CNS Drugs

, Volume 26, Issue 12, pp 1017–1032

Targeting Glutamate Receptors to Tackle the Pathogenesis, Clinical Symptoms and Levodopa-Induced Dyskinesia Associated with Parkinson’s Disease

Leading Article


The appearance of levodopa-induced dyskinesia (LID) and ongoing degeneration of nigrostriatal dopaminergic neurons are two key features of Parkinson’s disease (PD) that current treatments fail to address. Increased glutamate transmission contributes to the motor symptoms in PD, to the striatal plasticity that underpins LID and to the progression of neurodegeneration through excitotoxic mechanisms. Glutamate receptors have therefore long been considered as potential targets for pharmacological intervention in PD, with emphasis on either blocking activation of 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA), N-methyl-d-aspartate (NMDA) or excitatory metabotropic glutamate (mGlu) 5 receptors or promoting the activation of group II/III mGlu receptors. Following a brief summary of the role of glutamate in PD and LID, this article explores the current status of pharmacological studies in pre-clinical rodent and primate models through to clinical trials, where applicable, that support the potential of glutamate-based therapeutic interventions. To date, AMPA antagonists have shown good efficacy against LID in rat and primate models, but the failure of perampanel to lessen LID in clinical trials casts doubt on the translational potential of this approach. In contrast, antagonists selective for NR2B-containing NMDA receptors were effective against LID in animal models and in small-scale clinical trials, though observed adverse cognitive effects need addressing. So far, mGlu5 antagonists or negative allosteric modulators (NAMs) look set to become the first introduced for tackling LID, with AFQ-056 reported to exhibit good efficacy in phase II clinical trials. NR2B antagonists and mGlu5 NAMs may subsequently prove to also be effective disease-modifying agents if their protective effects in rat and primate models of PD, respectively, are replicated in the next stages of investigation. Finally, group III mGlu4 agonists or positive allosteric modulators (PAMs), although in the early pre-clinical stages of investigation, are showing good efficacy against motor symptoms, neurodegeneration and LID. It is anticipated that the recent development of mGlu4 PAMs with improved systemic bioavailability will facilitate progression of these agents into the primate model of PD where their potential can be further explored.


  1. 1.
    de Rijk MC, Tzourio C, Breteler MM, et al. Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON collaborative study. European community concerted action on the epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;62(1):10–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Chaudhuri KR, Schapira AH. Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 2009;8(5):464–74.PubMedCrossRefGoogle Scholar
  3. 3.
    Lang AE, Lozano AM. Parkinson’s disease: first of two parts. N Engl J Med. 1998;339(15):1044–53.PubMedCrossRefGoogle Scholar
  4. 4.
    Blandini F, Nappi G, Tassorelli C, et al. Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol. 2000;62(1):63–88.PubMedCrossRefGoogle Scholar
  5. 5.
    Isaacson SH, Hauser RA. Improving symptom control in early Parkinson’s disease. Ther Adv Neurol Disord. 2009;2(6):29–41.PubMedCrossRefGoogle Scholar
  6. 6.
    Marsden CD, Parkes JD. Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet. 1997;1(8007):345–9.Google Scholar
  7. 7.
    Hametner E, Seppi K, Poewe W. The clinical spectrum of levodopa-induced motor complications. J Neurol. 2010;257(Suppl. 2):S268–75.PubMedCrossRefGoogle Scholar
  8. 8.
    Blandini F, Porter RH, Greenamayre JT. Glutamate and Parkinson’s disease. Mol Neurobiol. 1996;12(1):73–94.PubMedCrossRefGoogle Scholar
  9. 9.
    Hirsch EC, Périer C, Orieux G, et al. Metabolic effects of nigrostriatal denervation in basal ganglia. Trends Neurosci. 2000;23(10 Suppl):S78–85.PubMedCrossRefGoogle Scholar
  10. 10.
    Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, et al. Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord. 2008;23(Suppl. 3):S548–59.PubMedCrossRefGoogle Scholar
  11. 11.
    Duty S, Jenner P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164(4):1357–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Kashani A, Batancur C, Giros B, et al. Altered expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in Parkinson’s disease. Neurobiol Aging. 2007;28(4):568–78.PubMedCrossRefGoogle Scholar
  13. 13.
    Jiménez-Jiménez FJ, Molina JA, Vargas C, et al. Neurotransmitter amino acids in cerebrospinal fluid of patients with Parkinson’s disease. J Neurol Sci. 1996;141(1–2):39–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Kuiper MA, Teerlink T, Visser JJ, Bergmans PLM, et al. l-Glutamate, l-arginine and l-cirtulline levels in cerebrospinal fluid of Parkinson’s disease, multiple system atrophy, and Alzheimer’s patients. J Neural Transm. 2000;107(2):183–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Ondarza R, Velasco F, Velasco M, et al. Neurotransmitter levels in cerebrospinal fluid in relation to severity of symptoms and response to medical therapy in Parkinson’s disease. Stereotact Funct Neurosurg. 1994;62(1–4):90–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Gerlach M, Gsell W, Kornhuber J, et al. A post mortem study on neurochemical markers of dopaminergic, GABA-ergic and glutamatergic neurons in basal ganglia thalamo-cortical circuits in Parkinson syndrome. Brain Res. 1996;741(1–2):142–52.PubMedCrossRefGoogle Scholar
  17. 17.
    Rinne JO, Halonen T, Riekkinen PJ, et al. Free amino acids in the brain of patients with Parkinson’s disease. Neurosci Lett. 1988;94(1–2):182–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Cenci MA, Lundblad M. Post- versus presynaptic plasticity in l-dopa-induced dyskinesia. J Neurochem. 2006;99(2):381–92.PubMedCrossRefGoogle Scholar
  19. 19.
    Jenner P. Molecular mechanisms of l-dopa-induced dyskinesia. Nat Rev Neurosci. 2008;9(9):665–77.PubMedCrossRefGoogle Scholar
  20. 20.
