Clinical Pharmacokinetics

, Volume 58, Issue 4, pp 469–482 | Cite as

Intra-monocyte Pharmacokinetics of Imiglucerase Supports a Possible Personalized Management of Gaucher Disease Type 1

  • Juliette Berger
  • Marie Vigan
  • Bruno Pereira
  • Thu Thuy Nguyen
  • Roseline Froissart
  • Nadia Belmatoug
  • Florence Dalbiès
  • Agathe Masseau
  • Christian Rose
  • Christine Serratrice
  • Yves-Marie Pers
  • Ivan Bertchansky
  • Fabrice Camou
  • Monia Bengherbia
  • Céline Bourgne
  • Catherine Caillaud
  • Magali Pettazzoni
  • Amina Berrahal
  • Jérôme Stirnemann
  • France Mentré
  • Marc G. BergerEmail author
Original Research Article


Background and objectives

Intravenous imiglucerase enzyme replacement therapy for Gaucher disease type 1 administered every 2 weeks is at variance with the imiglucerase plasma half-life of a few minutes. We hypothesized that studying the pharmacokinetics of imiglucerase in blood Gaucher disease type 1 monocytes would be more relevant for understanding enzyme replacement therapy responses.


Glucocerebrosidase intra-monocyte activity was studied by flow cytometry. The pharmacokinetics of imiglucerase was analyzed using a population-pharmacokinetic model from a cohort of 31 patients with Gaucher disease type 1 who either started or were receiving long-term treatment with imiglucerase.


A pharmacokinetic analysis of imiglucerase showed a two-compartment model with a high peak followed by a two-phase exponential decay (fast phase half-life: 0.36 days; slow phase half-life: 9.7 days) leading to a median 1.4-fold increase in glucocerebrosidase intra-monocyte activity from the pre-treatment activity (p = 0.04). In patients receiving long-term treatment, for whom the imiglucerase dose per infusion was chosen on the basis of disease aggressiveness/response, imiglucerase clearance correlated with the administered dose. However, the residual glucocerebrosidase intra-monocyte activity value was dose independent, suggesting that the maintenance of imiglucerase residual activity is patient specific. Endogenous pre-treatment glucocerebrosidase intra-monocyte activity was the most informative single parameter for distinguishing patients without (n = 10) and with a clinical indication (n = 17) for starting enzyme replacement therapy (area under the receiver operating characteristic curve: 0.912; 95% confidence interval 0.8–1; p < 0.001), as confirmed also by a factorial analysis of mixed data.


This study provides novel pharmacokinetic data that support current imiglucerase administration regimens and suggests the existence of a glucocerebrosidase activity threshold related to Gaucher disease type 1 aggressiveness. These findings can potentially improve Gaucher disease type 1 management algorithms and clinical decision making.



The authors thank Dominique Chadeyron supported by EA 7453 CHELTER, Université Clermont Auvergne, for secretarial assistance, Pascale Pigeon, Charlène Fernandez, Marine Mérat, Amélie Buffet, Caroline Jamot, and Nathalie Chaudagne, (Clermont-Ferrand University Hospital) for technical assistance; Baptiste Verdier, Sandrine Saugues, and Fanny Soulé, staff of the Centre de Ressources Biologiques Auvergne (CHU Estaing, Clermont-Fd) for the cryopreservation of human samples. Marc G. Berger and Juliette Berger would like to express on behalf of the authors their gratitude to the patients, nurses, and local biologists who participated in the successful completion of this study. We also thank Dr. Bruno Padrazzi and Rachel Sembeil who facilitated the initial exchanges between the collaborating teams of this study.

