamine1A receptors in rat brain. Pharmacol Biochem Behav. 2005;81(1):205–10.PubMedCrossRefGoogle Scholar
  65. 65.
    Kim WK, Jung JW, Ahn NY, et al. Anxiolytic-like effects of extracts from Albizzia julibrissin bark in the elevated plus-maze in rats. Life Sci. 2004;75(23):2787–95.PubMedCrossRefGoogle Scholar
  66. 66.
    Schmidt M, Betti G, Hensel A. Saffron in phytotherapy: pharmacology and clinical uses. Wien Med Wochenschr. 2007;157(13–14):315–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Hosseinzadeh H, Noraei NB. Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytother Res. 2009;23(6):768–74.PubMedCrossRefGoogle Scholar
  68. 68.
    Lechtenberg M, Schepmann D, Niehues M, et al. Quality and functionality of saffron: quality control, species assortment and affinity of extract and isolated saffron compounds to NMDA and sigma1 (sigma-1) receptors. Planta Med. 2008;74(7):764–72.PubMedCrossRefGoogle Scholar
  69. 69.
    Hosseinzadeh H, Sadeghnia H. Protective effect of safranal on pentylenetetrazol-induced seizures in the rat: involvement of GABAergic and opioids systems. Phytomedicine. 2007;14(4):256–62.PubMedCrossRefGoogle Scholar
  70. 70.
    Ghadrdoost B, Vafaei AA, Rashidy-Pour A, et al. Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur J Pharmacol. 2011;667(1–3):222–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Noorbala AA, Akhondzadeh S, Tahmacebi-Pour N, et al. Hydro-alcoholic extract of Crocus sativus L. versus fluoxetine in the treatment of mild to moderate depression: a double-blind, randomized pilot trial. J Ethnopharmacol. 2005;97(2):281–4.PubMedCrossRefGoogle Scholar
  72. 72.
    Akhondzadeh S, Fallah-Pour H, Afkham K, et al. Comparison of Crocus sativus L. and imipramine in the treatment of mild to moderate depression: a pilot double-blind randomized trial [ISRCTN45683816]. BMC Complement Altern Med. 2004;4:12.PubMedCrossRefGoogle Scholar
  73. 73.
    Pitsikas N, Boultadakis A, Georgiadou G, et al. Effects of the active constituents of Crocus sativus L., crocins, in an animal model of anxiety. Phytomedicine. 2008;15(12):1135–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Wang YG, Wang YL, Zhai HF, et al. Phenanthrenes from Juncus effusus with anxiolytic and sedative activities. Nat Prod Res. 2012;26(13):1234–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Liao YJ, Zhai HF, Zhang B, et al. Anxiolytic and sedative effects of dehydroeffusol from Juncus effusus in mice. Planta Med. 2011;77(5):416–20.PubMedCrossRefGoogle Scholar
  76. 76.
    Singhuber J, Baburin I, Khom S, et al. GABAA receptor modulators from the Chinese herbal drug Junci Medulla: the pith of Juncus effusus. Planta Med. 2012;78(5):455–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang M, Ning G, Shou C, et al. Inhibitory effect of jujuboside A on glutamate-mediated excitatory signal pathway in hippocampus. Planta Med. 2003;69(8):692–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Peng WH, Hsieh MT, Lee YS, et al. Anxiolytic effect of seed of Ziziphus jujuba in mouse models of anxiety. J Ethnopharmacol. 2000;72(3):435–41.PubMedCrossRefGoogle Scholar
  79. 79.
    Cardoso Vilela F, Soncini R, Giusti-Paiva A. Anxiolytic-like effect of Sonchus oleraceus L. in mice. J Ethnopharmacol. 2009;124(2):325–7.Google Scholar
  80. 80.
    Venancio ET, Rocha NF, Rios ER, et al. Anxiolytic-like effects of standardized extract of Justicia pectoralis (SEJP) in mice: involvement of GABA/benzodiazepine in receptor. Phytother Res. 2011;25(3):444–50.PubMedGoogle Scholar
  81. 81.
    Navarro E, Alonso SJ, Trujillo J, et al. Central nervous activity of elenoside. Phytomedicine. 2004;11(6):498–503.PubMedCrossRefGoogle Scholar
  82. 82.
    Ang HH, Cheang HS. Studies on the anxiolytic activity of Eurycoma longifolia Jack roots in mice. Japan J Pharmacol. 1999;79(4):497–500.CrossRefGoogle Scholar
  83. 83.