    Calabresi P, Di Fillippo M, Ghiglieri V, et al. Levodopa-induced dyskinesia in patients with Parkinson’s disease: filling the bench-to-bedside gap. Lancet Neurol. 2010;9(11):1106–17.PubMedCrossRefGoogle Scholar
  21. 21.
    Iravani MM, McCreary AC, Jenner P. Striatal plasticity in Parkinson’s disease and l-dopa-induced dyskinesia. Parkinsonism Relat Disord. 2012;18(Suppl. 1):S123–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Sgambato-Faure V, Cenci MA. Glutamatergic mechanisms in the dyskinesia induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson’s disease. Prog Neurobiol. 2012;96(1):69–86.PubMedCrossRefGoogle Scholar
  23. 23.
    Blandini F, Armentero MT. New pharmacological avenues for the treatment of l-dopa-induced dyskinesia in Parkinson’s disease: targeting glutamate and adenosine receptors. Expert Opin Investig Drugs. 2012;21(2):153–68.PubMedCrossRefGoogle Scholar
  24. 24.
    Dupre KB, Ostock CY, Eskow Juanarajs KL, et al. Local modulation of striatal glutamate efflux by serotonin 1A receptor stimulation in dyskinetic, hemiparkinsonian rats. Exp Neurol. 2011;229(2):288–99.PubMedCrossRefGoogle Scholar
  25. 25.
    Samadi P, Grégoire L, Morissette M, et al. mGluR5 metabotropic glutamate receptors and dyskinesia in MPTP monkeys. Neurobiol Aging. 2008;29(7):1040–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Outtara B, Grégoire L, Mirissette M, et al. Metabotropic glutamate receptor 5 in levodopa-induced motor complications. Neurobiol Aging. 2011;32(7):1286–95.CrossRefGoogle Scholar
  27. 27.
    Samadi P, Grégoire L, Morissette M, Calon F. Hadj Tahar A, Bélanger N, Dridi M, Bédard PJ, Di Paolo T. Basal ganglia group II metabotropic glutamate receptors specific binding in non-human primate model of l-dopa-induced dyskinesias. Neuropharmacology. 2008;54(2):258–68.PubMedCrossRefGoogle Scholar
  28. 28.
    Samadi P, Rajput A, Calon F, Grégoire L, Hornykiewicz O, Rajput AH, Di Paolo T. Metabotropic glutamate receptor II in the brains of Parkinsonian patients. J Neuropathol Exp Neurol. 2009;68(4):374–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Calon F, Rajput AH, Hornykiewicz O, et al. Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson’s disease. Neurobiol Dis. 2003;14(3):404–16.PubMedCrossRefGoogle Scholar
  30. 30.
    Hallett PJ, Dunah AW, Ravenscroft P, et al. Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology. 2005;48(4):503–16.PubMedCrossRefGoogle Scholar
  31. 31.
    Gardoni F, Sgobio C, Pendolino V, et al. Targeting NR2A-containing NMDA receptors reduces l-dopa-induced dyskinesia. Neurobiol Aging. 2012;33(9):2138–44.PubMedCrossRefGoogle Scholar
  32. 32.
    Calon F, Morissette M, Ghribi O, et al. Alteration of glutamate receptors in the striatum of dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys following dopamine agonist treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(1):127–38.PubMedCrossRefGoogle Scholar
  33. 33.
    Outtara B, Hoyer D, Grégoire L, et al. Changes of AMPA receptors in MPTP monkeys with levodopa-induced dyskinesias. Neuroscience. 2010;167(4):1160–7.CrossRefGoogle Scholar
  34. 34.
    Hurley MJ, Jackson MJ, Smith LA, et al. Immunoautoradiographic analysis of NMDA receptor subunits and associated postsynaptic density proteins in the brain of dyskinetic MPTP-treated common marmosets. Eur J Neurosci. 2005;21(12):3240–50.PubMedCrossRefGoogle Scholar
  35. 35.
    Ahmed I, Bose SK, Pavese N, et al. Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain. 2011;134(4):979–86.PubMedCrossRefGoogle Scholar
  36. 36.
    Santini E, Valjent E, Usiello A, et al. Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in l-dopa-induced dyskinesia. J Neurosci. 2007;27(26):6995–7005.PubMedCrossRefGoogle Scholar
  37. 37.
    Ba M, Kong M, Yu G, et al. GluR1 phosphorylation and persistent expression of levodopa-induced motor response alterations in the hemi-parkinsonian rat. Neurochem Res. 2011;36(6):1135–44.PubMedCrossRefGoogle Scholar
  38. 38.
    Santini E, Sgamboto-Faure V, Li Q, et al. Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in l-dopa-induced dyskinesia. PLoS One. 2010;5(8):e12322.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang JQ, Arora A, Yang L, et al. Phosphorylation of AMPA receptors: mechanisms and synaptic plasticity. Mol Neurobiol. 2005;32(3):237–49.PubMedCrossRefGoogle Scholar
  40. 40.
    Ba M, Kong M, Yang H, et al. Changes in subcellular distribution and phosphorylation of GluR1 in lesioned striatum of 6-hydroxydopamine-lesioned and l-dopa treated rats. Neurochem Res. 2006;31(11):1337–47.PubMedCrossRefGoogle Scholar
  41. 41.
    Silverdale MA, Kobylecki C, Hallett PJ, et al. Synaptic recruitment of AMPA glutamate receptor subunits in levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate. Synapse. 2010;64(2):177–80.PubMedCrossRefGoogle Scholar
  42. 42.
    Oh JD, Russell DS, Vaughan CL, et al. Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and l-dopa administration. Brain Res. 1998;813(1):150–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Gardoni F, Picconi B, Ghiglieri V, et al. A critical interaction between NR2B and MAGUK in l-dopa-induced dyskinesia. J Neurosci. 2006;26(11):2914–22.PubMedCrossRefGoogle Scholar
  44. 44.
    Muñoz A, Li Q, Gardoni F, et al. Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of l-dopa-induced dyskinesia. Brain. 2008;131(12):3380–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Picconi B, Centonze D, Håkansson K, et al. Loss of bidirectional striatal synaptic plasticity in l-dopa-induced dyskinesia. Nat Neurosci. 2003;6(5):501–6.PubMedGoogle Scholar
  46. 46.