Author contributions

JB organized logistical support for sending samples, performed the experiments, and analyzed some data with MGB MV, TTN, and FM carried out the population-pharmacokinetic modeling and participated in the statistical analysis. BP contributed to the statistical analysis. RF, CC, and MP performed the genotype and biomarker assays. CB assisted with the flow cytometry experiments and CCL18 assays. NB, FD, AM, CR, CS, YMP, IB, FB, JS, and MGB recruited patients. MB and AB assisted in collecting related clinical and biological data. MV, FM, BP, and MGB designed the figures and wrote the paper. MGB and FM designed the research project, supervised the study, analyzed data, and revised the paper.

Compliance with ethical standards


This study was supported by grants from Genzyme SA then Sanofi-Genzyme (Grant no. GZ-2010-10458) and from Vaincre les Maladies Lysosomales (patient association, Paris, France) (Grant no. VML S9MBerger) and research funding from CHU de Clermont-Ferrand as the promotor establishment, Marc G. Berger being an investigator coordinator (Grant no. PHRC2010-AOI MBerger).

Conflict of interest

Nadia Belmatoug, Christian Rose, Marc G. Berger, and Christine Serratrice received honoraria from Sanofi-Genzyme and Shire Corporation for travel and speaking or expert missions; Yves-Marie Pers and Jérôme Stirnemann received travel fees from Sanofi-Genzyme. Nadia Belmatoug, Christian Rose, and Marc G. Berger are scientific leaders of research projects receiving research grants from Sanofi-Genzyme and Shire Corporation. Christian Rose is a scientific leader of a research project receiving research grants from Sanofi-Genzyme. Nadia Belmatoug, Christine Serratrice, Fabrice Camou, and Marc G. Berger are members of the scientific board organized by Sanofi-Genzyme, Shire; Juliette Berger, Marie Vigan, Bruno Pereira, Thu Thuy Nguyen, Roseline Froissart, Florence Dalbiès, Agathe Masseau, Yves-Marie Pers, Ivan Bertchansky, Monia Bengherbia, Céline Bourgne, Catherine Caillaud, Magali Pettazzoni, Amina Berrahal, and France Mentré have no conflicts of interest directly relevant to the contents of this article.

Supplementary material

40262_2018_708_MOESM1_ESM.doc (979 kb)
Supplementary material 1 (DOC 979 kb)