    Adeyemi OO, Akindele AJ, Yemitan OK, et al. Anticonvulsant, anxiolytic and sedative activities of the aqueous root extract of Securidaca longepedunculata Fresen. J Ethnopharmacol. 2010;130(2):191–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Kumar V, Singh RK, Jaiswal AK, et al. Anxiolytic activity of Indian Abies pindrow Royle leaves in rodents: an experimental study. Indian J Exp Biol. 2000;38(4):343–6.PubMedGoogle Scholar
  85. 85.
    Mora S, Diaz-Veliz G, Lungenstrass H, et al. Central nervous system activity of the hydroalcoholic extract of Casimiroa edulis in rats and mice. J Ethnopharmacol. 2005;97(2):191–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Molina-Hernandez M, Tellez-Alcantara NP, Garcia JP, et al. Anxiolytic-like actions of leaves of Casimiroa edulis (Rutaceae) in male Wistar rats. J Ethnopharmacol. 2004;93(1):93–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Rabbani M, Sajjadi SE, Zarei HR. Anxiolytic effects of Stachys lavandulifolia Vahl on the elevated plus-maze model of anxiety in mice. J Ethnopharmacol. 2003;89(2–3):271–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Baretta IP, Felizardo RA, Bimbato VF, et al. Anxiolytic-like effects of acute and chronic treatment with Achillea millefolium L. extract. J Ethnopharmacol. 2012;140(1):46–54.PubMedCrossRefGoogle Scholar
  89. 89.
    Nemeth E, Bernath J. Biological activities of yarrow species (Achillea spp.). Curr Pharm Des. 2008;14(29):3151–67.PubMedCrossRefGoogle Scholar
  90. 90.
    Rocha FF, Lapa AJ, De Lima TC. Evaluation of the anxiolytic-like effects of Cecropia glazioui Sneth in mice: pharmacology, biochemistry, and behavior. Pharmacol Biochem Behav. 2002;71(1–2):183–90.PubMedCrossRefGoogle Scholar
  91. 91.
    Rocha FF, Lima-Landman MT, Souccar C, et al. Antidepressant-like effect of Cecropia glazioui Sneth and its constituents: in vivo and in vitro characterization of the underlying mechanism. Phytomedicine. 2007;14(6):396–402.PubMedCrossRefGoogle Scholar
  92. 92.
    Xie W, Zhang X, Wang T, et al. Botany, traditional uses, phytochemistry and pharmacology of Apocynum venetum L. (Luobuma): a review. J Ethnopharmacol. 2012;141(1):1–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Rolland A, Fleurentin J, Lanhers MC, et al. Behavioural effects of the American traditional plant Eschscholzia californica: sedative and anxiolytic properties. Planta Med. 1991;57(3):212–6.PubMedCrossRefGoogle Scholar
  94. 94.
    McDowell A, Thompson S, Stark M, et al. Antioxidant activity of puha (Sonchus oleraceus L.) as assessed by the cellular antioxidant activity (CAA) assay. Phytother Res. 2011;25(12):1876–82.PubMedCrossRefGoogle Scholar
  95. 95.
    Kalman DS, Feldman S, Feldman R, et al. Effect of a proprietary Magnolia and Phellodendron extract on stress levels in healthy women: a pilot, double-blind, placebo-controlled clinical trial. Nutr J. 2008;7:11.PubMedCrossRefGoogle Scholar
  96. 96.
    Dang H, Chen Y, Liu X, et al. Antidepressant effects of ginseng total saponins in the forced swimming test and chronic mild stress models of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(8):1417–24.PubMedCrossRefGoogle Scholar
  97. 97.
    Rabbani M, Sajjadi SE, Jalali A. Hydroalcohol extract and fractions of Stachys lavandulifolia Vahl: effects on spontaneous motor activity and elevated plus-maze behaviour. Phytother Res. 2005;19(10):854–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Hsieh MT, Chen HC, Hsu PH, et al. Effects of Suanzaorentang on behavior changes and central monoamines. Proc Natl Sci Counc Repub China B. 1986;10(1):43–8.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Jerome Sarris
    • 1
    • 4
  • Erica McIntyre
    • 3
  • David A. Camfield
    • 2
  1. 1.Department of Psychiatry, Faculty of MedicineUniversity of Melbourne2 Salisbury Street, RichmondAustralia
  2. 2.Swinburne University of Technology, Centre for Human PsychopharmacologyMelbourneAustralia
  3. 3.School of PsychologyCharles Sturt UniversityBathurstAustralia
  4. 4.Centre for Human PsychopharmacologySwinburne University of TechnologyHawthornAustralia

Personalised recommendations