    Massey PV, Johnson BE, Moult PR, et al. Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci. 2004;24(36):7821–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Olanow CW. The pathogenesis of cell death in Parkinson’s disease. Mov Disord. 2007;22(Suppl. 17):S335–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord. 2011;26(6):1049–55.PubMedCrossRefGoogle Scholar
  49. 49.
    Blandini F. An update on the potential role of excitotoxicity in the pathogenesis of Parkinson’s disease. Funct Neurol. 2010;25(2):65–71.PubMedGoogle Scholar
  50. 50.
    Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch Eur J Physiol. 2010;460(2):525–42.CrossRefGoogle Scholar
  51. 51.
    Bevan MD, Bolam JP, Crossman AR. Convergent synaptic input from the neostriatum and the subthalamus onto identified nigrothalamic neurons in the rat. Eur J Neurosci. 1994;6(3):320–34.PubMedCrossRefGoogle Scholar
  52. 52.
    Kornhuber J, Kim JS, Kornhuber ME, et al. The cortico-nigral projection: reduced glutamate content in the substantia nigra following frontal cortex ablation in the rat. Brain Res. 1984;322(1):124–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Helton TD, Otsuka T, Lee M-C, et al. Pruning and loss of excitatory synapses by the parkin ubiquitin ligase. Proc Natl Acad Sci USA. 2008;105(49):19492–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Lücking CB, Dürr A, Bonifati V, et al. Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med. 2000;342(21):1560–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Abou-Sleiman PM, Healy DG, Wood NW. Causes of Parkinson’s disease: genetics of DJ-1. Cell Tissue Res. 2004;318(1):185–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Aleyasin H, Rousseaux MWC, Phillips M, et al. The Parkinson’s disease gene DJ-1 is also a key regulator of stroke-induced damage. Proc Natl Acad Sci USA. 2007;104(47):18748–53.PubMedCrossRefGoogle Scholar
  57. 57.
    Albin RL, Greenamyre JT. Alternative excitotoxic hypotheses. Neurology. 1992;42(4):733–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Sawada H, Shimohama S, Tamura Y, et al. Methylphenylpyridium ion (MPP+) enhances glutamate-induced cytotoxicity against dopaminergic neurons in cultures rat mesencephalon. J Neurosci Res. 1996;43(1):55–62.PubMedCrossRefGoogle Scholar
  59. 59.
    Hatcher JM, Pennell KD, Miller GW. Parkinson’s disease and pesticides: a toxicological perspective. Trends Pharmacol Sci. 2008;29(6):322–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Wu YN, Johnson SW. Rotenone reduces Mg2+-dependent block of NMDA currents in substantia nigra dopamine neurons. Neurotoxicology. 2009;30(2):320–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Shimizu K, Matsubara K, Ohtaki K, et al. Paraquat leads to dopaminergic neuronal vulnerability in organotypic midbrain cultures. Neurosci Res. 2003;46(4):523–32.PubMedCrossRefGoogle Scholar
  62. 62.
    Ankarcrona M, Dypbukt JM, Bonfoco E, et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 1995;15(4):961–73.PubMedCrossRefGoogle Scholar
  63. 63.
    Tatton WG, Chalmers-Redman R, Brown D, et al. Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann Neurol. 2003;53(Suppl. 3):S61–70.PubMedCrossRefGoogle Scholar
  64. 64.
    Fahn S, Cohen G. The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol. 1992;32(6):804–12.PubMedCrossRefGoogle Scholar
  65. 65.
    Chatha BT, Bernard V, Streit P, et al. Synaptic localization of ionotropic glutamate receptors in the rat substantia nigra. Neuroscience. 2000;101(4):1037–51.PubMedCrossRefGoogle Scholar
  66. 66.
    Bernard V, Somogyi P, Bolam JP. Cellular, subcellular, and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. J Neurosci. 1997;17(2):819–33.PubMedGoogle Scholar
  67. 67.
    Klockgether T, Turski L, Honoré T, et al. The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys. Ann Neurol. 1991;39(5):717–23.CrossRefGoogle Scholar
  68. 68.
    Löschmann PA, Lange KW, Kunow M, et al. Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPP with l-dopa in models of Parkinson’s disease. J Neural Transm Park Dis Dement Sect. 1991;3(3):203–13.PubMedCrossRefGoogle Scholar
  69. 69.
    Luquin MR, Obeso JA, Laguna J, et al. The AMPA receptor antagonist NBQX does not alter the motor response induced by selective dopamine agonists in MPTP-treated monkeys. Eur J Pharmacol. 1993;235(2–3):297–300.PubMedCrossRefGoogle Scholar
  70. 70.
    Konitsiotis S, Blanchet PJ, Verhagen L, et al. AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology. 2000;54(8):1589–95.PubMedCrossRefGoogle Scholar
  71. 71.
    Silverdale MA, Nicholson SL, Crossman AR, et al. Topiramate reduces levodopa-induced dyskinesia in the MPTP-lesioned marmoset model of Parkinson’s disease. Mov Disord. 2005;20(4):403–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Marin C, Jimenez A, Bonastre M, et al. LY293558, an AMPA glutamate receptor antagonist, prevents and reverses levodopa-induced motor alterations in Parkinsonian rats. Synapse. 2001;42(1):40–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Eggert K, Squillacote D, Barone P, et al. Safety and efficacy of perampanel in advanced Parkinson’s disease: a randomized, placebo-controlled study. Mov Disord. 2010;25(7):896–905.PubMedCrossRefGoogle Scholar
  74. 74.
    Lees A, Fahn S, Eggert KM, et al. Perampanel, an AMPA antagonist, found to have no benefit in reducing “off” time in Parkinson’s disease. Mov Disord. 2012;27(2):284–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Kobylecki C, Cenci MA, Crossman AR, et al. Calcium-permeable AMPA receptors are involved in the induction and expression of l-dopa-induced dyskinesia in Parkinson’s disease. J Neurochem. 2010;114(2):499–511.PubMedCrossRefGoogle Scholar
  76. 76.