  1. 1.
    Grabowski GA. Phenotype, diagnosis, and treatment of Gaucher’s disease. Lancet. 2008;372:1263–71.CrossRefPubMedGoogle Scholar
  2. 2.
    Barton NW, Brady RO, Dambrosia JM, Di Bisceglie AM, Doppelt SH, Hill SC, et al. Replacement therapy for inherited enzyme deficiency: macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med. 1991;324:1464–70.CrossRefPubMedGoogle Scholar
  3. 3.
    Weinreb NJ, Charrow J, Andersson HC, Kaplan P, Kolodny EH, Mistry P, et al. Effectiveness of enzyme replacement therapy in 1028 patients with type 1 Gaucher disease after 2 to 5 years of treatment: a report from the Gaucher Registry. Am J Med. 2002;113:112–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Zimran A, Altarescu G, Philips M, Attias D, Jmoudiak M, Deeb M, et al. Phase 1/2 and extension study of velaglucerase alfa replacement therapy in adults with type 1 Gaucher disease: 48-month experience. Blood. 2010;115:4651–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Brumshtein B, Salinas P, Peterson B, Chan V, Silman I, Sussman JL, et al. Characterization of gene-activated human acid-beta-glucosidase: crystal structure, glycan composition, and internalization into macrophages. Glycobiology. 2010;20:24–32.CrossRefPubMedGoogle Scholar
  6. 6.
    Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, et al. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J. 2007;5:579–90.CrossRefPubMedGoogle Scholar
  7. 7.
    Zimran A, Brill-Almon E, Chertkoff R, Petakov M, Blanco-Favela F, Muñoz ET, et al. Pivotal trial with plant cell-expressed recombinant glucocerebrosidase, taliglucerase alfa, a novel enzyme replacement therapy for Gaucher disease. Blood. 2011;118:5767–73.CrossRefPubMedGoogle Scholar
  8. 8.
    Figueroa ML, Rosenbloom BE, Kay AC, Garver P, Thurston DW, Koziol JA, et al. A less costly regimen of alglucerase to treat Gaucher’s disease. N Engl J Med. 1992;327:1632–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Weinreb NJ, Goldblatt J, Villalobos J, Charrow J, Cole JA, Kerstenetzky M, et al. Long-term clinical outcomes in type 1 Gaucher disease following 10 years of imiglucerase treatment. J Inherit Metab Dis. 2013;36:543–53.CrossRefPubMedGoogle Scholar
  10. 10.
    Murray GJ, Oliver KL, Jin FS, Brady RO. Studies on the turnover of exogenous mannose-terminal glucocerebrosidase in rat liver lysosomes. J Cell Biochem. 1995;57:208–17.CrossRefPubMedGoogle Scholar
  11. 11.
    Xu YH, Ponce E, Sun Y, Leonova T, Bove K, Witte D, et al. Turnover and distribution of intravenously administered mannose-terminated human acid beta-glucosidase in murine and human tissues. Pediatr Res. 1996;39:313–22.CrossRefPubMedGoogle Scholar
  12. 12.
    Bijsterbosch MK, Donker W, van de Bilt H, van Weely S, van Berkel TJ, Aerts JM. Quantitative analysis of the targeting of mannose-terminal glucocerebrosidase: predominant uptake by liver endothelial cells. Eur J Biochem. 1996;237:344–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Mistry PK, Wraight EP, Cox TM. Therapeutic delivery of proteins to macrophages: implications for treatment of Gaucher’s disease. Lancet. 1996;348:1555–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Weinreb NJ, Aggio MC, Andersson HC, Andria G, Charrow J, Clarke JTR, et al. Gaucher disease type 1: revised recommendations on evaluations and monitoring for adult patients. Semin Hematol. 2004;41:15–22.CrossRefPubMedGoogle Scholar
  15. 15.
    Zimran A. How I treat Gaucher disease. Blood. 2011;118:1463–71.CrossRefPubMedGoogle Scholar
  16. 16.