    Turski L, Bressler K, Rettig KJ, et al. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-d-aspartate antagonists. Nature. 1991;349(6308):414–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Murray TK, Whalley K, Robinson CS, et al. LY503430, a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor potentiator with functional, neuroprotective and neurotrophic effects in rodent models of Parkinson’s disease. J Pharmacol Exp Ther. 2003;306(2):752–62.PubMedCrossRefGoogle Scholar
  78. 78.
    O’Neill MJ, Murray TK, Whalley K, et al. Neurotrophic actions of the novel AMPA receptor potentiator, LY404187, in rodent models of Parkinson’s disease. Eur J Pharmacol. 2004;486(2):163–74.PubMedCrossRefGoogle Scholar
  79. 79.
    Muir KW, Grosset DG, Gamzu E, et al. Pharmacological effects of the non-competitive NMDA antagonist CNS 1102 in normal volunteers. Br J Clin Pharmacol. 1994;38(1):33–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Low SJ, Roland CL. Review of NMDA antagonist-induced neurotoxicity and implications for clinical development. Int J Clin Pharmacol Ther. 2004;42(1):1–14.PubMedGoogle Scholar
  81. 81.
    Carlsson M, Svensson A. The non-competitive NMDA antagonists MK-801 and PCP, as well as the competitive NMDA antagonist SDZEAA494 (D-CPPene), interact synergistically with clonidine to promote locomotion in monoamine-depleted mice. Life Sci. 1990;47(19):1729–36.PubMedCrossRefGoogle Scholar
  82. 82.
    Crossman AR, Peggs D, Boyce S, et al. Effect of the NMDA antagonist MK-801 on MPTP-induced parkinsonism in the monkey. Neuropharmacology. 1989;28(11):1271–3.PubMedCrossRefGoogle Scholar
  83. 83.
    Papa SM, Chase TN. Levodopa-induced dyskinesias improved by a glutamate antagonist in Parkinsonian monkeys. Ann Neurol. 1996;39(5):574–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Kelsey JE, Mague SD, Pijanowski RS, et al. NMDA receptor antagonists ameliorate the stepping deficits produce by unilateral medial forebrain bundle injections of 6-OHDA in rats. Psychopharmacology (Berl). 2004;175(2):179–88.CrossRefGoogle Scholar
  85. 85.
    Kosinski CM, Standaert DG, Counihan TJ, et al. Expression of N-methyl-d-aspartate receptor subunit mRNAs in the human brain: striatum and globus pallidus. J Comp Neurol. 1998;390(1):63–74.PubMedCrossRefGoogle Scholar
  86. 86.
    Blanchet PJ, Konitsiotis S, Whittemore ER, et al. Differing effects of N-methyl-d-aspartate receptor subtype selective antagonists on dyskinesia in levodopa-treated 1-methyl-4-phenyl-tetrahydropyridine monkeys. J Pharmacol Exp Ther. 1999;290(3):1034–40.PubMedGoogle Scholar
  87. 87.
    Nash JE, Hill MP, Brotchie JM. Anti-parkinsonian actions of blockade of NR2B-containing NMDA receptors in the reserpine-treated rat. Exp Neurol. 1999;155(1):42–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Steece-Collier K, Chambers LK, Jaw-Tsai SS, et al. Antiparkinsonian actions of CP-101,606, an antagonist of NR2B subunit-containing N-methyl-d-aspartate receptors. Exp Neurol. 2000;163(1):239–43.PubMedCrossRefGoogle Scholar
  89. 89.
    Löschmann PA, De Groote C, Smith L, et al. Antiparkinsonian activity of Ro 25-6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson’s disease. Exp Neurol. 2004;187(1):86–93.PubMedCrossRefGoogle Scholar
  90. 90.
    Rylander D, Recchia A, Mela F, et al. Pharmacological modulation of glutamate transmission in a rat model of l-dopa-induced dyskinesia: effects on motor behaviour and striatal nuclear signaling. J Pharmacol Exp Ther. 2009;330(1):227–35.PubMedCrossRefGoogle Scholar
  91. 91.
    Nash JE, Fox SH, Henry B, et al. Antiparkinsonian actions of ifenprodil in the MPTP-lesoned marmoset model of Parkinson’s disease. Exp Neurol. 2000;165(1):136–42.PubMedCrossRefGoogle Scholar
  92. 92.
    Nash JE, Ravenscroft P, McGuire S, et al. The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates l-dopa-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of l-dopa in the MPTP-treated marmoset model of Parkinson’s disease. Exp Neurol. 2004;188(2):471–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Addy C, Assaid C, Hreniuk D, et al. Single-dose administration of MK-0657, an NR2B-selective NMDA antagonist, does not result in clinically meaningful improvement in motor function in patients with moderate Parkinson’s disease. J Clin Pharmacol. 2009;49(7):856–64.PubMedCrossRefGoogle Scholar
  94. 94.
    Fasano A, Ricciardi L, Pettorusso M, et al. Management of punding in Parkinson’s disease: an open-label prospective study. J Neurol. 2011;258(4):656–60.PubMedCrossRefGoogle Scholar
  95. 95.
    Inzelberg R, Bonuccelli U, Schechtman E, et al. Association between amantadine and the onset of dementia in Parkinson’s disease. Mov Disord. 2006;21(9):1375–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Emre M, Tsolaki M, Bonucccelli U, et al. Memantine for patients with Parkinson’s disease dementia or dementia with Lewy bodies: a randomized, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9(10):969–77.PubMedCrossRefGoogle Scholar
  97. 97.
    Litvinenko IV, Odinak MM, Mogli’naya VI, et al. Use of memantine (akatinol) for the correction of cognitive impairments in Parkinson’s disease complicated by dementia. Neurosci Behav Physiol. 2010;40(2):149–55.PubMedCrossRefGoogle Scholar
  98. 98.
    Metman VL, Del Dotto P, LePoole K, et al. Amantadine for levodopa-induced dyskinesia: a 1-year follow-up study. Arch Neurol. 1999;56(11):1383–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Luginger E, Wenning GK, Bösch S, et al. Beneficial effects of amantadine on l-dopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2000;15(5):873–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Wolf E, Seppi K, Katzenschlager R, et al. Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Mov Disord. 2010;25(10):1357–63.PubMedCrossRefGoogle Scholar
  101. 101.
    Hanağasi HA, Kaptanoglu G, Sahin HA, et al. The use of NMDA antagonist memantine in drug-resistant dyskinesia resulting from l-dopa. Mov Disord. 2000;15(5):1016–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Varanese S, Howard J, Di Rocco A. NMDA antagonist memantine improves levodopa-induced dyskinesia and “on–off” phenomena in Parkinson’s disease. Mov Disord. 2010;24(4):508–10.CrossRefGoogle Scholar
  103. 103.
    Merello M, Nouzeilles MI, Cammarota A, et al. Effect of memantine (NMDA antagonist) on Parkinson’s disease: a double-blind crossover randomized study. Clin Neuropharmacol. 1999;22(5):273–6.PubMedGoogle Scholar
  104. 104.
    Engber TM, Papa SM, Boldry RC, et al. NMDA receptor blockade reverses motor response alterations induced by levodopa. Neuroreport. 1994;5(18):2586–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Dupre KB, Eskow KL, Steiniger A, et al. Effects of coincident 5-HT1A receptor stimulation and NMDA receptor antagonism on l-dopa-induced dyskinesia and rotational behaviours in the hemi-parkinsonian rat. Psychopharmacology. 2008;199(1):99–108.PubMedCrossRefGoogle Scholar
  106. 106.
    Paquette MA, Anderson AM, Lewis JR, et al. MK-801 inhibits l-dopa-induced abnormal involuntary movements only at doses that worsen parkinsonism. Neuropharmacology. 2010;58(7):1002–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Gomez-Mancilla B, Bédard PJ. Effect of nondopaminergic drugs on l-dopa-induced dyskinesia in MPTP-treated monkeys. Clin Neuropharmacol. 1993;16(5):418–27.PubMedCrossRefGoogle Scholar
  108. 108.
    Wessell RH, Ahmed SM, Meniti FS, et al. NR2B selective NMDA receptor antagonist CP-101,606 prevents levodopa-induced motor response alterations in hemi-parkinsonian rats. Neuropharmacology. 2004;47(2):184–94.PubMedCrossRefGoogle Scholar
  109. 109.
    Truong L, Allbutt HN, Coster MJ, et al. Behavioural effects of a selective NMDA NR1A/2B receptor antagonist in rats with unilateral 6-OHDA + parafasicular lesions. Brain Res Bull. 2009;78(2–3):91–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Warraich ST, Allbutt HN, Billing R, et al. Evaluation of behavioural effects of a selective NMDA NR1A/2B receptor antagonist in the unilateral 6-OHDA lesion rat model. Brain Res Bull. 2009;78(2–3):85–90.PubMedCrossRefGoogle Scholar
  111. 111.
    Morissette M, Dridi M, Calon F, et al. Prevention of levodopa-induced dyskinesias by a selective NR1/NR2B N-methyl-d-aspartate receptor antagonist in parkinsonian monkeys: implication of preproenkephalin. Mov Disord. 2006;21(1):9–17.PubMedCrossRefGoogle Scholar
  112. 112.
    Tamim MK, Samadi P, Morissette M, et al. Effect of non-dopaminergic drug treatment on levodopa induced dyskinesia in MPTP monkeys: common implications of striatal peptides. Neuropharmacology. 2010;58(1):286–96.PubMedCrossRefGoogle Scholar
  113. 113.
    Papa SM, Boldry RC, Enger TM, et al. Reversal of levodopa-induced motor fluctuations in experimental parkinsonism by NMDA receptor blockade. Brain Res. 1995;701(1–2):13–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Nutt JG, Gunzler SA, Kirchnoff T, et al. Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov Disord. 2008;23(13):1860–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Kanthasamy AG, Kanthasamy A, Matsumoto RR, et al. Neuroprotective effects of the strychnine-insensitive glycine site NMDA antagonist (R)-HA-966 in an experimental model of Parkinson’s disease. Brain Res. 1997;759(1):1–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Brouillet E, Beal MF. NMDA antagonists partially protect against MPTP induced neurotoxicity in mice. Neuroreport. 1993;4(4):387–90.PubMedCrossRefGoogle Scholar
  117. 117.
    Chan P, Di Monte DA, Langston JW, et al. (+)MK-801 does not prevent MPTP-induced loss of nigral neurons in mice. J Pharmacol Exp Ther. 1997;280(1):439–46.PubMedGoogle Scholar
  118. 118.
    Sonsalla PK, Zeevalk GD, Manzino L, et al. MK-801 fails to protect against the dopaminergic neuropathology produced by systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice or intranigral 1-methyl-4-phenylpyridinium in rats. J Neurochem. 1992;58(5):1979–82.PubMedCrossRefGoogle Scholar
  119. 119.
    Kupsch A, Löschmann PA, Suer H, et al. Do NMDA receptor antagonists protect against MPTP-toxicity? Biochemical and immunocytochemical analyses in black mice. Brain Res. 1992;592(1–2):74–83.PubMedCrossRefGoogle Scholar
  120. 120.
    Zuddas A, Vaglini F, Fornai F, et al. Pharmacologic modulation of MPTP toxicity: MK-801: prevention of dopaminergic cell death in monkeys and mice. Ann N Y Acad Sci. 1992;648:268–71.PubMedCrossRefGoogle Scholar
  121. 121.
    Lange KW, Löschmann PA, Sofic E, et al. The competitive NMDA antagonist CPP protects substantia nigra neurons from MPTP-induced degeneration in primates. Naunyn Schmeidbergs Arch Pharmacol. 1993;348(6):586–92.CrossRefGoogle Scholar
  122. 122.