    Sims KB, Pastores GM, Weinreb NJ, Barranger J, Rosenbloom BE, Packman S, et al. Improvement of bone disease by imiglucerase (Cerezyme) therapy in patients with skeletal manifestations of type 1 Gaucher disease: results of a 48-month longitudinal cohort study. Clin Genet. 2008;73:430–40.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Stirnemann J, Vigan M, Hamroun D, Heraoui D, Rossi-Semerano L, Berger MG, et al. The French Gaucher’s disease registry: clinical characteristics, complications and treatment of 562 patients. Orphanet J Rare Dis. 2012;7:77.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hollak CEM, de Fost M, van Dussen L, Vom Dahl S, Aerts JMFG. Enzyme therapy for the treatment of type 1 Gaucher disease: clinical outcomes and dose-response relationships. Expert Opin Pharmacother. 2009;10:2641–52.CrossRefPubMedGoogle Scholar
  19. 19.
    Grabowski GA, Kacena K, Cole JA, Hollak CEM, Zhang L, Yee J, et al. Dose-response relationships for enzyme replacement therapy with imiglucerase/alglucerase in patients with Gaucher disease type 1. Genet Med. 2009;11:92–100.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Goldblatt J, Fletcher JM, McGill J, Szer J, Wilson M. Enzyme replacement therapy “drug holiday”: results from an unexpected shortage of an orphan drug supply in Australia. Blood Cells Mol Dis. 2011;46:107–10.CrossRefPubMedGoogle Scholar
  21. 21.
    Giraldo P, Irún P, Alfonso P, Dalmau J, Fernández-Galán MA, Figueredo A, et al. Evaluation of Spanish Gaucher disease patients after a 6-month imiglucerase shortage. Blood Cells Mol Dis. 2011;46:115–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Deroma L, Sechi A, Dardis A, Macor D, Liva G, Ciana G, et al. Did the temporary shortage in supply of imiglucerase have clinical consequences? Retrospective observational study on 34 italian Gaucher type I patients. JIMD Rep. 2013;7:117–22.CrossRefPubMedGoogle Scholar
  23. 23.
    Stirnemann J, Rose C, Serratrice C, Dalbies F, Lidove O, Masseau A, et al. Impact of imiglucerase supply constraint on the therapeutic management and course of disease in French patients with Gaucher disease type 1. Orphanet J Rare Dis. 2015;10:62.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hollak CEM, vom Dahl S, Aerts JMFG, Belmatoug N, Bembi B, Cohen Y, et al. Force majeure: therapeutic measures in response to restricted supply of imiglucerase (Cerezyme) for patients with Gaucher disease. Blood Cells Mol Dis. 2010;44:41–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Berger J, Lecourt S, Vanneaux V, Rapatel C, Boisgard S, Caillaud C, et al. Glucocerebrosidase deficiency dramatically impairs human bone marrow haematopoiesis in an in vitro model of Gaucher disease. Br J Haematol. 2010;150:93–101.PubMedGoogle Scholar
  26. 26.
    Berger J, Stirnemann J, Bourgne C, Pereira B, Pigeon P, Heraoui D, et al. The uptake of recombinant glucocerebrosidases by blood monocytes from type 1 Gaucher disease patients is variable. Br J Haematol. 2012;157:274–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Peters SP, Coyle P, Glew RH. Differentiation of beta-glucocerebrosidase from beta-glucosidase in human tissues using sodium taurocholate. Arch Biochem Biophys. 1976;175:569–82.CrossRefPubMedGoogle Scholar
  28. 28.
    Hollak CE, van Weely S, van Oers MH, Aerts JM. Marked elevation of plasma chitotriosidase activity: a novel hallmark of Gaucher disease. J Clin Investig. 1994;93:1288–92.CrossRefPubMedGoogle Scholar
  29. 29.
    Pettazzoni M, Froissart R, Pagan C, Vanier MT, Ruet S, Latour P, et al. LC-MS/MS multiplex analysis of lysosphingolipids in plasma and amniotic fluid: a novel tool for the screening of sphingolipidoses and Niemann-Pick type C disease. PLoS One. 2017;12:e0181700.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Weinreb NJ, Cappellini MD, Cox TM, Giannini EH, Grabowski GA, Hwu W-L, et al. A validated disease severity scoring system for adults with type 1 Gaucher disease. Genet Med. 2010;12:44–51.CrossRefPubMedGoogle Scholar