    Blandini F, Nappi G, Greenamyre JT. Subthalamic infusion of an NMDA antagonist prevents basal ganglia metabolic changes and nigral degeneration in a rodent model of Parkinson’s disease. Ann Neurol. 2001;49(4):525–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Armentero M-T, Fancekku R, Nappi G, et al. Prolonged blockade of NMDA or mGluR5 glutamate receptors reduces nigrostriatal degeneration while inducing selective metabolic changes in the basal ganglia circuitry in a rodent model of Parkinson’s disease. Neurobiol Dis. 2006;22(1):1–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Lee MC, Ting KK, Adams S, et al. Characterisation of the expression of NMDA receptors in human astrocytes. PLoS One. 2010;5(11):e14123.PubMedCrossRefGoogle Scholar
  125. 125.
    Wu HM, Tzeng NS, Qian L, et al. Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology. 2009;34(10):2344–57.PubMedCrossRefGoogle Scholar
  126. 126.
    Ossola B, Schendzielorz N, Chen SH, et al. Amantadine protects dopamine neurons by a dual action: reducing activation of microglia and inducing expression of GDNF in astroglia. Neuropharmacology. 2011;61(4):574–82.PubMedCrossRefGoogle Scholar
  127. 127.
    Leaver KR, Allbutt HN, Creber NJ, et al. Neuroprotective effects of a selective N-methyl-d-aspartate NR2B receptor antagonist in the 6-hydroxydopamine rat model of Parkinson’s disease. Clin Exp Pharmacol Physiol. 2008;35(11):1388–94.PubMedCrossRefGoogle Scholar
  128. 128.
    Ng OT, Chen LW, Chan YS, et al. Small interfering RNA specific for N-methyl-d-aspartate receptor 2B offers neuroprotection to dopamine neurons through activation of MAP kinase. Neurosignals (Epub 2012 Feb 23).Google Scholar
  129. 129.
    Conn PJ, Battaglia G, Marino MJ, et al. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci. 2005;6(10):787–98.PubMedCrossRefGoogle Scholar
  130. 130.
    Ossowska K, Konieczny J, Wolfarth S, et al. Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian-like effects in rats. Neuropharmacology. 2001;41(4):413–20.PubMedCrossRefGoogle Scholar
  131. 131.
    Breysse N, Baunez C, Spooren W, et al. Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of Parkinson’s disease. J Neurosci. 2002;22(13):5669–78.PubMedGoogle Scholar
  132. 132.
    Dekundy A, Pietraszek M, Schefer D, et al. Effects of group I metabotropic glutamate receptors blockade in experimental models of Parkinson’s disease. Brain Res Bull. 2006;69(3):318–26.PubMedCrossRefGoogle Scholar
  133. 133.
    Ambrosi G, Arementero MT, Levandis G, et al. Effects of early and delayed treatment with an mGluR5 antagonist on motor impairment, nigrostriatal damage and neuroinflammation in a rodent model of Parkinson’s disease. Brain Res Bull. 2010;82(1–2):29–38.PubMedCrossRefGoogle Scholar
  134. 134.
    Johnston TH, Fox SH, McIldowie MJ, et al. Reduction of l-dopa-induced dyskinesia by the selective metabotropic glutamate receptor 5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Pharmacol Exp Ther. 2010;333(3):865–73.PubMedCrossRefGoogle Scholar
  135. 135.
    De Leonibus E, Managò F, Giordani F, et al. Metabotropic glutamate receptors 5 blockade reverses spatial memory deficits in a mouse model of Parkinson’s disease. Neuropsychopharmacology. 2009;34(3):729–38.PubMedCrossRefGoogle Scholar
  136. 136.
    Chen L, Liu J, Ali U, et al. Chronic, systemic treatment with a metabotropic glutamate receptor 5 antagonist produces anxiolytic-like effects and reverses abnormal firing activity of projection neurons in the basolateral amygdala in rats with bilateral 6-OHDA lesions. Brain Res Bull. 2011;84(3):215–23.PubMedCrossRefGoogle Scholar
  137. 137.
    Hsieh MH, Ho SC, Yeh KY, et al. Blockade of metabotropic glutamate receptors inhibits cognition and neurodegeneration in an MPTP-induced Parkinson’s disease rat model. Pharmacol Biochem Behav. 2012;102(1):64–71.PubMedCrossRefGoogle Scholar
  138. 138.
    Gravius A, Dekundy A, Nagel J, et al. Investigation on tolerance development to subchronic blockade of mGluR5 in models of learning, anxiety, and levodopa-induced dyskinesia in rats. J Neural Transm. 2008;115(12):1609–19.PubMedCrossRefGoogle Scholar
  139. 139.
    Mela F, Marti M, Dekundy A, et al. Antagonism of metabotropic glutamate receptor type 5 attenuates l-dopa-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson’s disease. J Neurochem. 2007;101(2):483–97.PubMedCrossRefGoogle Scholar
  140. 140.
    Yamamoto N, Soghomonian JJ. Metabotropic glutamate mGluR5 receptor blockade opposes abnormal involuntary movement and the increases in glutamic acid decarboxylase mRNA levels in striatal neurons of 6-hydroxydopamine-lesioned rats. Neuroscience. 2009;163(4):1171–80.PubMedCrossRefGoogle Scholar
  141. 141.
    Levandis G, Bazzini E, Armentero MT, et al. Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-dopa-induced dyskinesias in a rodent model of Parkinson’s disease. Neurobiol Dis. 2008;29(1):161–8.PubMedCrossRefGoogle Scholar
  142. 142.
    Rylander D, Iderberg H, Li Q, et al. A mGluR5 antagonist under clinical development improves l-dopa-induced dyskinesia in parkinsonian rats and monkeys. Neurobiol Dis. 2010;39(3):352–61.PubMedCrossRefGoogle Scholar
  143. 143.
    Morin N, Grégoire L, Gomez-Mancilla B, et al. Effect of the metabotropic glutamate receptor type 5 antagonists MPEP and MTEP in parkinsonian monkeys. Neuropharmacology. 2010;58(7):981–6.PubMedCrossRefGoogle Scholar
  144. 144.
    Grégoire L, Morin N, Ouattara B, et al. The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor 5 antagonist. l-dopa-treated parkinsonian monkeys. Parkinsonism Relat Disord. 2011;17(4):270–6.PubMedCrossRefGoogle Scholar
  145. 145.
    Berg D, Godau J, Trenkwalder C, et al. AFQ056 treatment of levodopa-induced dyskinesia: results of 2 randomized controlled trials. Mov Disord. 2011;26(7):1243–50.PubMedCrossRefGoogle Scholar
  146. 146.
    Addex Therapeutics. Geneva, Switzerland [media release]. 2012 Mar 21 [online]. Available from URL: (Accessed 2012 Oct 3).
  147. 147.
    Battaglia G, Busceti CL, Molinaro G, et al. Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J Neurosci. 2004;24(4):828–35.PubMedCrossRefGoogle Scholar
  148. 148.
    Vernon AC, Palmer S, Datla K, et al. Neuroprotective effects of metabotropic glutamate receptor ligands in a 6-hydroxydopamine rodent model of Parkinson’s disease. Eur J Neurosci. 2005;22(7):1799–806.PubMedCrossRefGoogle Scholar
  149. 149.
    Aguirre JA, Kehr J, Yoshitake T, et al. Protection but maintained dysfunction of nigral dopaminergic nerve cell bodies and striatal dopaminergic terminals in MPTP-lesioned mice after acute treatment with the mGluR5 antagonist MPEP. Brain Res. 2005;1033(2):216–20.PubMedCrossRefGoogle Scholar
  150. 150.
    Masilamoni GJ, Bogenpohl JW, Alagille D, et al. Metabotropic glutamate receptor 5 antagonist protects domaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain. 2011;134(7):2057–73.PubMedCrossRefGoogle Scholar
  151. 151.
    Alam M, Danysz W, Schmidt WJ, et al. Effects of glutamate and alpha-2-noradrenergic receptor antagonists on the development of neurotoxicity produced by chronic rotenone in rats. Toxicol Appl Pharmacol. 2009;240(2):198–207.PubMedCrossRefGoogle Scholar
  152. 152.
    Black YD, Xiao D, Pellegrino D, et al. Protective effect of metabotropic glutamate mGluR5 receptor elimination in a 6-hydroxydopamine model of Parkinson’s disease. Neurosci Lett. 2010;486(3):161–5.PubMedCrossRefGoogle Scholar
  153. 153.
    Dawson L, Chadha A, Megalou M, et al. The group II metabotropic glutamate receptor agonist, DCG-IV, alleviates akinesia following intranigral or intracerebroventricular administration in the reserpine-treated rat. Br J Pharmacol. 2000;129(3):541–6.PubMedCrossRefGoogle Scholar
  154. 154.
    Murray TK, Messenger MJ, Ward MA, et al. Evaluation of the mGluR2/3 agonist LY379268 in rodent models of Parkinson’s disease. Pharmacol Biochem Behav. 2002;73(2):455–66.PubMedCrossRefGoogle Scholar
  155. 155.
    Battaglia G, Busceti CL, Pontarelli F, et al. Protective role of group-II metabotropic glutamate receptors against nigro-striatal degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Neuropharmacology. 2003;45(2):155–66.PubMedCrossRefGoogle Scholar
  156. 156.
    Matarredona ER, Santiago M, Venero JL, et al. Group II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP+-induced neurotoxicity along with brain-derived neurotrophic factor induction. J Neurochem. 2001;76(2):351–60.PubMedCrossRefGoogle Scholar
  157. 157.
    Chan H, Paur H, Vernon AC, et al. Neuroprotection and functional recovery associated with decreased microglial activation following selective activation of mGluR2/3 receptors in a rodent model of Parkinson’s disease. Parkinsons Dis. 2010;2010. pii: 190450.Google Scholar
  158. 158.
    Corti C, Battaglia G, Molinaro G, et al. The use of knock-out mice unravels distinct roles for mGlu2 and mGlu3 metabotropic glutamate receptors in mechanisms of neurodegeneration/neuroprotection. J Neurosci. 2007;27(31):8297–308.PubMedCrossRefGoogle Scholar
  159. 159.
    Bruno V, Sureda FX, Storto M, et al. The neuroprotective activity of group II metabotropic glutamate receptors requires new protein synthesis and involves a glial-neuronal signaling. J Neurosci. 1997;17(6):1891–7.PubMedGoogle Scholar
  160. 160.
    Ciccarelli R, Di Iorio P, Bruno V, et al. Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia. 1999;27(3):275–81.PubMedCrossRefGoogle Scholar
  161. 161.
    Battaglia G, Molinaro G, Riozzi B, et al. Activation of mGlu3 receptors stimulates the production of GDNF in striatal neurons. PLoS ONE. 2009;4(8):e6591.PubMedCrossRefGoogle Scholar
  162. 162.
    Di Liberto V, Bonomo A, Frinchi M, et al. Group II metabotropic glutamate receptor activation by agonist LY379268 treatment increases the expression of brain derived neurotrophic factor in the mouse brain. Neuroscience. 2010;165(3):863–73.PubMedCrossRefGoogle Scholar
  163. 163.
    Caraci F, Molinaro G, Battaglia G, et al. Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer’s disease: selective activation of mGlu2 receptors amplifies beta-amyloid toxicity in cultures neurons, whereas dual activation of mGlu2 and mGlu3 is neuroprotective. Mol Pharmacol. 2011;79(3):618–26.PubMedCrossRefGoogle Scholar
  164. 164.
    D’Alessandro PL, Corti C, Roth A, et al. The identification of structurally novel, selective, orally bioavailable positive modulators of mGluR2. Bioorg Med Chem Lett. 2010;20(2):759–62.PubMedCrossRefGoogle Scholar
  165. 165.
    Caraci F, Battaglia G, Sortino MA, et al. Metabotropic glutamate receptors in neurodegeneration/neuroprotection: still a hot topic? Neurochem Int. 2012;61(4):559565.CrossRefGoogle Scholar
  166. 166.
    Duty S. Therapeutic potential of targeting group III metabotropic glutamate receptors in the treatment of Parkinson’s disease. Br J Pharmacol. 2010;161(2):271–87.PubMedCrossRefGoogle Scholar
  167. 167.