  31. 31.
    Pagès J. Multiple factor analysis by example using R: Chapman and Hall/CRC, The R Series; 2014Google Scholar
  32. 32.
    Nguyen THT, Mouksassi M-S, Holford N, Al-Huniti N, Freedman I, Hooker AC, et al. Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacomet Syst Pharmacol. 2017;6:87–109.CrossRefGoogle Scholar
  33. 33.
    Ray P, Le Manach Y, Riou B, Houle TT. Statistical evaluation of a biomarker. Anesthesiology. 2010;112:1023–40.CrossRefPubMedGoogle Scholar
  34. 34.
    Tekoah Y, Tzaban S, Kizhner T, Hainrichson M, Gantman A, Golembo M, et al. Glycosylation and functionality of recombinant β-glucocerebrosidase from various production systems. Biosci Rep. 2013;33(5):e00071.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Xu Y-H, Sun Y, Barnes S, Grabowski GA. Comparative therapeutic effects of velaglucerase alfa and imiglucerase in a Gaucher disease mouse model. PLoS One. 2010;5:e10750.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Murray GJ, Jin FS. Immunoelectron microscopic localization of mannose-terminal glucocerebrosidase in lysosomes of rat liver Kupffer cells. J Histochem Cytochem. 1995;43:149–58.CrossRefPubMedGoogle Scholar
  37. 37.
    Kallemeijn WW, Scheij S, Hoogendoorn S, Witte MD, Herrera Moro Chao D, van Roomen CPAA, et al. Investigations on therapeutic glucocerebrosidases through paired detection with fluorescent activity-based probes. PLoS One. 2017;12:e0170268.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gras-Colomer E, Martínez-Gómez MA, Moya-Gil A, Fernandez-Zarzoso M, Merino-Sanjuan M, Climente-Martí M. Cellular uptake of glucocerebrosidase in Gaucher patients receiving enzyme replacement treatment. Clin Pharmacokinet. 2016;55:1103–13.CrossRefPubMedGoogle Scholar
  39. 39.
    Beutler E, Kuhl W, Matsumoto F, Pangalis G. Acid hydrolases in leukocytes and platelets of normal subjects and in patients with Gaucher’s and Fabry’s disease. J Exp Med. 1976;143:975–80.CrossRefPubMedGoogle Scholar
  40. 40.
    Lorincz M, Herzenberg LA, Diwu Z, Barranger JA, Kerr WG. Detection and isolation of gene-corrected cells in Gaucher disease via a fluorescence-activated cell sorter assay for lysosomal glucocerebrosidase activity. Blood. 1997;89:3412–20.PubMedGoogle Scholar
  41. 41.
    Brady RO, Pentchev PG, Gal AE, Hibbert SR, Dekaban AS. Replacement therapy for inherited enzyme deficiency: use of purified glucocerebrosidase in Gaucher’s disease. N Engl J Med. 1974;291:989–93.CrossRefPubMedGoogle Scholar
  42. 42.
    Van Patten SM, Hughes H, Huff MR, Piepenhagen PA, Waire J, Qiu H, et al. Effect of mannose chain length on targeting of glucocerebrosidase for enzyme replacement therapy of Gaucher disease. Glycobiology. 2007;17:467–78.CrossRefPubMedGoogle Scholar
  43. 43.
    Sato Y, Beutler E. Binding, internalization, and degradation of mannose-terminated glucocerebrosidase by macrophages. J Clin Investig. 1993;91:1909–17.CrossRefPubMedGoogle Scholar
  44. 44.
    Varol C, Yona S, Jung S. Origins and tissue-context-dependent fates of blood monocytes. Immunol Cell Biol. 2009;87:30–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med. 2017;214:1913–23.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Mucci JM, Cuello MF, Kisinovsky I, Larroude M, Delpino MV, Rozenfeld PA. Proinflammatory and proosteoclastogenic potential of peripheral blood mononuclear cells from Gaucher patients: Implication for bone pathology. Blood Cells Mol Dis. 2015;55:134–43.CrossRefPubMedGoogle Scholar
  47. 47.
    Vairo F, Sperb-Ludwig F, Wilke M, Michellin-Tirelli K, Netto C, Neto EC, et al. Osteopontin: a potential biomarker of Gaucher disease. Ann Hematol. 2015;94:1119–25.CrossRefPubMedGoogle Scholar
  48. 48.