    MacInnes N, Messenger MJ, Duty S. Activation of group III metabotropic glutamate receptors in selected regions of the basal ganglia alleviates akinesia in the reserpine-treated rat. Br J Pharmacol. 2004;141(1):15–22.PubMedCrossRefGoogle Scholar
  168. 168.
    Konieczny J, Wardas J, Kuter K, et al. The influence of group III metabotropic glutamate receptor stimulation by (1S,3R,4S)-1-aminocyclopentane-1,3,4-tricarboxylic acid on the parkinsonian like akinesia and striatal proenkephalin and prodynorphin expression in rats. Neuroscience. 2007;145(2):611–20.PubMedCrossRefGoogle Scholar
  169. 169.
    Lopez S, Turle-Lorenzo N, Acher F, et al. Targeting group III metabotropic glutamate receptors produces complex behavioural effects in rodent models of Parkinson’s disease. J Neurosci. 2007;27(25):6701–11.PubMedCrossRefGoogle Scholar
  170. 170.
    Cuomo D, Martella G, Barabino E, et al. Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: implications for Parkinson’s disease treatment. J Neurochem. 2009;109(4):1096–105.PubMedCrossRefGoogle Scholar
  171. 171.
    Austin PJ, Betts MJ, Broadstock M, et al. Symptomatic and neuroprotective effects following activation of nigral group III metabotropic glutamate receptors in rodent models of Parkinson’s disease. Br J Pharmacol. 2010;160(7):1741–53.PubMedCrossRefGoogle Scholar
  172. 172.
    Valenti O, Marino MJ, Wittmann M, et al. Group III metabotropic glutamate receptor-mediated modulation of the striatopallidal synapse. J Neurosci. 2003;23(18):7218–26.PubMedGoogle Scholar
  173. 173.
    Lopez S, Turle-Lorenzo N, Johnston TH, et al. Functional interaction between adenosine A2A and group III metabotropic glutamate receptors to reduce parkinsonian symptoms in rats. Neuropharmacology. 2008;55(4):483–90.PubMedCrossRefGoogle Scholar
  174. 174.
    Beurrier C, Lopez S, Révy D, et al. Electrophysiological and behavioural evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental parkinsonism. FASEB J. 2009;23(10):3619–28.PubMedCrossRefGoogle Scholar
  175. 175.
    Broadstock M, Ausin PJ, Betts MJ, et al. Antiparkinsonian potential of targeting group III metabotropic glutamate receptor subtypes in the rodent substantia nigra pars reticulata. Br J Pharmacol. 2012;165(4b):1034–45.PubMedCrossRefGoogle Scholar
  176. 176.
    Marino MJ, Williams DL Jr, O’Brien JA, et al. Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson’s disease treatment. Proc Natl Acad Sci USA. 2003;100(23):13668–73.PubMedCrossRefGoogle Scholar
  177. 177.
    Greco B, Lopez S, van der Putten H, et al. Metabotropic glutamate 7 receptor subtype modulates motor symptoms in rodent models of Parkinson’s disease. J Pharmacol Exp Ther. 2010;332(3):1064–71.PubMedCrossRefGoogle Scholar
  178. 178.
    Sukoff-Rizzo S, Leonard SK, Gilbert A, et al. The mGluR7 allosteric agonist AMN082 is a monoaminergic agent in disguise? J Pharmacol Exp Ther. 2011;338(1):345–52.PubMedCrossRefGoogle Scholar
  179. 179.
    Jones CK, Engers DW, Thompson AD, et al. Discovery, synthesis and structure-activity relationship development of a series of N-4-(2,5-dioxopyrrolidin-1-yl)phenylpicolinamides (VU0400195, ML182): characterization of novel positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu(4)) with oral efficacy in an antiparkinsonian animal model. J Med Chem. 2011;54(21):7639–47.PubMedCrossRefGoogle Scholar
  180. 180.
    Jones CK, Bubser M, Thompson AD, et al. The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with l-dopa or an adenosine 2A antagonist in preclinical rodent models of Parkinson’s disease. J Pharmacol Exp Ther. 2012;340(2):404–21.PubMedCrossRefGoogle Scholar
  181. 181.
    Bennouar KE, Uberti MA, Melon C, et al. Synergy between l-dopa and a novel positive allosteric modulator of metabotropic glutamate receptor 4: implications for Parkinson’s disease treatment and dyskinesia. Neuropharmacology (Epub 2012 Apr 3).Google Scholar
  182. 182.
    Wierońska JM, Stachowicz K, Palucha-Ponciewiera A, et al. Metabotropic glutamate receptor 4 novel agonist LSP1-2111 with anxiolytic, but not antidepressant activity, mediated by serotonergic and GABAergic systems. Neuropharmacology. 2010;59(7–8):627–34.PubMedCrossRefGoogle Scholar
  183. 183.
    Wierońska JM, Stachowicz K, Acher F, et al. Opposing efficacy of group III mGlu receptor activators, LSP1-2111 and AMN082, in animal models of positive symptoms of schizophrenia. Psychopharmacology (Berl). 2012;220(3):481–94.CrossRefGoogle Scholar
  184. 184.
    Lopez S, Bonito-Oliva A, Pallottino S, et al. Activation of metabotropic glutamate 4 receptors decreases l-dopa-induced dyskinesia in a mouse model of Parkinson’s disease. J Parkinsons Dis. 2011;1(4):339–46.Google Scholar
  185. 185.
    Betts MJ, O’Neill MJ, Duty S. Allosteric modulation of the group III mGlu receptor 4 provides functional neuroprotection in the 6-OHDA rat model of Parkinson’s disease. Br J Pharmacol. 2012;166(8):2317–30.PubMedCrossRefGoogle Scholar
  186. 186.
    Battaglia G, Busceti CL, Molinaro G, et al. Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurosci. 2006;26(27):7222–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2012

Authors and Affiliations

  1. 1.King’s College London, Wolfson Centre for Age-Related DiseasesLondonUK

Personalised recommendations