    Burdo TH, Wood MR, Fox HS. Osteopontin prevents monocyte recirculation and apoptosis. J Leukoc Biol. 2007;81:1504–11.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Murugesan V, Chuang W-L, Liu J, Lischuk A, Kacena K, Lin H, et al. Glucosylsphingosine is a key biomarker of Gaucher disease. Am J Hematol. 2016;91:1082–9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ida H, Rennert OM, Ito T, Maekawa K, Eto Y. Type 1 Gaucher disease: phenotypic expression and natural history in Japanese patients. Blood Cells Mol Dis. 1998;24:73–81.CrossRefPubMedGoogle Scholar
  51. 51.
    Maaswinkel-Mooij P, Hollak C, van Eysden-Plaisier M, Prins M, Aerts H, Pöll R. The natural course of Gaucher disease in The Netherlands: implications for monitoring of disease manifestations. J Inherit Metab Dis. 2000;23:77–82.CrossRefPubMedGoogle Scholar
  52. 52.
    Piran S, Roberts A, Patterson MA, Amato D. The clinical course of untreated Gaucher disease in 22 patients over 10 years: hematological and skeletal manifestations. Blood Cells Mol Dis. 2009;43:289–93.CrossRefPubMedGoogle Scholar
  53. 53.
    Balwani M, Fuerstman L, Kornreich R, Edelmann L, Desnick RJ. Type 1 Gaucher disease: significant disease manifestations in “asymptomatic” homozygotes. Arch Intern Med. 2010;170:1463–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Juliette Berger
    • 1
    • 2
    • 3
  • Marie Vigan
    • 4
    • 5
  • Bruno Pereira
    • 6
  • Thu Thuy Nguyen
    • 4
  • Roseline Froissart
    • 7
  • Nadia Belmatoug
    • 8
  • Florence Dalbiès
    • 9
  • Agathe Masseau
    • 10
  • Christian Rose
    • 11
  • Christine Serratrice
    • 12
  • Yves-Marie Pers
    • 13
  • Ivan Bertchansky
    • 14
  • Fabrice Camou
    • 15
  • Monia Bengherbia
    • 8
  • Céline Bourgne
    • 1
    • 2
  • Catherine Caillaud
    • 16
    • 17
  • Magali Pettazzoni
    • 7
  • Amina Berrahal
    • 1
  • Jérôme Stirnemann
    • 18
  • France Mentré
    • 4
    • 5
  • Marc G. Berger
    • 1
    • 2
    • 3
    Email author
  1. 1.Hématologie Biologique, CHU Clermont-Ferrand, CHU EstaingClermont-Ferrand Cedex 1France
  2. 2.Université Clermont Auvergne, Equipe d’Accueil 7453 CHELTER, CHU EstaingClermont-Ferrand Cedex 1France
  3. 3.CHU Clermont-Ferrand, CHU Estaing, CRB AuvergneClermont-Ferrand Cedex 1France
  4. 4.INSERM and University Paris Diderot, IAME, UMR 1137ParisFrance
  5. 5.AP-HP, Department of Epidemiology, Biostatistic and Clinical ResearchBichat HospitalParisFrance
  6. 6.CHU Clermont-Ferrand, DRCI, CHU MontpiedClermont-Ferrand Cedex 1France
  7. 7.Hospices Civils de Lyon, Centre de Biologie et de Pathologie Est, Unité des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Service de Biochimie et Biologie Moléculaire Grand EstBronFrance
  8. 8.Médecine Interne, AP-HP, Hôpital BeaujonClichyFrance
  9. 9.Hématologie, CHRU Brest site Hôpital MorvanBrestFrance
  10. 10.Médecine Interne, CHU de Nantes, Hôtel-DieuNantesFrance
  11. 11.Onco-Hématologie, Hôpital Saint-Vincent de Paul, boulevard de BelfortLilleFrance
  12. 12.Hôpitaux Universitaires de Genève, Département de Médecine Interne, Hôpital des Trois-ChêneGenevaSwitzerland
  13. 13.Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Lapeyronie University HospitalMontpellierFrance
  14. 14.INSERM U1183, Saint-Eloi University HospitalMontpellierFrance
  15. 15.Service de Médecine Interne et Maladies InfectieusesCHU Bordeaux, Groupe Hospitalier Sud, avenue MagellanPessac CedexFrance
  16. 16.INSERM U1151, Institut Necker Enfants Malades, Université Paris DescartesParisFrance
  17. 17.AP-HP, Hôpital Universitaire Necker Enfants Malades, Laboratoire de Biochimie, Métabolomique et ProtéomiqueParisFrance
  18. 18.Département de Médecine Interne, Hôpitaux Universitaires de GenèveGenevaSwitzerland

Personalised recommendations